775
Views
5
CrossRef citations to date
0
Altmetric
Articles

Chemical synthesis of the Pseudomonas aeruginosa O11 O-antigen trisaccharide based on neighboring electron-donating effect

, , , , , , & show all
Pages 374-397 | Received 07 Sep 2020, Accepted 16 Oct 2020, Published online: 30 Oct 2020

References

  • Grimwood, K.; Kyd, J. M.; Owen, S. J.; Massa, H. M.; Cripps, A. W. Vaccination against respiratory Pseudomonas aeruginosa infection. Hum. Vacc. Immunother. 2015, 11(1), 14–20. DOI: 10.4161/hv.34296.
  • Lu, Q.; Eggimann, P.; Luyt, C. E.; Wolff, M.; Tamm, M.; Francois, B.; Mercier, E.; Garbino, J.; Laterre, P. F.; Koch, H.; et al. Pseudomonas aeruginosa serotypes in nosocomial pneumonia: prevalence and clinical outcomes. Crit. Care. 2014, 18(1), R17. DOI: 10.1186/cc13697.
  • Chirgwin, M. E.; Dedloff, M. R.; Holban, A. M.; Gestal, M. C. Novel therapeutic strategies applied to Pseudomonas aeruginosa infections in cystic fibrosis. Materials. 2019, 12(24), 4093. DOI: 10.3390/ma12244093.
  • Horcajada, J. P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32(4), e00031. DOI: 10.1128/CMR.00031-19.
  • Hoggarth, A.; Weaver, A.; Pu, Q.; Huang, T.; Schettler, J.; Chen, F.; Yuan, X.; Wu, M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. Drug Des. Dev. Ther. 2019, 13, 909–924. DOI: 10.2147/DDDT.S189847.
  • Priebe, G. P.; Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert. Rev. Vaccines 2014, 13(4), 507–519. DOI: 10.1586/14760584.2014.890053.
  • Bridge, D. R.; Whitmire, J. M.; Makobongo, M. O.; Merrell, D. S. Heterologous Pseudomonas aeruginosa O-antigen delivery using a Salmonella enterica serovar Typhimurium wecA mutant strain. Int. J. Med. Microbiol. 2016, 306(7), 529–540. DOI: 10.1016/j.ijmm.2016.06.005.
  • Dean, C. R.; Franklund, C. V.; Retief, J. D.; Coyne, M. J. Jr. Hatano, K.; Evans, D. J.; Pier, G. B.; Goldberg, J. B. Characterization of the serogroup O11 O-antigen locus of Pseudomonas aeruginosa PA103. J. Bacteriol. 1999, 181(14), 4275–4284. DOI: 10.1128/JB.181.14.4275-4284.1999.
  • Jones, C. Revised structures for the capsular polysaccharides from Staphylococcus aureus types 5 and 8, components of novel glycoconjugate vaccines. Carbohydr. Res. 2005, 340(6), 1097–1106. DOI: 10.1016/j.carres.2005.02.001.
  • Kenyon, J. J.; Marzaioli, A. M.; Hall, R. M.; De Castro, C. Structure of the K12 capsule containing 5,7-di-N-acetylacinetaminic acid from Acinetobacter baumannii isolate D36. Glycobiology 2015, 25(8), 881–887. DOI: 10.1093/glycob/cwv028.
  • Kenyon, J. J.; Kasimova, A. A.; Notaro, A.; Arbatsky, N. P.; Speciale, I.; Shashkov, A. S.; De Castro, C.; Hall, R. M.; Knirel, Y. A. Acinetobacter baumannii K13 and K73 capsular polysaccharides differ only in K-unit side branches of novel non-2-ulosonic acids: di-N-acetylated forms of either acinetaminic acid or 8-epiacinetaminic acid. Carbohydr. Res. 2017, 452, 149–155. DOI: 10.1016/j.carres.2017.10.005.
  • Hatano, K.; Boisot, S.; DesJardins, D.; Wright, D. C.; Brisker, J.; Pier, G. B. Immunogenic and antigenic properties of a heptavalent high-molecular-weight O-polysaccharide vaccine derived from Pseudomonas aeruginosa. Infect. Immun. 1994, 62(9), 3608–3616. DOI: 10.1128/IAI.62.9.3608-3616.1994.
  • DiGiandomenico, A.; Rao, J.; Goldberg, J. B. Oral vaccination of BALB/c mice with Salmonella enterica serovar Typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infect. Immun. 2004, 72(12), 7012–7021. DOI: 10.1128/IAI.72.12.7012-7021.2004.
  • Yokota, S.; Noguchi, H. Epitopes for human monoclonal antibodies and serotyping antisera against the O-specific polysaccharide of Pseudomonas aeruginosa O11. Carbohydr. Res. 1994, 261(1), 57–66. DOI: 10.1016/0008-6215(94)80005-7.
  • Anish, C.; Schumann, B.; Pereira, C. L.; Seeberger, P. H. Chemical biology approaches to designing defined carbohydrate vaccines. Chem. Biol. 2014, 21(1), 38–50. DOI: 10.1016/j.chembiol.2014.01.002.
  • Visansirikul, S.; Kolodziej, S. A.; Demchenko, A. V. Synthesis of D-FucNAc-D-ManNAcA disaccharides based on the capsular polysaccharides Staphylococcus aureus type 5 and 8. J. Org. Chem. 2019, 84(1), 216–227. DOI: 10.1021/acs.joc.8b02612.
  • Danieli, E.; Proietti, D.; Brogioni, G.; Romano, M. R.; Cappelletti, E.; Tontini, M.; Berti, F.; Lay, L.; Costantino, P.; Adamo, R. Synthesis of Staphylococcus aureus type 5 capsular polysaccharide repeating unit using novel L-FucNAc and D-FucNAc synthons and immunochemical evaluation. Bioorg. Med. Chem. 2012, 20(21), 6403–6415. DOI: 10.1016/j.bmc.2012.08.048.
  • Behera, A.; Rai, D.; Kulkarni, S. S. Total syntheses of conjugation-ready trisaccharide repeating units of Pseudomonas aeruginosa O11 and Staphylococcus aureus type 5 capsular polysaccharide for vaccine development. J. Am. Chem. Soc. 2020, 142(1), 456–467. DOI: 10.1021/jacs.9b11309.
  • Sanapala, S. R.; Kulkarni, S. S. Expedient route to access rare deoxy amino L-sugar building blocks for the assembly of bacterial glycoconjugates. J. Am. Chem. Soc. 2016, 138(14), 4938–4947. DOI: 10.1021/jacs.6b01823.
  • Emmadi, M.; Kulkarni, S. S. Recent advances in synthesis of bacterial rare sugar building blocks and their applications. Nat. Prod. Rep. 2014, 31(7), 870–879. DOI: 10.1039/c4np00003j.
  • Emmadi, M.; Kulkarni, S. S. Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks. Nat. Protoc. 2013, 8(10), 1870–1889. DOI: 10.1038/nprot.2013.113.
  • Emmadi, M.; Kulkarni, S. S. Synthesis of rare deoxy amino sugar building blocks enabled the total synthesis of a polysaccharide repeating unit analogue from the LPS of Psychrobacter cryohalolentis K5T. J. Org. Chem. 2018, 83(23), 14323–14337. DOI: 10.1021/acs.joc.8b02037.
  • Liu, H.; Zhang, Y.; Wei, R.; Andolina, G.; Li, X. Total synthesis of Pseudomonas aeruginosa 1244 pilin glycan via de novo synthesis of pseudaminic acid. J. Am. Chem. Soc. 2017, 139(38), 13420–13428. DOI: 10.1021/jacs.7b06055.
  • Wang, L.; Dong, M.; Lowary, T. L. Synthesis of unusual N-acylated aminosugar fragments of Mycobacterium marinum lipooligosaccharide IV. J. Org. Chem. 2015, 80(5), 2767–2780. DOI: 10.1021/acs.joc.5b00064.
  • Zhu, D.; Baryal, K. N.; Adhikari, S.; Zhu, J. Direct synthesis of 2-deoxy-β-glycosides via anomeric O-alkylation with secondary electrophiles. J. Am. Chem. Soc. 2014, 136(8), 3172–3175. DOI: 10.1021/ja4116956.
  • Zeng, J.; Sun, G.; Yao, W.; Zhu, Y.; Wang, R.; Cai, L.; Liu, K.; Zhang, Q.; Liu, X. W.; Wan, Q. 3-Aminodeoxypyranoses in glycosylation: diversity-oriented synthesis and assembly in oligosaccharides. Angew. Chem. Int. Ed. Engl. 2017, 56(19), 5227–5231. DOI: 10.1002/anie.201700178.
  • Zeng, J.; Wang, R.; Zhang, S.; Fang, J.; Liu, S.; Sun, G.; Xu, B.; Xiao, Y.; Fu, D.; Zhang, W.; et al. Hydrogen-bonding-assisted exogenous nucleophilic reagent effect for β-selective glycosylation of rare 3-amino sugars. J. Am. Chem. Soc. 2019, 141(21), 8509–8515. DOI: 10.1021/jacs.9b01862.
  • Crich, D.; Yao, Q. Benzylidene acetal fragmentation route to 6-deoxy sugars: Direct reductive cleavage in the presence of ether protecting groups, permitting the efficient, highly stereocontrolled synthesis of beta-D-rhamnosides from D-mannosyl glycosyl donors. Total synthesis of alpha-D-Gal-(1->3)-alpha-D-Rha-(1->3)- beta-D-Rha-(1->4)-beta-D-Glu-OMe, the repeating unit of the antigenic lipopolysaccharide from Escherichia hermannii ATCC 33650 and 33652. J. Am. Chem. Soc. 2004, 126(26), 8232–8236. DOI: 10.1021/ja048070j.
  • Crich, D.; Bowers, A. A. 4,6-O-[1-Cyano-2-(2-iodophenyl)ethylidene] acetals. Improved second-generation acetals for the stereoselective formation of beta-D-mannopyranosides and regioselective reductive radical fragmentation to beta-D-rhamnopyranosides. scope and limitations. J. Org. Chem. 2006, 71(9), 3452–3463. DOI: 10.1021/jo0526688.
  • Zhang, L.; Shen, K.; Taha, H. A.; Lowary, T. L. Stereocontrolled synthesis of α-xylofuranosides using a conformationally restricted donor. J. Org. Chem. 2018, 83(15), 7659–7671. DOI: 10.1021/acs.joc.8b00410.
  • Cai, J.; Hu, J.; Qin, C.; Li, L.; Shen, D.; Tian, G.; Zou, X.; Seeberger, P. H.; Yin, J. Chemical synthesis elucidates the key antigenic epitope of the autism‐related bacterium Clostridium bolteae capsular octadecasaccharide. Angew. Chem. Int. Ed. Engl. 2020. DOI: 10.1002/anie.202007209.
  • Hsu, C. H.; Hung, S. C.; Wu, C. Y.; Wong, C. H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50(50), 11872–11923. DOI: 10.1002/anie.201100125.
  • van der Vorm, S.; Hansen, T.; van Hengst, J. M. A.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 2019, 48(17), 4688–4706. DOI: 10.1039/c8cs00369f.
  • Pedersen, C. M.; Marinescu, L. G.; Bols, M. Conformationally armed glycosyl donors: reactivity quantification, new donors and one pot reactions. Chem. Commun. 2008, 21(21), 2465–2467. DOI: 10.1039/b801305e.
  • van der Vorm, S.; van Hengst, J. M. A.; Bakker, M.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Mapping the relationship between glycosyl acceptor reactivity and glycosylation stereoselectivity. Angew. Chem. Int. Ed. Engl. 2018, 57(27), 8240–8244. DOI: 10.1002/anie.201802899.
  • Wu, Y.; Xiong, D. C.; Chen, S. C.; Wang, Y. S.; Ye, X. S. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat. Commun. 2017, 8, 14851. DOI: 10.1038/ncomms14851.
  • Zou, X.; Qin, C.; Pereira, C. L.; Tian, G.; Hu, J.; Seeberger, P. H.; Yin, J. Synergistic glycosylation as key to the chemical synthesis of an outer core octasaccharide of Helicobacter pylori. Chemistry 2018, 24(12), 2868–2872. DOI: 10.1002/chem.201800049.
  • Tian, G.; Qin, C.; Liu, Z.; Shen, D.; Zou, X.; Fu, J.; Hu, J.; Seeberger, P. H.; Yin, J. Total synthesis of the Helicobacter pylori serotype O2 O-antigen α-(1 → 2)- and α-(1 → 3)-linked oligoglucosides. Chem. Commun. (Camb) 2020, 56(3), 344–347. DOI: 10.1039/c9cc07915g.
  • Geng, X.; Dudkin, V. Y.; Mandal, M.; Danishefsky, S. J. In pursuit of carbohydrate-based HIV vaccines, part 2: the total synthesis of high-mannose-type gp120 fragments-evaluation of strategies directed to maximal convergence. Angew. Chem. Int. Ed. Engl. 2004, 43(19), 2562–2565. DOI: 10.1002/anie.200353626.
  • Tian, G.; Hu, J.; Qin, C.; Li, L.; Zou, X.; Cai, J.; Seeberger, P. H.; Yin, J. Chemical synthesis and immunological evaluation of Helicobacter pylori serotype O6 tridecasaccharide O-antigen containing a dd-Heptoglycan. Angew. Chem. Int. Ed. Engl. 2020, 59(32), 13362–13370. DOI: 10.1002/anie.202004267.
  • Yasomanee, J. P.; Visansirikul, S.; Pornsuriyasak, P.; Thompson, M.; Kolodziej, S. A.; Demchenko, A. V. Synthesis of the repeating unit of capsular polysaccharide Staphylococcus aureus type 5 to study chemical activation and conjugation of native CP5. J. Org. Chem. 2016, 81(14), 5981–5987. DOI: 10.1021/acs.joc.6b00910.
  • Hagen, B.; Ali, S.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Mapping the reactivity and selectivity of 2-azidofucosyl donors for the assembly of N-acetylfucosamine-containing bacterial oligosaccharides. J. Org. Chem. 2017, 82(2), 848–868. DOI: 10.1021/acs.joc.6b02593.
  • Visansirikul, S.; Yasomanee, J. P.; Pornsuriyasak, P.; Kamat, M. N.; Podvalnyy, N. M.; Gobble, C. P.; Thompson, M.; Kolodziej, S. A.; Demchenko, A. V. A concise synthesis of the repeating unit of capsular polysaccharide Staphylococcus aureus type 8. Org. Lett. 2015, 17(10), 2382–2384. DOI: 10.1021/acs.orglett.5b00899.
  • Zhao, M.; Qin, C.; Li, L.; Xie, H.; Ma, B.; Zhou, Z.; Yin, J.; Hu, J. Conjugation of synthetic trisaccharide of Staphylococcus aureus type 8 capsular polysaccharide elicits antibodies recognizing intact bacterium. Front. Chem. 2020, 8, 258. DOI: 10.3389/fchem.2020.00258.
  • Gagarinov, I. A.; Fang, T.; Liu, L.; Srivastava, A. D.; Boons, G. J. Synthesis of Staphylococcus aureus type 5 trisaccharide repeating unit: solving the problem of lactamization. Org. Lett. 2015, 17(4), 928–931. DOI: 10.1021/acs.orglett.5b00031.
  • Qin, C.; Schumann, B.; Zou, X.; Pereira, C. L.; Tian, G.; Hu, J.; Seeberger, P. H.; Yin, J. Total synthesis of a densely functionalized Plesiomonas shigelloides serotype 51 aminoglycoside trisaccharide antigen. J. Am. Chem. Soc. 2018, 140(8), 3120–3127. DOI: 10.1021/jacs.8b00148.
  • Adibekian, A.; Stallforth, P.; Hecht, M. L.; Werz, D. B.; Gagneux, P.; Seeberger, P. H. Comparative bioinformatics analysis of the mammalian and bacterial glycomes. Chem. Sci. 2011, 2(2), 337–344. DOI: 10.1039/c0sc00322k.
  • Zhao, J.; Wei, S.; Ma, X.; Shao, H. A simple and convenient method for the synthesis of pyranoid glycals. Carbohydr. Res. 2010, 345(1), 168–171. DOI: 10.1016/j.carres.2009.10.003.
  • Yang, Y.; Yang, L.; Han, Y.; Wu, Z.; Chen, P.; Zhang, H.; Zhou, J. Protective effects of hepatocyte-specific glycyrrhetic derivatives against carbon tetrachloride-induced liver damage in mice. Bioorg. Chem. 2017, 72, 42–50. DOI: 10.1016/j.bioorg.2017.03.009.
  • Yu, B.; Tao, H. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Lett. 2001, 42(12), 2405–2407. DOI: 10.1016/S0040-4039(01)00157-5.
  • Yu, B.; Sun, J.; Yang, X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc. Chem. Res. 2012, 45(8), 1227–1236. DOI: 10.1021/ar200296m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.