216
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Phosphorylation of Radix Cyathula officinalis polysaccharide improves its immune-enhancing activity

, , , , , , , , , , , & show all
Pages 50-62 | Received 03 Jul 2019, Accepted 02 Dec 2019, Published online: 19 Dec 2019

References

  • Tang, C.; Sun, J.; Zhou, B.; Jin, C.; Liu, J.; Gou, Y.; Chen, H.; Kan, J.; Qian, C.; Zhang, N. Immunomodulatory effects of polysaccharides from purple sweet potato on lipopolysaccharide treated RAW 264.7 macrophages. J. Food Biochem. 2018, 42, e12535. DOI: 10.1111/jfbc.12535.
  • Pang, G.; Wang, F.; Zhang, L. W. Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydr. Polym. 2018, 195, 243–256. DOI: 10.1016/j.carbpol.2018.04.100.
  • Zhu, R.; Zhang, X.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, G.; Fan, J.; Jia, Y.; Yan, F.; Ning, C. Characterization of polysaccharide fractions from fruit of Actinidia Arguta and assessment of their antioxidant and antiglycated activities. Carbohydr. Polym. 2019, 210, 73–84. DOI: 10.1016/j.carbpol.2019.01.037.
  • Zhang, Y.; Mi, D. Y.; Wang, J.; Luo, Y. P.; Yang, X.; Dong, S.; Ma, X. M.; Dong, K. Z. Constituent and effects of polysaccharides isolated from Sophora moorcroftiana seeds on lifespan, reproduction, stress resistance, and antimicrobial capacity in Caenorhabditis elegans. Chin. J. Nat. Med. 2018, 16, 252–260. DOI: 10.1016/S1875-5364(18)30055-4.
  • Su, J.; Jiang, L.; Wu, J.; Liu, Z.; Wu, Y. Anti-tumor and anti-virus activity of polysaccharides extracted from Sipunculus nudus(SNP) on Hepg2.2.15. Int. J. Biol. Macromol. 2016, 87, 597–602. DOI: 10.1016/j.ijbiomac.2016.03.022.
  • Chen, J.; Huang, G. Antioxidant activities of garlic polysaccharide and its phosphorylated derivative. Int. J. Biol. Macromol. 2019, 125, 432–435. DOI: 10.1016/j.ijbiomac.2018.12.073.
  • Ueno, M.; Nogawa, M.; Siddiqui, R.; Watashi, K.; Wakita, T.; Kato, N.; Ikeda, M.; Okimura, T.; Isaka, S.; Oda, T.; et al. Acidic polysaccharides isolated from marine algae inhibit the early step of viral infection. Int. J. Biol. Macromol. 2019, 124, 282–290. DOI: 10.1016/j.ijbiomac.2018.11.152.
  • Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. DOI: 10.1016/j.carbpol.2017.12.009.
  • Chen, L.; Zhang, Y. The growth performance and nonspecific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary Porphyra yezoensis polysaccharide supplementation. Fish Shellfish Immunol. 2019, 87, 615–619. DOI: 10.1016/j.fsi.2019.02.013.
  • Zhang, C. Y.; Gan, L. P.; Du, M. Y.; Shang, Q. H.; Xie, Y. H.; Zhang, G. G. Effects of dietary supplementation of alfalfa polysaccharides on growth performance, small intestinal enzyme activities, morphology, and large intestinal selected microbiota of piglets. Livest. Sci. 2019, 223, 47–52. DOI: 10.1016/j.livsci.2019.01.027.
  • Barclay, T. G.; Day, C. M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym. 2019, 221, 94–112. DOI: 10.1016/j.carbpol.2019.05.067.
  • Yuan, Y.; Che, L.; Qi, C.; Meng, Z. Protective effects of polysaccharides on hepatic injury: A review. Int. J. Biol. Macromol. 2019, 141, 822–830. DOI: 10.1016/j.ijbiomac.2019.09.002.
  • Sun, B.; Yu, S.; Zhao, D.; Guo, S.; Wang, X.; Zhao, K. Polysaccharides as vaccine adjuvants. Vaccine. 2018, 36, 5226–5234. DOI: 10.1016/j.vaccine.2018.07.040.
  • Bahramzadeh, S.; Tabarsa, M.; You, S.; Li, C.; Bita, S. Purification, structural analysis and mechanism of murine macrophage cell activation by sulfated polysaccharides from Cystoseira indica. Carbohydr. Polym. 2019, 205, 261–270. DOI: 10.1016/j.carbpol.2018.10.022.
  • Feng, H.; Du, X.; Liu, J.; Han, X.; Cao, X.; Zeng, X. Novel polysaccharide from Radix Cyathulae officinalis Kuan can improve immune response to ovalbumin in Mice. Int. J. Biol. Macromol. 2014, 65, 121–128. DOI: 10.1016/j.ijbiomac.2014.01.017.
  • Sun, C.; Fan, J.; Wang, Q.; Meng, Y.; Yang, B.; Kuang, H. Resolvability of chemical components of cyathulae radix and their immune regulation effects. Chin. J. Exp. Traditional Med. Formulae. 2016, 22, 70–73. DOI: 10.13422/jcnkisyfjx2016020070
  • Feng, H.; Du, X.; Tang, J.; Cao, X.; Han, X.; Chen, Z.; Chen, Y.; Zeng, X. Enhancement of the immune responses to foot-and-mouth disease vaccination in mice by oral administration of a novel polysaccharide from the roots of Radix Cyathulae officinalis Kuan (RC). Cell. Immunol. 2013, 281, 111–121. DOI: 10.1016/j.cellimm.2013.02.004.
  • Chen, F.; Huang, G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 112, 211–216. DOI: 10.1016/j.ijbiomac.2018.01.169.
  • Wang, X.; Zhang, Z.; Wu, Y.; Sun, X.; Xu, N. Synthesized sulfated and acetylated derivatives of polysaccharide extracted from Gracilariopsis Lemaneiformis and their potential antioxidant and immunological activity. Int. J. Biol. Macromol. 2019, 124, 568–572. DOI: 10.1016/j.ijbiomac.2018.11.244.
  • Fan, Y.; Hu, Y.; Wang, D.; Liu, J.; Zhang, J.; Zhao, X.; Liu, X.; Liu, C.; Yuan, J.; Ruan, S. Effects of Astragalus polysaccharide liposome on lymphocyte proliferation in vitro and adjuvanticity in vivo. Carbohydr. Polym. 2012, 88, 68–74. DOI: 10.1016/j.carbpol.2011.11.067.
  • Chen, L.; Huang, G. The antiviral activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. DOI: 10.1016/j.ijbiomac.2018.04.056.
  • Ming, K.; Chen, Y.; Yao, F.; Shi, J.; Yang, J.; Du, H.; Wang, X.; Wang, Y.; Liu, J. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis a virus compared with Codonopsis pilosula polysaccharide. Int. J. Biol. Macromol. 2017, 94, 28–35. DOI: 10.1016/j.ijbiomac.2016.10.002.
  • Ye, M.; Yuan, R.; He, Y.; Du, Z.; Ma, X. Phosphorylation and anti-tumor activity of exopolysaccharide from Lachnum YM120. Carbohydr. Polym. 2013, 97, 690–694. DOI: 10.1016/j.carbpol.2013.05.033.
  • Wang, J.; Wang, Y.; Xu, L.; Wu, Q.; Wang, Q.; Kong, W.; Liang, J.; Yao, J.; Zhang, J. Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr. Polym. 2018, 181, 19–26. DOI: 10.1016/j.carbpol.2017.10.049.
  • Dimitrov, K. M.; Afonso, C. L.; Yu, Q.; Miller, P. J. Newcastle disease vaccines—a solved problem or a continuous challenge? Vet. Microbiol. 2017, 206, 126–136. DOI: 10.1016/j.vetmic.2016.12.019.
  • Seal, B. The avian response to Newcastle disease virus. Dev. Comp. Immunol. 2000, 24, 257–268. DOI: 10.1016/S0145-305X(99)00077-4.
  • Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. DOI: 10.1016/j.virusres.2014.02.016.
  • Goldhaft, T. M. Guest editorial: Historical note on the origin of the LaSota strain of Newcastle disease virus. Avian Dis. 1980, 24, 297. DOI: 10.2307/1589696.
  • Alsahami, A.; Ideris, A.; Omar, A.; Ramanoon, S. Z.; Sadiq, M. B. Seroprevalence of Newcastle disease virus in backyard chickens and herd-level risk factors of Newcastle disease in poultry farms in Oman. Int. J. Vet. Sci. Med. 2018, 6, 186–191. DOI: 10.1016/j.ijvsm.2018.06.004.
  • Xu, Y.; Wu, Y.; Sun, P.; Zhang, F.; Linhardt, R. J.; Zhang, A. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int. J. Biol. Macromol. 2019, 132, 970–977. DOI: 10.1016/j.ijbiomac.2019.03.213.
  • Lim, S.; Seib, P. A. Location of phosphate esters in a wheat starch phosphate by 31P-nuclear magnetic resonance spectroscopy1. Cereal Chem. 1993, 70, 145–152.
  • Feng, H.; McDonough, S.; Fan, J.; Yang, S.; Zhao, X.; Lu, Y.; Gan, Y.; Yi, X.; Chang, Y. F. Phosphorylated Radix Cyathulae officinalis polysaccharides act as adjuvant via promoting dendritic cell maturation. Molecules. 2017, 22, 106. DOI: 10.3390/molecules22010106.
  • Feng, H.; Fan, J.; Yang, S.; Zhao, X.; Yi, X. Antiviral activity of phosphorylated Radix Cyathulae Officinalis polysaccharide against Canine Parvovirus in vitro. Int. J. Biol. Macromol. 2017, 99, 511–518. DOI: 10.1016/j.ijbiomac.2017.02.085.
  • Wang, J.; Fu, T.; Pu, Q.; He, K.; Zhang, G. Study on the immunoactivities of the polysaccharide extracted from Cyathula Officinalis Kuan in vivo. Pharmacol. Clin. Chin. Med. 2007, 23, 31–33. DOI: 10.13412/j.cnki.zyyl.2007.06.018.
  • Rivas, A. L.; Fabricant, J. Indications of immunodepression in chickens infected with various strains of Marek’s disease virus. Avian Dis. 1988, 32, 1. DOI: 10.2307/1590941.
  • Taha-Abdelaziz, K.; Hodgins, D. C.; Lammers, A.; Alkie, T. N.; Sharif, S. Effects of early feeding and dietary interventions on development of lymphoid organs and immune competence in neonatal chickens: A review. Vet. Immunol. Immunopathol. 2018, 201, 1–11. DOI: 10.1016/j.vetimm.2018.05.001.
  • Li, Z.; Zhang, J.; Su, J.; Liu, Y.; Guo, J.; Zhang, Y.; Lu, C.; Xing, S.; Guan, Y.; Li, Y.; et al. MicroRNAs in the immune organs of chickens and ducks indicate divergence of immunity against H5N1 avian influenza. FEBS Lett. 2015, 589, 419–425. DOI: 10.1016/j.febslet.2014.12.019.
  • Seto, F. Early development of the avian immune system. Poult. Sci. 1981, 60, 1981–1995. DOI: 10.3382/ps.0601981.
  • Mosmann, T. R.; Coffman, R. L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1989, 7, 145–173. DOI: 10.1146/annurev.iy.07.040189.001045..
  • Abehsira-Amar, O.; Gibert, M.; Joliy, M.; Thèze, J.; Jankovic, D. L. IL-4 plays a dominant role in the differential development of Tho into Th1 and Th2 cells. J Immunol. 1992, 148, 3820–3829.
  • Kubo, M. T follicular helper and TH2 cells in allergic responses. Allergol. Int. 2017, 66, 377–381. DOI: 10.1016/j.alit.2017.04.006.
  • Nagasawa, C.; Nishimura-Uemura, J.; Tohno, M.; Shimosato, T.; Kawai, Y.; Ikegami, S.; Oda, M.; Saito, T.; Kitazawa, H. Oral administration of phosphorylated dextran regulates immune response in ovalbumin-immunized mice. Asian Australas. J. Anim. Sci. 2009, 23, 106–115. DOI: 10.5713/ajas.2010.80674.
  • Nishimura-Uemura, J.; Kitazawa, H.; Kawai, Y.; Itoh, T.; Oda, M.; Saito, T. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii Ssp. bulgaricus OLL1073R-1. Food Microbiol. 2003, 20, 267–273. DOI: 10.1016/S0740-0020(02)00177-6.
  • Lu, Y.; Yang, L.; Ma, J. Effect of phosphorylated Agaricus blazei Murill polysaccharide on expression of cytokine mRNA in mouse spleen. Heilongjiang Anim. Sci. Vet. Med. 2017, 3, 234–237. DOI: 10.13881/j.cnki.hljxmsy.2017.0443.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.