513
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Chiral catalyst-directed site-selective functionalization of hydroxyl groups in carbohydrates

ORCID Icon &
Pages 143-161 | Received 27 Jul 2017, Accepted 06 Oct 2017, Published online: 07 Nov 2017

References

  • Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993, 3, 97–130.
  • Dwek, R. A. Glycobiology: Toward understanding the function of sugars. Chem. Rev. 1996, 96, 683–720.
  • Boltje, T. J.; Buskas, T.; Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 2009, 1, 611–622
  • Gijsen, H. J. M.; Qiao, L.; Fitz, W.; Wong, C.-H. Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem. Rev. 1996, 96, 443–473.
  • Koeller, K. M.; Wong, C.-H. Synthesis of complex carbohydrates and glycoconjugates: Enzyme-based and programmable one-pot strategies. Chem. Rev. 2000, 100, 4465–4493.
  • Zhang, Y.; Wang, F. Carbohydrate drugs: current status and development prospect. Drug Discoveries & Therapeutics. 2015, 9, 79–87.
  • Mishra, S.; Upadhaya, K.; Mishra, K. B.; Shukla, A. K.; Tripathi, R. P.; Tiwari, V. K. Chapter 10: Carbohydrate-based therapeutics: a frontier in drug discovery and development. Studies in Natural Products Chemistry. 2016, 49, 307–361.
  • Tiwari, V. K.; Mishra, R. C.; Sharma, A.; Tripathi, R. P. Carbohydrate-based potential chemotherapeutic agents: recent developments and their scope in future drug discovery. Mini Rev. Med. Chem. 2012, 12, 1497–1519.
  • Ortiz, A.; Benkovics, T.; Beutner, G. L.; Shi, Z.; Bultman, M.; Nye, J.; Sfouggatakis, C.; Kronenthal, D. R. Scalable synthesis of the potent HIV Inhibitor BMS-986001 by non-enzymatic dynamic kinetic asymmetric transformation (DYKAT). Angew. Chem. Int. Ed. 2015, 54, 7185–7188.
  • Wang, H.-Y.; Yang, K.; Yin, D.; Liu, C.; Glazier, D. A.; Tang, W. Chiral catalyst-directed dynamic kinetic diastereoselective acylation of lactols for de novo synthesis of carbohydrate. Org. Lett. 2015, 17, 5272–5275.
  • Zhao, C.; Li, F.; Wang, J. N-heterocyclic carbene catalyzed dynamic kinetic resolution of pyranones. Angew. Chem. Int. Ed. 2016, 55, 1820–1824.
  • Wang, H.-Y.; Simmons, C. J.; Zhang, Y.; Smits, A. M.; Balzer, P. G.; Wang, S.; Tang, W. Chiral catalyst-directed dynamic kinetic diastereoselective acylation of anomeric hydroxyl groups and a controlled reduction of the glycosyl ester products. Org. Lett. 2017, 19, 508–511.
  • Mishra, A.; Mishra, N.; Tiwari, V. K. Carbohydrate-based organocatalysts: recent developments and future perspectives. Curr. Org. Syn. 2016, 13, 176–219.
  • Lee, D.; Taylor, M. S. Catalyst-Controlled regioselective reactions of carbohydrate derivatives. Synthesis. 2012, 44, 3421–3431.
  • Balmond, E. I.; Galan, M. C.; McGarrigle, E. M. Recent developments in the application of organocatalysis to glycosylations. Synlett. 2013, 24, 2335–2339.
  • Taylor, M. S. Catalyst-controlled, regioselective reactions of carbohydrate derivatives. Top. Curr. Chem. 2016, 372, 125–156.
  • Giuliano, M. W.; Miller, S. J. Site-selective reactions with peptide-based catalysts. Top. Curr. Chem. 2016, 372, 157–202.
  • Ueda, Y.; Kawabata, T. Organocatalytic site-selective acylation of carbohydrates and polyol compounds. Top. Curr. Chem. 2016, 372, 203–232.
  • Lawandi, J.; Rocheleau, S.; Moitessier, N. Regioselective acylation, alkylation, silylation and glycosylation of monosaccharides. Tetrahedron 2016, 72, 6283–6319.
  • David, S.; Hanessian, S. Regioselective manipulation of hydroxyl groups via organotin derivatives. Tetrahedron 1985, 41, 643–663.
  • Hodosi, G.; Kovac, P. Manipulation of free carbohydrates via stannylene acetals. Preparation of β-per-O-acyl derivatives of d-mannose, l-rhamnose, 6-O-trityl-d-talose, and d-lyxose. Carbohydr. Res. 1997, 303, 239–243.
  • Hodosi, G.; Kovac, P. A fundamentally new, simple, stereospecific synthesis of oligosaccharides containing the β-mannopyranosyl and β-rhamnopyranosyl linkage. J. Am. Chem. Soc. 1997, 119, 2335–2336.
  • Hodosi, G.; Kovac, P. Glycosylation via locked anomeric configuration: stereospecific synthesis of oligosaccharides containing the β-d-mannopyranosyl and β-l-rhamnopyranosyl linkage. Carbohydr. Res. 1998, 308, 63–75.
  • Demizu, Y.; Kubo, Y.; Miyoshi, H.; Maki, T.; Matsumura, Y.; Moriyama, N.; Onomura, O. Regioselective protection of sugars catalyzed by dimethyltin dichloride. Org. Lett. 2008, 10, 5075–5077.
  • Muramatsu, W.; William, J. M.; Onomura, O. Selective monobenzoylation of 1,2- and 1,3-Diols catalyzed by Me2SnCl2 in Water (organic solvent free) under mild conditions. J. Org. Chem. 2011, 77, 754–759.
  • Muramatsu, W. Chemo- and regioselective monosulfonylation of nonprotected carbohydrates catalyzed by organotin dichloride under mild conditions. J. Org. Chem. 2012, 77, 8083–8091.
  • Oshima, K.; Kitazono, E.; Aoyama, Y. Complexation-induced activation of sugar OH groups: Regioselective alkylation of methyl fucopyranoside via cyclic phenylboronate in the presence of amine. Tetrahedron Lett. 1997, 38, 5001–5004.
  • Lee, D.; Taylor, M. S. Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. J. Am. Chem. Soc. 2011, 133, 3724–3727.
  • Gouliaras, C.; Lee, D.; Chan, L.; Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J. Am. Chem. Soc. 2011, 133, 13926–13929.
  • Chudzinski, M. G.; Chi, Y.; Taylor, M. S. Borinic acids: a neglected class of organoboron compounds for recognition of diols in aqueous solution. Aust. J. Chem. 2011, 64, 1466–1469.
  • Chan, L.; Taylor, M. S. Regioselective alkylation of carbohydrate derivatives catalyzed by a diarylborinic acid derivative. Org. Lett. 2011, 13, 3090–3093.
  • Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: Expansion of substrate scope and mechanistic studies. J. Am. Chem. Soc. 2012, 134, 8260–8267.
  • Ren, B.; Ramström, O.; Zhang, Q.; Ge, J.; Dong, H. An iron (III) catalyst with unusually broad substrate scope in regioselective alkylation of diols and polyols. Chem. Eur. J. 2016, 22, 2481–2486.
  • Evtushenko, E. V. Regioselective benzoylation of glycopyranosides by benzoic anhydride in the presence of Cu(CF3COO)2. Carbohydr. Res. 2012, 359, 111–119.
  • Allen, C. L.; Miller, S. J. Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates. Org. Lett. 2013, 15, 6178–6181.
  • Maki, T.; Ushijima, N.; Matsumura, Y.; Onomura, O. Catalytic monoalkylation of 1,2-diols. Tetrahedron Lett. 2009, 50, 1466–1468.
  • Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y. Copper complex catalyzed asymmetric monosulfonylation of meso-vic-diols. Tetrahedron Lett. 2007, 48, 7605–7609.
  • Matsumura, Y.; Maki, T.; Tsurumaki, K.; Onomura, O. Kinetic resolution of d,l-myo-inositol derivatives catalyzed by chiral Cu(II) complex. Tetrahedron Lett. 2004, 45, 9131–9134.
  • Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. Copper ion-induced activation and asymmetric benzoylation of 1,2-Diols: Kinetic chiral molecular recognition. J. Am. Chem. Soc. 2003, 125, 2052–2053.
  • Chen, I.-H.; Kou, K. G. M.; Le, D. N.; Rathbun, C. M.; Dong, V. M. Recognition and site-selective transformation of monosaccharides by using copper(II) catalysis. Chem. Eur. J. 2014, 20, 5013–5018.
  • Oriyama, T.; Imai, K.; Sano, T.; Hosoya, T. Highly efficient catalytic asymmetric acylation of meso-1,2-diols with benzoyl chloride in the presence of a chirai diamine combined with Et3N. Tetrahedron Lett. 1998, 39, 3529–3532.
  • Oriyama, T.; Imai, K.; Sano, T.; Hosoya, T; Sano, T. Asymmetric acylation of meso-diols with benzoyl halide in the presence of a chiral diamine. Tetrahedron Lett. 1998, 39, 397–400.
  • Oriyama, T.; Hori, Y.; Imai, K.; Sasaki, R. Nonenzymatic enantioselective acylation of racemic secondary alcohols catalyzed by a SnX2-chiral diamine complex. Tetrahedron Lett. 1996, 37, 8543–8546.
  • Hu, G.; Vasella, A. Regioselective benzoylation of 6-O-protected and 4,6-O-diprotected hexopyranosides as promoted by chiral and achiral ditertiary 1,2-diamines. Helv. Chim. Acta. 2003, 86, 4369–4391.
  • Sculimbrene, B. R.; Miller, S. J. Discovery of a catalytic asymmetric phosphorylation through selection of a minimal kinase mimic: A Concise total synthesis of d-myo-inositol-1-phosphate. J. Am. Chem. Soc. 2001, 123, 10125–10126.
  • Sculimbrene, B. R.; Morgan, A. J.; Miller, S. J. Enantiodivergence in small-molecule catalysis of asymmetric phosphorylation: Concise total syntheses of the enantiomeric d-myo-inositol-1-phosphate and d-myo-inositol-3-phosphate. J. Am. Chem. Soc. 2002, 124, 11653–11656.
  • Sculimbrene, B. R.; Xu, Y.; Miller, S. J. Asymmetric syntheses of phosphatidylinositol-3-phosphates with saturated and unsaturated side chains through catalytic asymmetric phosphorylation. J. Am. Chem. Soc. 2004, 126, 13182–13183.
  • Morgan, A. J.; Wang, Y. K.; Roberts, M. F.; Miller, S. J. Chemistry and Biology of deoxy-myo-inositol phosphates: Stereospecificity of substrate interactions within an archaeal and a bacterial IMPase. J. Am. Chem. Soc. 2004, 126, 15370–15371.
  • Wang, Y. K.; Chen, W.; Blair, D.; Pu, M.; Xu, Y.; Miller, S. J.; Redfield, A. G.; Chiles, T. C.; Roberts, M. F. Insights into the structural specificity of the cytotoxicity of 3-deoxyphosphatidylinositols. J. Am. Chem. Soc. 2008, 130, 7746–7755.
  • Sun, X.; Worthy, A. D.; Tan, K. L. Scaffolding catalysis: highly enantioselective desymmetrization reactions. Angew. Chem. Int. Ed. 2011, 50, 8167–8171.
  • Tan, K. L; Sun, X; Worthy, A. D. Scaffolding catalysis: expanding the repertoire of bifunctional catalysts. Synlett. 2012, 2012, 321–325.
  • Sun, X.; Lee, H.; Lee, S.; Tan, K. L. Catalyst recognition of cis-1,2-diols enables siteselective functionalization of complex molecules. Nat. Chem. 2013, 5, 790–795.
  • Blaisdell, T. P.; Lee, S.; Kasaplar, P.; Sun, X.; Tan, K. L., Practical silyl protection of ribonucleosides. Org. Lett. 2013, 15, 4710–4713.
  • Griswold, K. S.; Miller, S. J. A peptide-based catalyst approach to regioselective functionalization of carbohydrates. Tetrahedron. 2003, 59, 8869–8875.
  • Sánchez-Roselló, M; Puchlopek, A. L. A.; Morgan, A. J.; Miller, S. J. Site-selective catalysis of phenyl thionoformate transfer as a tool for regioselective deoxygenation of polyols. J. Org. Chem. 2008, 73, 1774–1782.
  • Fowler, B. S.; Laemmerhold, K. M.; Miller, S. J. Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J. Am. Chem. Soc. 2012, 134, 9755–9761.
  • Han, S; Miller, S. J. Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J. Am. Chem. Soc. 2013, 135, 12414–12421.
  • Mensah, E.; Camasso, N.; Kaplan, W.; Nagorny, P. Chiral phosphoric acid directed regioselective acetalization of carbohydrate-derived 1,2-diols. Angew. Chem. Int. Ed. 2013, 52, 12932–12936.
  • Cox, D. J.; Smith, M. D.; Fairbanks, A. J. Glycosylation catalyzed by a chiral Brønsted acid. Org. Lett. 2010, 12, 1452–1455.
  • Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 2008, 130, 7198–7199.
  • Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.; Jacobsen, E. N. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science. 2017, 355, 162–166.
  • Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. α-Selective organocatalytic synthesis of 2-deoxygalactosides. Angew. Chem. Int. Ed. 2012, 51, 9152–9155.
  • Balmond, E. I.; Benito-Alfonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. A 3,4-trans-fused cyclic protecting group facilitates α-selective catalytic synthesis of 2-deoxyglycosides. Angew. Chem. Int. Ed. 2014, 53, 8190–8194.
  • Xiao, G.; Cintron-Rosado, G. A.; Glazier, D. A.; Xi, B.-M.; Liu, C.; Liu, P.; Tang, W. Catalytic site-selective acylation of carbohydrates directed by cation−n interaction. J. Am. Chem. Soc. 2017, 139, 4346–4349.
  • Birman, V. B.; Li, X. M. Benzotetramisole: A remarkably enantioselective acyl transfer catalyst. Org. Lett. 2006, 8, 1351–1354.
  • Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X. M.; Kilbane, C. J. 2,3-Dihydroimidazo[1,2-a]pyridines: A new class of enantioselective acyl transfer catalysts and their use in kinetic resolution of alcohols. J. Am. Chem. Soc. 2004, 126, 12226–12227.
  • Vedejs, E.; Chen, X. Kinetic resolution of secondary alcohols. Enantioselective acylation mediated by a chiral (dimethylamino) pyridine derivative. J. Am. Chem. Soc. 1996, 118, 1809–1810.
  • Kurahashi, T.; Mizutani, T.; Yoshida, J.-I. Functionalized DMAP catalysts for regioselective acetylation of carbohydrates. Tetrahedron. 2002, 58, 8669–8677.
  • Kawabata, T.; Muramatsu, W.; Nishio, T.; Shibata, T.; Schedel, H. A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J. Am. Chem. Soc. 2007, 129, 12890–12895.
  • Ueda, Y.; Muramatsu, W.; Mishiro, K.; Furuta, T.; Kawabata, T. Functional group tolerance in organocatalytic regioselective acylation of carbohydrates. J. Org. Chem. 2009, 74, 8802–8805.
  • Yoshida, K.; Furuta, T.; Kawabata, T. Perfectly regioselective acylation of a cardiac glycoside, digitoxin, via catalytic amplification of the intrinsic reactivity. Tetrahedron Lett. 2010, 51, 4830–4832.
  • Ueda, Y.; Mishiro, K.; Yoshida, K.; Furuta, T.; Kawabata, T. Regioselective diversification of a cardiac glycoside, Lanatoside C, by organocatalysis. J. Org. Chem. 2012, 77, 7850–7857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.