60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Prophylactic Activity of Punica granatum L. mesocarp Protects Preadipocytes against Ribosylated BSA-Induced Toxicity

, , , &
Pages 502-516 | Received 17 Apr 2020, Accepted 06 Jul 2020, Published online: 19 Feb 2021

References

  • Akhter F, Khan MS, Singh S, Ahmad S. An immunohistochemical analysis to validate the rationale behind the enhanced immunogenicity of D-ribosylated low density lipo-protein. PLoS One. 2014;9(11):e113144. doi:10.1371/journal.pone.0113144.
  • Wei Y, Chen L, Chen J, Ge L, He RQ. Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol. 2009;10:10. doi:10.1186/1471-2121-10-10.
  • Wei Y, Han CS, Zhou J, Liu Y, Chen L, He RQ. D-ribose in glycation and protein aggregation. Biochim Biophys Acta. 2012;1820(4):488–94. doi:10.1016/j.bbagen.2012.01.005.
  • Fournet M, Bonté F, Desmoulière A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis. 2018;9(5):880–900. doi:10.14336/AD.2017.1121.
  • Siddiqui Z, Faisal M, Alatar AR, Ahmad S. Prevalence of auto-antibodies against D-ribose-glycated-hemoglobin in diabetes mellitus. Glycobiology. 2019;29(5):409–18. doi:10.1093/glycob/cwz012.
  • Chen X, Su T, Chen Y, He Y, Liu Y, Xu Y, Wei Y, Li J, He R. D-ribose as a contributor to glycated haemoglobin. EBioMedicine. 2017;25:143–53. doi:10.1016/j.ebiom.2017.10.001.
  • Chen Y, Yu L, Wang Y, Wei Y, Xu Y, He T, He R. d-Ribose contributes to the glycation of serum protein. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2285–92. doi:10.1016/j.bbadis.2019.05.005.
  • Chen L, Cheng CY, Choi H, Ikram MK, Sabanayagam C, Tan GS, Tian D, Zhang L, Venkatesan G, Tai ES, et al. Plasma metabonomic profiling of diabetic retinopathy. Diabetes. 2016;65(4):1099–108. doi:10.2337/db15-0661.
  • Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24(5):547–53. doi:10.1016/j.jsps.2015.03.013.
  • Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1–14. doi:10.4196/kjpp.2014.18.1.1.
  • Schaffer SW, Jong CJ, Mozaffari M. Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited. Vascul Pharmacol. 2012;57(5-6):139–49. doi:10.1016/j.vph.2012.03.005.
  • Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern Med Rev. 2008;13(2):128–44.
  • Ramlagan P, Rondeau P, Planesse C, Neergheen-Bhujun VS, Fawdar S, Bourdon E, Bahorun T. Punica granatum L. mesocarp suppresses advanced glycation end products (AGEs)- and H2O2-induced oxidative stress and pro-inflammatory biomarkers. J Funct Foods. 2017;29:115–26. doi:10.1016/j.jff.2016.12.007.
  • Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem. 2011;127(2):807–21. doi:10.1016/j.foodchem.2010.12.156.
  • Wang W, Yagiz Y, Buran TJ, Nunes CN, Gu L. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end‐products by scavenging reactive carbonyls. Food Res Int. 2011;44(9):2666–73. doi:10.1016/j.foodres.2011.05.022.
  • Sompong W, Meeprom A, Cheng H, Adisakwattana S. A comparative study of ferulic acid on different monosaccharide-mediated protein glycation and oxidative damage in bovine serum albumin. Molecules. 2013;18(11):13886–903. doi:10.3390/molecules181113886.
  • Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules. 2013;18(6):6439–54. doi:10.3390/molecules18066439.
  • Johnson RN, Metcalf PA, Baker JR. Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta. 1983 ;127(1):87–95. Jan 7doi:10.1016/0009-8981(83)90078-5.
  • Boyer F, Rondeau P, Bourdon E. Hyperglycemia induces oxidative damage in SW872 cells. Arch Med Biomed Res. 2014;1:66–78.
  • Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49(5):1304–13. doi:10.1038/ki.1996.186.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4.
  • Marvibaigi M, Amini N, Supriyanto E, Abdul Majid FA, Kumar Jaganathan S, Jamil S, Hamzehalipour Almaki J, Nasiri R. Antioxidant activity and ROS-dependent apoptotic effect of Scurrula ferruginea (Jack) danser methanol extract in human breast cancer cell MDA-MB-231. PLoS One. 2016;11(7):e0158942. doi:10.1371/journal.pone.0158942.
  • Marimoutou M, Le Sage F, Smadja J, Lefebvre d'Hellencourt C, Gonthier MP, Robert-Da Silva C. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. J Inflamm (Lond)). 2015;12:10. doi:10.1186/s12950-015-0055-6.
  • Flohé L, Otting F. Superoxide dismutase assays. Meth Enzymol. 1984;105:93–104. doi:10.1016/s0076-6879(84)05013-8.
  • Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121–6. doi:10.1016/s0076-6879(84)05016-3.
  • Tappel AL. Glutathione peroxidase and hydroperoxides. Meth Enzymol. 1978;52:506–13. doi:10.1016/s0076-6879(78)52055-7.
  • Nm A-H. Quantitative diversity of phenolic content in peels of some selected Egyptian pomegranate cultivars correlated to antioxidant and anticancer effects. J Appl Sci Res. 2013;9:4823–30.
  • Lansky EP, Newman RA. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 2007;109(2):177–206. doi:10.1016/j.jep.2006.09.006.
  • Han C, Lu Y, Wei Y, Liu Y, He R. D-Ribose induces cellular protein glycation and impairs mouse spatial cognition. PLoS One. 2011;6(9):e24623. doi:10.1371/journal.pone.0024623.
  • Yeh W, Hsia S, Lee W, Wu C. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017;25(1):84–92. doi:10.1016/j.jfda.2016.10.017.
  • Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014;19(11):18828–49. doi:10.3390/molecules191118828.
  • Crascì L, Lauro MR, Puglisi G, Panico A. Natural antioxidant polyphenols on inflammation management: anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr. 2018;58(6):893–904. doi:10.1080/10408398.2016.1229657.
  • Xie Y, Chen X. Structures required of polyphenols for inhibiting advanced glycation end products formation. Curr Drug Metab. 2013;14(4):414–31. doi:10.2174/1389200211314040005.
  • Liu W, Ma H, Frost L, Yuan T, Dain JA, Seeram NP. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food Funct. 2014;5(11):2996–3004. doi:10.1039/c4fo00538d.
  • Kumagai Y, Nakatani S, Onodera H, Nagatomo A, Nishida N, Matsuura Y, Kobata K, Wada M. Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro. J Agric Food Chem. 2015;63(35):7760–4. doi:10.1021/acs.jafc.5b02766.
  • Sasaki K, Chiba S, Yoshizaki F. Effect of natural flavonoids, stilbenes and caffeic acid oligomers on protein glycation. Biomed Rep. 2014;2(5):628–32. doi:10.3892/br.2014.304.
  • Khan MS, Dwivedi S, Priyadarshini M, Tabrez S, Siddiqui MA, Jagirdar H, Al-Senaidy AM, Al-Khedhairy AA, Musarrat J. Ribosylation of bovine serum albumin induces ROS accumulation and cell death in cancer line (MCF-7). Eur Biophys J. 2013;42(11–12):811–8. doi:10.1007/s00249-013-0929-6.
  • Wu B, Yu L, Hu P, Lu Y, Li J, Wei Y, He R. GRP78 protects CHO cells from ribosylation. Biochim Biophys Acta Mol Cell Res. 2018;1865(4):629–37. doi:10.1016/j.bbamcr.2018.02.001.
  • Han C, Lu Y, Wei Y, Wu B, Liu Y, He R. D-ribosylation induces cognitive impairment through RAGE-dependent astrocytic inflammation. Cell Death Dis. 2014;5:e1117. doi:10.1038/cddis.2014.89.
  • Shi JM, Bai LL, Zhang DM, Yiu A, Yin ZQ, Han WL, Liu JS, Li Y, Fu DY, Ye WC. Saxifragifolin D induces the interplay between apoptosis and autophagy in breast cancer cells through ROS-dependent endoplasmic reticulum stress. Biochem Pharmacol. 2013;85(7):913–26. doi:10.1016/j.bcp.2013.01.009.
  • Hu Y, Shao Z, Cai X, Liu Y, Shen M, Yao Y, Yuan T, Wang W, Ding F, Xiong L. Mitochondrial pathway is involved in advanced glycation end products-induced apoptosis of rabbit annulus fibrosus cells. Spine (Phila Pa 1976). 2019;44(10):E585–E595. doi:10.1097/BRS.0000000000002930.
  • Zhang G, Yang W, Jiang F, Zou P, Zeng Y, Ling X, Zhou Z, Cao J, Ao L. PERK regulates Nrf2/ARE antioxidant pathway against dibutyl phthalate-induced mitochondrial damage and apoptosis dependent of reactive oxygen species in mouse spermatocyte-derived cells. Toxicol Lett. 2019;308:24–33. doi:10.1016/j.toxlet.2019.03.007.
  • Jiang D, Fu C, Xiao J, Zhang Z, Zou J, Ye Z, Zhang X. SGK1 attenuates oxidative stress-induced renal tubular epithelial cell injury by regulating mitochondrial function. Oxid Med Cell Longev. 2019;2019:2013594doi:10.1155/2019/2013594.
  • Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem. 1992;56(2):324–5. doi:10.1271/bbb.56.324.
  • Patel A, Patel A, Patel A, Patel NM. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res. 2010;2(3):152–8. doi:10.4103/0974-8490.65509.
  • Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203. doi:10.1016/j.foodchem.2005.07.042.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10.1155/2014/360438.
  • Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Kabała-Dzik A, Kubina R, Moździerz A, Buszman E. Polyphenols from bee pollen: structure, absorption, metabolism and biological activity. Molecules. 2015;20(12):21732–49. doi:10.3390/molecules201219800.
  • Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C, Jonsson G. Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta. 2012;413(9-10):901–6. doi:10.1016/j.cca.2012.01.038.
  • Borriello M, Iannuzzi C, Sirangelo I. Pinocembrin protects from AGE-induced cytotoxicity and inhibits non-enzymatic glycation in human insulin. Cells. 2019;8:385–402. doi:10.3390/cells8050385.
  • Tanaka T, Iino M. Nuclear translocation of p65 is controlled by Sec6 via the degradation of IκBα. J Cell Physiol. 2016;231(3):719–30. doi:10.1002/jcp.25122.
  • Zheng J, Kong C, Yang X, Cui X, Lin X, Zhang Z. Protein kinase C-α (PKCα) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder. BMC Cancer. 2017;17(1):432–44. doi:10.1186/s12885-017-3401-7.
  • Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Andaswami C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol. 2006;13(3):319–28. doi:10.1128/CVI.13.3.319-328.2006.
  • Chaudhuri S, Sengupta B, Taylor J, Pahari BP, Sengupta PK. Interactions of dietary flavonoids with proteins: insights from fluorescence spectroscopy and other related biophysical studies. Curr Drug Metab. 2013;14(4):491–503. doi:10.2174/1389200211314040011.
  • Suryavanshi SV, Kulkarni YA. NF-κβ: a potential target in the management of vascular complications of diabetes. Front Pharmacol. 2017;8:798–810. doi:10.3389/fphar.2017.00798.
  • Liu J, Liu Y, Chen J, Hu C, Teng M, Jiao K, Shen Z, Zhu D, Yue J, Li Z, et al. The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol in Vitro. 2017;45(Pt 1):10–8. doi:10.1016/j.tiv.2017.07.013.
  • Reimold AM, Kim J, Finberg R, Glimcher LH. Decreased immediate inflammatory gene induction in activating transcription factor-2 mutant mice. Int Immunol. 2001;13(2):241–8. doi:10.1093/intimm/13.2.241.
  • Chan YC, Leung PS. Involvement of redox-sensitive extracellular-regulated kinases in angiotensin II-induced interleukin-6 expression in pancreatic acinar cells. J Pharmacol Exp Ther. 2009;329(2):450–8. doi:10.1124/jpet.108.148353.
  • Tanaka T, Narazaki M, Masuda K, Kishimoto T. Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol. 2016;941:79–88. doi:10.1007/978-94-024-0921-5_4.
  • Hatia S, Septembre-Malaterre A, Le Sage F, Badiou-Bénéteau A, Baret P, Payet B, Lefebvre d'hellencourt C, Gonthier MP. Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress. Free Radic Res. 2014;48(4):387–401. doi:10.3109/10715762.2013.879985.
  • Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic options targeting oxidative stress, mitochondrial dysfunction and inflammation to hinder the progression of vascular complications of diabetes. Front Physiol. 2018;9:1857. doi:10.3389/fphys.2018.01857.
  • Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutr Res. 2013;33(5):341–8. doi:10.1016/j.nutres.2013.03.003.
  • Harzallah A, Hammami M, Kępczyńska MA, Hislop DC, Arch JRS, Cawthorne MA, Zaibi MS. Comparison of potential preventive effects of pomegranate flower, peel and seed oil on insulin resistance and inflammation in high-fat and high-sucrose diet-induced obesity mice model. Arch Physiol Biochem. 2016;122(2):75–87. doi:10.3109/13813455.2016.1148053.
  • Bellesia A, Verzelloni E, Tagliazucchi D. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. Int J Food Sci Nutr. 2015;66(1):85–92. doi:10.3109/09637486.2014.953455.
  • Kerimi A, Nyambe-Silavwe H, Gauer JS, Tomás-Barberán FA, Williamson G. Pomegranate juice, but not an extract, confers a lower glycemic response on a high-glycemic index food: randomized, crossover, controlled trials in healthy subjects. Am J Clin Nutr. 2017;106(6):1384–93. doi:10.3945/ajcn.117.161968.
  • Sun J, Dong S, Wu Y, Zhao H, Li X, Gao W. Inhibitor discovery from pomegranate rind for targeting human salivary α-amylase. Med Chem Res. 2018;27(6):1559–77. doi:10.1007/s00044-018-2164-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.