121
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Conformational Analysis of Gentiobiose Using Genetic Algorithm Search and GIAO DFT Calculations with 13C CPMAS NMR as a Verification Method

, &
Pages 145-162 | Received 02 Jul 2014, Accepted 26 Jan 2015, Published online: 08 Apr 2015

REFERENCES

  • Webster, A.; Osifo P.O.; Neomagus, H.W.J.P.; Grant, D.M. A comparison of glycans and polyglycans using solid-state NMR and X-ray powder diffraction. Solid STATE NMR. 2006, 30, 150–161.
  • Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological Structures. Springer-Verlag: Berlin 1991.
  • Earl, W.L.; Parish, A.F.W. A cross-polarisation-magic-angle sample spinning N.M.R. study of several crystal forms of lactose. Carbohydr. Res. 1983, 115, 23–32.
  • Jeffrey, G.A.; Wood, R.A; Pfefel, P.E.; Hicks, K.B. Crystal structure and solid-state NMR analysis of lactulose. J. Am. Chem. Soc. 1983, 105, 21–26.
  • Gray, G.A, Hill, H.D.W. Solid-state NMR spectroscopy. Distinction of diastereomers and determination of optical purity. Ind. Res. And Dev. 1980, 22, 131–136.
  • Zang, P.; Klymachyov, W.N.; Brown, S.; Ellington J.G.; Grandinetti P.J. Solid-state 13C NMR investigations of the glycosidic linkage in α-α′ trehalose. Solid State NMR 1998, 12, 221–225.
  • Yates, J.R.; Titman, J.J. Carbon-13 chemical shift tensors of disaccharides: Measurement. J. Phys. Chem. A 2007, 111, 13126.
  • Swalina, C.W.; Zauhar, R.J.; DeGrazia, M.J.; Moyna, G.J. Derivation of 13C chemical shift surfaces for the anomeric carbons of oligosaccharides and glycopeptides using ab initio methodology. Biomol. NMR 2001, 21, 49–61.
  • Sayers, E.W.; Prestegard, J.H. Solution conformations of a trimannoside from nuclear magnetic resonance and molecular dynamics simulations. Biophys. J. 2000, 79, 3313–3329.
  • Pereira, C.S.; Kony, D.; Baron, R.; Müller, M.; Van Gunsterenand, W.F.; Hünenberger, P.H. Conformational and dynamical properties of disaccharides in water: A molecular dynamics study. Biophys. J. 2006, 90, 4337–4344.
  • Ramakrishna, C. Ramachandran and his map. Resonance 2001, 6, 48–56.
  • Perez, S.; Kouwijzer, M.; Mazeru, K.; Engelsen, S.B. Modeling polysaccharides: Present status and challenges. J. Mol.Graph. 1998, 14, 307–321.
  • Stortz, C.A. Disaccharide conformational maps: how adiabatic is an adiabatic map? Carbohydr. Res. 1999, 322, 77–86.
  • Frank, M.; Lutteke, T.; Von der Lieth, C.W. GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nuclei Acids Res. 2007, 35, 287–290.
  • Nahmany, A.; Strino, F.; Rosen J.; Kemp, G.J.; Nyholm, P.G. The use of a genetic algorithm search for molecular mechanics (MM3) based conformational analysis of oligosaccharides. Carbohydr Res. 2005, 340, 1059–1064.
  • Strino, F.; Nahmany, A.; Rosen, J.; Kemp, G.J.L; Sa-Correia, I.; Nyholm, P.G. Conformation of the exopolysaccharide of Burkholderia cepacia predicted with Molecular Mechanics (MM3) using genetic algorithm search. Carbohydr. Res. 2005, 340, 1019–1024.
  • Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley: New York, 1989.
  • Rohrer, D.C.; Sarko, A.; Bluh, T.L., Lee, Y.N. The structure of gentiobiose. Acta Crystallogr. B 1980, 36, 650–654.
  • Arene, F.; Neuman, A.; Longchambon, F. Solid-state and solution conformation of scleroglucan. C.R. Acad. Sci., Ser C 1979, 288, 331–334.
  • Yui, T.; Goto, K.; Kawano, Y.; Ogawa, K. Molecular modeling study of highly branching (1–>3)-alpha-D-glucan, a model polysaccharide for cariogenic glucan, using the N-H mapping method. Biosci. Biotechnol. Biochem. 2000, 64, 52–60.
  • Wawer, A. Evolutionary algorithm in conformational analysis. Polish-Japanese Institute Information Technology2003.
  • HyperChem ™ Professional 8.0, Hypercube, Inc. 1115 NW 4th Street, Gainesville, Florida 32601, USA.
  • Hocquet, A.; Laggard, M. An evaluation of the MM+ force field. J. Mol. Model. 1998, 4, 94–112.
  • Stortz, C.A.; Johnson, G.P.; French, A.D.; Csonka, G.I. Comparison of different force fields for the study of disaccharides. Carbohydr. Res. 2009, 344, 2217–2228.
  • Gaussian 09, Revision, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, Jr., J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT, 2009.
  • Klein, R.A. Hydrogen bonding in diols and binary diol-water systems investigated using DFT methods. II. Calculated infrared OH-stretch frequencies, force constants, and NMR chemical shifts correlate with hydrogen bond geometry and electron density topology. A reevaluation of geometrical criteria for hydrogen bonding. J. Am. Chem. Soc. 2002, 124, 13931–13937.
  • Roslund, M.U.; Tähtinen, P.; Niemitz, M.; Sjöholm, R. Complete assignments of the (1)H and (13)C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr. Res. 2008, 343, 101–112.
  • Temeriusz, A.; Gubica, T.; Rogowska, P.; Paradowska, K.; Cyrański, M.K. Crystal structure and solid state 13C NMR analysis of nitrophenyl 2,3,4,6-tetra-O-acetyl-β-D-gluco and D-galactopyranosides. Carbohydr. Res. 2005, 340, 1175–1184.
  • Paradowska, K.; Gubica, T.; Temeriusz, A.; Cyrański, M.K.; Wawer, I. 13C CPMAS NMR and crystal structure of methyl glycopyranosides. Carbohydr. Res. 2008, 343, 2299–2307.
  • Horii, F.; Hirai, A.; Kitamaru, R. Solid-state 13C-NMR study of conformations of oligosaccharides and cellulose. Conformation of CH2OH group about the exo-cyclic C-C bond. Polym. Bull. 1983, 10, 357–361.
  • Kupka, T.; Pasterna, G.; Lodowski, P.; Szeja, W. GIAO -DFT prediction of accurate NMR parameters in selected glucose derivatives. Magn. Reson. Chem. 1999, 37, 421–426.
  • Forsyth, D.A.; Sebag, A.B. Computed 13C NMR chemical shifts via empirically scaled GIAO shieldings and molecular mechanics geometries. Conformation and configuration from 13C shifts. J. Am. Chem. Soc. 1997, 119, 9483–9494.
  • Lefort, R.; Bordat, P.; Cesaro, A.; Descamps, M. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose. J. Chem. Phys. 2007, 126, 014510–9.
  • Javaroni, F.; Ferreira, A.B.B.; da Silva, C.O. The (alpha-1,6) glycosidic bond of isomaltose: A tricky system for theoretical conformational studies. Carbohydr. Res. 2009, 344, 1235–1247.
  • Olsson, U.; Säwén, E.; Stenutz, R.; Widmalm, G. Conformational flexibility and dynamics of two (1–>6)-linked disaccharides related to an oligosaccharide epitope expressed on malignant tumour cells. Chem.-Eur. J. 2009, 15, 8886–8894.
  • Sergeyev, I.; Moyna, G. Determination of the three-dimensional structure of oligosaccharides in the solid state from experimental 13C NMR data and ab initio chemical shift surfaces. Carbohydr. Res. 2005, 340, 1165–1174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.