176
Views
7
CrossRef citations to date
0
Altmetric
Articles

Multidimensional Studies of Pancratium parvum Dalzell Against Acetylcholinesterase: A Potential Enzyme for Alzheimer’s Management

, , , &
Pages 601-618 | Received 09 Jul 2019, Accepted 22 Dec 2019, Published online: 17 Jan 2020

References

  • Sobhani R, Pal AK, Bhattacharjee A, Mitra S, Aguan K. Screening indigenous medicinal plants of northeast India for their anti-Alzheimer’s properties. PJ. 2016;9(1):46–54. doi:10.5530/pj.2017.1.9.
  • Novakovic D, Feligioni M, Scaccianoce S, Caruso A, Piccinin S, Schepisi C, Errico F, Mercuri NB, Nicoletti F, Nistico R. Profile of gantenerumab and its potential in the treatment of Alzheimer's disease. Drug Des Dev Ther. 2013;7:1359–1364. doi:10.2147/DDDT.S53401.
  • He M, Qu C, Gao O, Hu X, Hong X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv. 2015;5(21):16562–16574. doi:10.1039/C4RA14666B.
  • Calderón AI, Cubilla M, Espinosa A, Gupta MP. Gupta, screening of plants of amaryllidaceae and related families from Panama as sources of acetylcholinesterase inhibitors. Pharm Biol. 2010;48(9):988–993. doi:10.3109/13880200903418514.
  • Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14(4):289–300. doi:10.1016/j.phymed.2007.02.002.
  • Jung HA, Min B-S, Yokozawa T, Lee J-H, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 2009;32(8):1433–1438. doi:10.1248/bpb.32.1433.
  • Schulz V. Ginkgo extract or cholinesterase inhibitors in patients with dementia: What clinical trials and guidelines fail to consider. Phytomedicine. 2003;10:74–79. doi:10.1078/1433-187X-00302.
  • Adewusi EA, Steenkamp V. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa, Asian Pac. J Trop Med. 2011;4:829–835. doi:10.1016/S1995-7645(11)60203-4.
  • Feitosa CM, Freitas RM, Luz NNN, Bezerra MZB, Trevisan MTS. Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants. Braz J Biol. 2011;71(3):783–789. doi:10.1590/S1519-69842011000400025.
  • Alhakmani F, Kumar S, Khan SA. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac J Trop Biomed. 2013;3(8):623–627. doi:10.1016/S2221-1691(13)60126-4.
  • Afshari AR, Sadeghnia HR, Mollazadeh H. A review on potential mechanisms of Terminalia chebula in Alzheimer’s disease. Adv Pharmacol Sci. 2016;2016:1–14. doi:10.1155/2016/8964849.
  • Feng Y, Wang X. Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev. 2012;2012:1–17. doi:10.1155/2012/472932.
  • Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res. 2007;35(22):7497–7504. doi:10.1093/nar/gkm821.
  • Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, de Leon MJ. Inflammation and Alzheimer’s disease: possible role of periodontal diseases, Alzheimer’s Dement. 2008;4(4):242–250. doi:10.1016/j.jalz.2007.08.004.
  • Wang J, Tan L, Wang HF, Tan CC, Meng XF, Wang C, Tang SW, Yu JT. Anti-inflammatory drugs and risk of Alzheimer’s Disease: An updated systematic review and meta-analysis. JAD. 2015;44(2):385–396. doi:10.3233/JAD-141506.
  • Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimer’s Dement. 2014;10(1):S76–S83. doi:10.1016/j.jalz.2013.12.010.
  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:1–9. doi:10.1155/2016/7432797.
  • Ding Y, Qu D, Zhang KM, Cang XX, Kou ZN, Xiao W, Zhu JB. Phytochemical and biological investigations of Amaryllidaceae alkaloids: a review. J Asian Nat Prod Res. 2017;19(1):53–100. doi:10.1080/10286020.2016.1198332.
  • Nagaraju S.. Prospecting for galanthamine and acetylcholinesterase inhibition activity in Indian Amaryllidaceae species. Bangalore: University of Agricultural Sciences, GKVK; 2011. p. 1–142.
  • Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. CN. 2013;11(4):388–413. doi:10.2174/1570159X11311040004.
  • Heinrich M, Teoh HL. Galanthamine from snowdrop — the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol. 2004;92(2-3):147–162. doi:10.1016/j.jep.2004.02.012.
  • Iannello C, Pigni NB, Antognoni F, Poli F, Maxia A, De Andrade JP, Bastida J. A potent acetylcholinesterase inhibitor from Pancratium illyricum L. Fitoterapia. 2014;92:163–167. doi:10.1016/j.fitote.2013.11.005.
  • Ingkaninan K, Temkitthawon P, Chuenchom K, Yuyaem T, Thongnoi W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol. 2003;89(2-3):261–264. doi:10.1016/j.jep.2003.08.008.
  • Zelik P, Lukesova A, Voloshko LN, Stys D, Kopecky J. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc. J Enzyme Inhib Med Chem. 2009;24:531–536. doi:10.1080/14756360802234836.
  • Grant NH, Alburn HE, Kryzanauskas C. Stabilization of serum albumin by anti-inflammatory drugs. Biochem Pharmacol. 1970;19(3):715–722. doi:10.1016/0006-2952(70)90234-0.
  • Reka V, Anuradha R. In vitro anti-inflammatory and antioxidant activities of Caesalpinia pulcherrima Linn. flowers. Int J Uni Pharm Biol. 2014;3(4):42–49.
  • Leelaprakash G, Mohan Dass S. Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int J Drug Dev Res. 2011;3:189–196.
  • Gohari AR, Hajimehdipour H, Saeidnia S, Ajani Y, Hadjiakhoondi A. Antioxidant activity of some medicinal species using FRAP assay. J Med Plants. 2011;10:54–60.
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70–76. doi:10.1006/abio.1996.0292.
  • Halliwell B, Gutteridge JMC. Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts. FEBS Lett. 1981;128(2):347–352. doi:10.1016/0014-5793(81)80114-7.
  • Khan RA, Khan MR, Sahreen S, Ahmed M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Cent J. 2012;6(1):43–48. doi:10.1186/1752-153X-6-43.
  • Nunez MT, Chana-Cuevas P. New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals. 2018;11:5–9. doi:10.3390/ph11040109.
  • Helrich K. 1990. Official methods of analysis of AOAC International. 15th ed. Arlington, Virginia, USA: Association of Official Analytical Chemists, Inc.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Trevelyan WE, Forrest RS, Harrison JS. Determination of yeast carbohydrates with the anthrone reagent. Nature. 1952;170(4328):626–627. doi:10.1038/170626a0.
  • Rebaya A, Belghith SI, Baghdikian B, Leddet VM, Mabrouki F, Olivier E, Cherif JK, Ayadi MT. Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). J Appl Pharm Sci. 2015;5:052–057. doi:10.7324/JAPS.2015.50110.
  • Hande PA, Mondal S, Badigannavar AM, D'Souza SF. Genetic variability of phytic acid phosphorus and inorganic phosphorus in cultivated groundnut (Arachis hypogaea L.) Plant Genet Resour. 2013;11(3):190–195. doi:10.1017/S1479262113000130.
  • Madhu M, Sailaja V, Satyadev T, Satyanarayana MV. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. J Pharmacogn Phytochem. 2016;5:25–29.
  • Rokbeni N, M’rabet Y, Cluzet S, Richard T, Krisa S, Boussaid M, Boulila A. Determination of phenolic composition and antioxidant activities of Pancratium maritimum L. from Tunisia. Ind Crops Prod. 2016;94:505–513. doi:10.1016/j.indcrop.2016.09.021.
  • Soltan MM, Hamed AR, Hetta MH, Hussein AA. Egyptian Pancratium maritimum L. flowers as a source of anti-Alzheimer’s agents. Bull Fac Pharmacy Cairo Univ. 2015;53(1):19–22. doi:10.1016/j.bfopcu.2015.02.002.
  • Jagtap UB, Bapat VA. Analysis of selected Crinum species for galanthamine alkaloid: An anti-Alzheimer drug. Curr Sci. 2014;107(12):2008–2010.
  • Drescher DG, Ramakrishnan NA, Drescher MJ. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol. 2009;493:323–343. doi:10.1007/978-1-59745-523-7_20.
  • Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Switzerland). 2015;15(5):10481–10510. doi:10.3390/s150510481.
  • Yanagisawa D, Taguchi H, Morikawa S, Kato T, Hirao K, Shirai N, Tooyama I. Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem Biophys Rep. 2015;4:357–368. doi:10.1016/j.bbrep.2015.10.009.
  • Ross KA, Beta T, Arntfield SD. A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chem. 2009;113(1):336–344. doi:10.1016/j.foodchem.2008.07.064.
  • Aware CB, Patil RR, Vyavahare GD, Gurme ST, Jadhav JP. Ultrasound-assisted aqueous extraction of phenolic, flavonoid compounds and antioxidant activity of Mucuna macrocarpa beans: response surface methodology optimization. J Am Coll Nutr. 2018;1–9. doi:10.1080/07315724.2018.1524315.
  • Sadhukhan B, Mondal NK, Chattoraj S. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int J Mod Sci. 2016;2(3):145–155. doi:10.1016/j.kijoms.2016.03.005.
  • Asadzadeh F, Maleki-Kaklar M, Soiltanalinejad N, Shabani F. Central composite design optimization of zinc removal from contaminated soil, using citric acid as biodegradable chelant. Sci Rep. 2018;8:1–8. doi:10.1038/s41598-018-20942-9.
  • Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease – A brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med. 2012;2(1):1–23. doi:10.1101/cshperspect.a006346.
  • Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321–1319. doi:10.3390/molecules21101321.
  • Elgorashi EE, Zschocke S, van Staden J, Eloff JN. The anti-inflammatory and antibacterial activities of Amaryllidaceae alkaloids. South African J Bot. 2003;69(3):448–449. doi:10.1016/S0254-6299(15)30329-X.
  • Huang W, Zhang X, Chen W. Role of oxidative stress in Alzheimer’s disease (Review). Biomed Rep. 2016;4(5):519–522. doi:10.3892/br.2016.630.
  • Butterfield D, Castegna A, Lauderback C, Drake J. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74. doi:10.2174/157015909787602823.
  • de Sousa Araujo TA, Alencar NL, de Amorim ELC, de Albuquerque UP. A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J Ethnopharmacol. 2008;120:72–80. doi:10.1016/j.jep.2008.07.032.
  • Ha C, Ryu J, Chan BP. Metal ions differentially influence the aggregation and deposition of Alzheimer’s β-amyloid on a solid template. Biochemistry. 2007;46(20):6118–6125. doi:10.1021/bi7000032.
  • Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GAN, Raftery D, Arrieta-Cruz I, et al. Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. J. Neurosci. 2012;32(15):5144–5150. doi:10.1523/JNEUROSCI.6437-11.2012.
  • Bonvicini F, Antognoni F, Iannello C, Maxia A, Poli F, Gentilomi GA. Relevant and selective activity of Pancratium illyricum L. against Candida albicans clinical isolates: a combined effect on yeast growth and virulence. BMC Complement Altern Med. 2014;14:1–8. doi:10.1186/1472-6882-14-409.
  • Moraga-Nicolas F, Jara C, Godoy R, Iturriaga-Vasquez P, Venthur H, Quiroz A, Becerra J, Mutis A, Hormazábal E. Rhodolirium andicola: A new renewable source of alkaloids with acetylcholinesterase inhibitory activity, a study from nature to molecular docking. Brazilian J Pharmacogn. 2018;28:34–43. doi:10.1016/j.bjp.2017.11.009.
  • Bahrani H, Mohamad J, Paydar M, Rothan H. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer’s disease (AD). CAR. 2014;11(2):206–214. doi:10.2174/1567205011666140130151344.
  • Ortiz JE, Berkov S, Pigni NB, Theoduloz C, Roitman G, Tapia A, Bastida J, Feresin GE. Wild Argentinian amaryllidaceae, a new renewable source of the acetylcholinesterase inhibitor galanthamine and other alkaloids. Molecules. 2012;17(11):13473–13482. doi:10.3390/molecules171113473.
  • Amri O, Zekhnini A, Bouhaimi A, Tahrouch S, Hatimi A. Anti-inflammatory activity of methanolic extract from Pistacia atlantica Desf. Leaves. PJ. 2017;10(1):71–76. doi:10.5530/pj.2018.1.14.
  • Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018;153:105–115. doi:10.1016/j.ejmech.2017.09.001.
  • Bozkurt B, Emir A, Kaya GI, Onur MA, Berkov S, Bastida J, Unver Somer N. Alkaloid profiling of Galanthus woronowii Losinsk. by GC-MS and evaluation of its biological activity. Marmara Pharm J. 2017;21(4):915–920. doi:10.12991/mpj.2017.12.
  • Berkov S, Bastida J, Viladomat F, Codina C. Development and validation of a GC-MS method for rapid determination of galanthamine in Leucojum aestivum and Narcissus ssp.: a metabolomic approach. Talanta. 2011;83(5):1455–1465. doi:10.1016/j.talanta.2010.11.029.
  • Tallini LR, Torras-Claveria L, Borges W, Kaiser M, Viladomat F, Zuanazzi JA, Bastida J. N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules. 2018;23(6):pii:E1277. doi:10.3390/molecules23061277.
  • De Andrade JP, Pigni NB, Torras-Claveria L, Guo Y, Berkov S, Reyes-Chilpa R, El Amrani A, Zuanazzi JA, Codina C, Viladomat F, Bastida J. Alkaloids from the Hippeastrum genus: chemistry and biological activity. Rev. Latinoamer. Quím. 2012;40(2):83–98.
  • Torras-Claveria L, Berkov S, Codina C, Viladomat F, Bastida J. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by GC-MS combined with k-means cluster analysis. Ind Crops Prod. 2014;56:211–222. doi:10.1016/j.indcrop.2014.03.008.
  • Torras-Claveria L, Berkov S, Jauregui O, Caujape J, Viladomat F, Codina C, Bastida J. Metabolic profiling of bioactive pancratium canariense extracts by GC-MS. Phytochem. Anal. 2010;21(1):80–88. doi:10.1002/pca.1158.
  • Berkov S, Evstatieva L, Popov S. Alkaloids in Bulgarian Pancratium maritimum L. Z. Naturforsch. 2004;59(1–2):65–69. doi:10.1515/znc-2004-1-214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.