236
Views
0
CrossRef citations to date
0
Altmetric
Articles

Sequential one-pot synthesis of (1→6) amide-linked oligosaccharide mimetics under mild conditions

, , , , , , , , , ORCID Icon & show all
Pages 267-287 | Received 12 Feb 2020, Accepted 08 Jul 2020, Published online: 17 Aug 2020

References

  • Gimeno, A.; Valverde, P.; Ardá, A.; Jiménez-Barbero, J. Glycan structures and their interactions with proteins. A NMR view. Glycan structures and their interactions with proteins. A NMR view. Curr. Opin. in Struc. Biol. 2020, 62, 22–30. doi:10.1016/j.sbi.2019.11.004.
  • Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H.; Lohof, E. Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds. Chem. Rev. 2002, 102(2), 491–514. doi:10.1021/cr0004409.
  • Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev. 1996, 96(2), 683–720. doi:10.1021/cr940283b.
  • Zop, D.; Roth, S. Oligosaccharide anti-infective agents. Lancet 1996, 347, 1017–1021.
  • Lowe, J. B.; Ward, P. A. Therapeutic inhibition of carbohydrate-protein inteactions in vivo. J. Clin. Invest. 1997, 99(5), 822–826. doi:10.1172/JCI119244.
  • Von Itzstein, M.; Colman, P. Design and synthesis of carbohydrate-based inhibitors of protein-carbohydrate interactions. Curr. Opin. Struct. Biol. 1996, 6(5), 703–709. doi:10.1016/s0959-440x(96)80038-8.
  • Moremen, K. W.; Tiemeyer, M.; Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13(7), 448–462. doi:10.1038/nrm3383.
  • Helenius, A.; Aebi, M. Intracellular functions of N-linked glycans. Science 2001, 291(5512), 2364–2369. doi:10.1126/science.291.5512.2364.
  • Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.; McBride, R.; de Vries, R. P.; Glushka, J.; Paulson, J. C.; Boons, G.-J. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013, 341(6144), 379–383. doi:10.1126/science.1236231.
  • Hricovíniová, Z.; Hricovíni, M.; Brezová, V.; Magdolen, P. New series of N-aryl- and N-heteroaryl-d-glucuronamides as potential anticancer agents: synthesis and spectroscopic analysis. Tetrahedron: Asymmetry 2016, 27, 361–368.
  • Roy, R. New trends in carbohydrate-based vaccines. Drug Discoll. Ttchnol 2004, 1(3), 327–336. doi:10.1016/j.ddtec.2004.10.005.
  • Borman, S. Synthetic prions prove infectious. C&EN 2004, 82, 31.
  • Doores, K. J.; Gamblin, D. P.; Davis, B. G. Exploring and exploiting the therapeutic potential of glycoconjugates. Chemistry 2006, 12(3), 656–665. doi:10.1002/chem.200500557.
  • Geyer, H.; Geyer, R. Strategies for analysis of glycoprotein glycosylation. Biochim. Biophys. Acta. 2006, 1764(12), 1853–1869. doi:10.1016/j.bbapap.2006.10.007.
  • Demchenko, A. V. Stereoselective chemical 1, 2-cis O-glycosylation: from “sugar ray” to modern techniques of the 21st century. Syn. Lett. 2003, 2003(9), 1225–1240.
  • Galonic, D. P.; Gin, D. Y. Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 2007, 446(7139), 1000–1007. doi:10.1038/nature05813.
  • Gouliaras, C.; Lee, D.; Chan, L.; Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J. Am. Chem. Soc. 2011, 133(35), 13926–13929. doi:10.1021/ja2062715.
  • Kaeothip, S.; Pornsuriyasak, P.; Demchenko, A. V. Silver(I) tetrafluoroborate as a potent promoter for chemical glycosylation. Tetrahedron Lett. 2008, 49(9), 1542–1545. doi:10.1016/j.tetlet.2007.12.105.
  • Ko, Y. J.; Shim, S. B.; Shin, J. H. Facile synthesis of 2-O-Iodoacetyl protected glycosyl iodides: useful precursors of 1->2-linked 1,2-trans-glycosides. Org. Lett. 2009, 11(3), 609–612. doi:10.1021/ol8026472.
  • Demchenko, A. V. Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. John Wiley & Sons: Weinheim 2008.
  • Ramakrishnan, A.; Pornsuriyasak, P.; Demchenko, A. V. Synthesis, glycosidation, and hydrolytic stability of novel glycosyl thioimidates. Carbohydr. Chem. 2005, 24(4–6), 649–663. doi:10.1080/07328300500176387.
  • Kamat, M. N.; Rath, N. P.; Demchenko, A. V. Versatile synthesis and mechanism of activation of S‐benzoxazolyl glycosides. J. Org. Chem. 2007, 72(18), 6938–6946. doi:10.1021/jo0711844.
  • Peng, P.; Schmidt, R. R. An alternative reaction course in O-glycosidation with O-glycosyl trichloroacetimidates as glycosyl donors and lewis acidic metal salts as catalyst: acid-base catalysis with gold chloride-glycosyl acceptor adducts. J. Am. Chem. Soc. 2015, 137(39), 12653–12659. doi:10.1021/jacs.5b07895.
  • Hotha, S.; Kashyap, S. Propargyl glycosides as stable glycosyl donors: anomeric activation and glycoside syntheses. J. Am. Chem. Soc. 2006, 128(30), 9620–9621. doi:10.1021/ja062425c.
  • Li, Y.; Yang, Y.; Yu, B. An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuOTf. Tetrahedron Lett. 2008, 49(22), 3604–3608. doi:10.1016/j.tetlet.2008.04.017.
  • Panza, M.; Pistorio, S. G.; Stine, K. J.; Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 2018, 118(17), 8105–8150. doi:10.1021/acs.chemrev.8b00051.
  • Yu, B. Gold (I)-catalyzed glycosylation with glycosyl o-alkynylbenzoates as donors. Acc. Chem. Res. 2018, 51(2), 507–516. doi:10.1021/acs.accounts.7b00573.
  • John, F.; Wittmann, V. Orthogonally protected furanoid sugar diamino acids for solid-phase synthesis of oligosaccharide mimetics. J. Org. Chem. 2015, 80(15), 7477–7485. doi:10.1021/acs.joc.5b01049.
  • Suhara, Y.; Yamaguchi, Y.; Collins, B.; Schnaar, R. L.; Yanagishita, M.; Hildreth, J. E. K.; Shimada, I.; Ichikawa, Y. Oligomers of glycamino acid. Bioorg. Med. Chem. 2002, 10(6), 1999–2013. doi:10.1016/S0968-0896(02)00020-2.
  • Gregar, T. Q.; Gervay-Hague, J. Synthesis of oligomers derived from amide-linked neuraminic acid analogues. J. Org. Chem. 2004, 69(4), 1001–1009. doi:10.1021/jo035312+.
  • Hou, Z.; Liu, Y.; Zhang, X-x.; Chang, X-w.; Cheng, M-s.; Guo, C. Synthesis of glucuronic acid derivatives via the efficient and selective removal of a C6 methyl group. Tetrahedron Lett 2017, 58(5), 423–426. doi:10.1016/j.tetlet.2016.12.055.
  • Suhara, Y.; Hildreth, J. E. K.; Ichikawa, Y. Synthesis of a new carbohydrate mimetics:’’carbopeptoid’’ containing a C-1 carboxylate and C-2 amino group. Tetrahedron Lett. 1996, 37(10), 1575–1578. doi:10.1016/0040-4039(96)00094-9.
  • Love, K. R.; Andrade, R. B.; Seeberger, P. H. Linear synthesis of a protected H-Type II pentasaccharide using glycosyl phosphate building blocks. J. Org. Chem. 2001, 66(24), 8165–8176. doi:10.1021/jo015987h.
  • Miura, T.; Goto, K.; Waragai, H.; Matsumoto, H.; Hirose, Y.; Ohmae, M.; Ishida, H.-K.; Satoh, A.; Inazu, T. Rapid oligosaccharide synthesis using a fluorous protective group. J. Org. Chem. 2004, 69(16), 5348–5353. doi:10.1021/jo049425k.
  • Seeberger, P. H.; Haase, W. C. Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem. Rev. 2000, 100(12), 4349–4394. doi:10.1021/cr9903104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.