209
Views
1
CrossRef citations to date
0
Altmetric
Articles

Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity

, , , , , & show all
Pages 308-324 | Received 08 Sep 2021, Accepted 18 Nov 2021, Published online: 23 Dec 2021

References

  • Huang, R.; Xie, J.; Yu, Y.; Shen, M. Recent Progress in the Research of Yam Mucilage Polysaccharides: Isolation, Structure and Bioactivities. Int. J. Biol. Macromol. 2020, 155, 1262–1269.
  • Ma, F.; Zhang, Y.; Wen, Y.; Yao, Y.; Zhu, J.; Liu, X.; Bell, A.; Tikkanen-Kaukanen, C. Emulsification properties of polysaccharides from Dioscorea opposita Thunb. Food Chem. 2017, 221, 919–925.
  • Li, T.; Teng, H.; An, F.; Huang, Q.; Chen, L.; Song, H. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters. Food Funct. 2019, 10(5), 2642–2650.
  • Ma, F.; Wang, R.; Zhu, J.; Zhang, Y.; Wang, Y.; Hu, W.; Bell, A. E.; Liu, X. Characterisation comparison of polysaccharides from Dioscorea opposita Thunb. growing in sandy soil, loessial soil and continuous cropping. Int. J. Biol. Macromol. 2019, 126, 776–785.
  • Zhang, Z.; Wang, X.; Liu, C.; Li, J. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr. Polym. 2016, 150, 227–231.
  • Chen, H.; Sun, J.; Liu, J.; Gou, Y.; Zhang, X.; Wu, X.; Sun, R.; Tang, S.; Kan, J.; Qian, C.; et al. Structural characterization and anti-inflammatory activity of alkali-soluble polysaccharides from purple sweet potato. Int. J. Biol. Macromol. 2019, 131, 484–494.
  • Li, M.; Chen, L.; Chen, S.; Deng, Y.; Zhao, J.; Wang, Y.; Li, S. Non-starch polysaccharide from Chinese yam activated RAW 264.7 macrophages through the Toll-like receptor 4 (TLR4)-NF-κB signaling pathway. J. Funct. Foods 2017, 37, 491–500. DOI: https://doi.org/10.1016/j.jff.2017.08.025.
  • Tian, C.; Xu, H.; Li, J.; Han, Z. Characteristics and intestinal immunomodulating activities of water-soluble pectic polysaccharides from Chenpi with different storage periods. J. Sci. Food Agric. 2018, 98(10), 3752–3757.
  • Xu, H.; Zou, S.; Xu, X.; Zhang, L. Anti-tumor effect of beta-glucan from Lentinus edodes and the underlying mechanism. Sci. Rep. 2016, 6, 28802.
  • Meng, F.; Li, Q.; Qi, Y.; He, C.; Wang, C.; Zhang, Q. Characterization and immunoregulatory activity of two polysaccharides from the root of Ilex asprella. Carbohydr. Polym. 2018, 197, 9–16.
  • Liu, X.; Liu, F.; Zhao, S.; Guo, B.; Ling, P.; Han, G.; Cui, Z. Purification of an acidic polysaccharide from Suaeda salsa plant and its anti-tumor activity by activating mitochondrial pathway in MCF-7 cells. Carbohydr. Polym. 2019, 215, 99–107.
  • Li, X.; Gao, W. Y.; Jiang, Q. Q.; Wang, Y. L.; Guo, X. H.; Huang, L. Q. Physicochemical, crystalline, and thermal properties of native, oxidized, acid, and enzyme hydrolyzed Chinese yam (Dioscorea opposite Thunb) starch. Starch-Starke 2011, 63, 616–624.
  • Falade, K. O.; Ayetigbo, O. E. Influence of physical and chemical modifications on granule size frequency distribution, fourier transform infrared (FTIR) spectra and adsorption isotherms of starch from four yam (Dioscorea spp.) cultivars. J. Food Sci. Tech. 2021. DOI: https://doi.org/10.1007/s13197-021-05200-7.
  • Ogunmolasuyi, A. M.; Egwim, E. C.; Adewoyin, M. A.; Nkop, J. E. Effect of phosphoric acid treatment on physicochemical, functional, and structural properties of starch extracted from yam (Dioscorea rotundata). Int. J. Food Prop. 2017, 20(5), 1062–1073. DOI: https://doi.org/10.1080/10942912.2016.1199035.
  • Yang, W.; Wang, Y.; Li, X.; Yu, P. Purification and structural characterization of Chinese yam polysaccharide and its activities. Carbohydr. Polym. 2015, 117, 1021–1027.
  • Zhu, Y.; Yang, L.; Zhang, C.; Tian, Y.; Zhang, F.; Li, X. Structural and functional analyses of three purified polysaccharides isolated from Chinese Huaishan-yams. Int. J. Biol. Macromol. 2018, 120, 693–701. DOI: https://doi.org/10.1016/j.ijbiomac.2018.08.143.
  • Xue, H. Y.; Li, J. R.; Liu, Y. G.; Gao, Q.; Wang, X. W.; Zhang, J. W.; Tanokura, M.; Xue, Y. L. Optimization of the ultrafiltration-assisted extraction of Chinese yam polysaccharide using response surface methodology and its biological activity. Int. J. Biol. Macromol. 2019, 121, 1186–1193.
  • Li, Q.; Li, W.; Gao, Q.; Zou, Y. Hypoglycemic effect of Chinese yam (Dioscorea opposita rhizoma) polysaccharide in different structure and molecular weight. J. Food Sci. 2017, 82(10), 2487–2494. DOI: https://doi.org/10.1111/1750-3841.13919.
  • Hou, X.; Liu, J.; Li, Z.; Chang, M.; Guo, M.; Feng, C.; Shi, J. Fruiting body polysaccharides of Hericium erinaceus induce apoptosis in human colorectal cancer cells via ROS generation mediating caspase-9-dependent signaling pathways. Food Funct. 2020, 11(7), 6128–6138.
  • Jia, X.; Gao, M.; Li, M.; Wu, Y.; Zeng, Y.; Xu, C. Molecular characterization of two polysaccharides from Phellinus vaninii Ljup and their cytotoxicity to cancer cell lines. Anticancer. Agents Med. Chem. 2018, 18(9), 1356–1363.
  • Wang, J.; Ma, Z.; Zhang, L.; Fang, Y.; Jiang, F.; Phillips, G. O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2011, 86(2), 844–851. DOI: https://doi.org/10.1016/j.carbpol.2011.05.031.
  • Bennek, J. A.; Rolf, D.; Gray, G. R. 1,4-Anhydro-2,3,6-tri-O-methyl-D-glucitol formed as an artifact in the reductive cleavage of permethylated 1,4-linked glucopyranosides. J. Carbohydr. Chem. 1983, 2(4), 385–393. DOI: https://doi.org/10.1080/07328308308057885.
  • Ju, Y.; Xue, Y.; Huang, J.; Zhai, Q.; Wang, X. H. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells. Int. J. Biol. Macromol. 2014, 66, 81–85.
  • Xu, S.; Xu, X.; Zhang, L. Branching structure and chain conformation of water-soluble glucan extracted from Auricularia auricula-judae. J. Agric. Food Chem. 2012, 60(13), 3498–3506.
  • Hawker, C. J.; Lee, R.; Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc. 1991, 113(12), 4583–4588. DOI: https://doi.org/10.1021/ja00012a030.
  • Wang, B.; Pan, L.; Ma, Z.; Li, Y. Ring-opening polymerization with lewis pairs and subsequent nucleophilic substitution: a promising strategy to well-defined polyethylene-like polyesters without transesterification. Macromolecules 2018, 51(3), 836–845. DOI: https://doi.org/10.1021/acs.macromol.7b02378.
  • Jia, X.; Wang, C.; Bai, J.; Yu, J.; Xu, C. Sulfation of the extracellular polysaccharide produced by the king oyster culinary-medicinal mushroom, Pleurotus eryngii (Agaricomycetes), and its antioxidant properties in vitro. Int. J. Med. Mushrooms 2017, 19(4), 355–362. DOI: https://doi.org/10.1615/IntJMedMushrooms.v19.i4.60.
  • Chu, Q.; Jia, R.; Chen, M.; Li, Y.; Yu, X.; Wang, Y.; Chen, W.; Ye, X.; Liu, Y.; Jiang, Y.; Zheng, X. Tetrastigma hemsleyanum tubers polysaccharide ameliorates LPS-induced inflammation in macrophages and Caenorhabditis elegans. Int. J. Biol. Macromol. 2019, 141, 611–621.
  • Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of MAPKs activation. J. Funct. Foods 2018, 43, 62–69. DOI: https://doi.org/10.1016/j.jff.2018.01.028.
  • Liu, Q.; Xu, S.; Li, L.; Pan, T.; Shi, C.; Liu, H.; Cao, M.; Su, W.; Liu, G. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr. Polym. 2017, 165, 189–196.
  • Wu, D.; Tang, C.; Liu, Y.; Li, Q.; Wang, W.; Zhou, S.; Zhang, Z.; Cui, F.; Yang, Y. Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus. Carbohydr. Polym. 2019, 222, 114996.
  • Zhong, J.; Qiu, X.; Yu, Q.; Chen, H.; Yan, C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int. J. Biol. Macromol. 2020, 163, 464–475.
  • Rodriguez-Cabezas, M. E.; Camuesco, D.; Arribas, B.; Garrido-Mesa, N.; Comalada, M.; Bailon, E.; Cueto-Sola, M.; Utrilla, P.; Guerra-Hernandez, E.; Perez-Roca, C.; et al. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin. Nutr. 2010, 29(6), 832–839.
  • Priyan, V. V.; Shahnaz, T.; Kunnumakkara, A. B.; Rana, V.; Saravanan, M.; Narayanasamy, S. Anti-inflammatory and biosorption properties of starch nanocrystals in vitro study: cytotoxic and phytotoxic evaluation. J. Clust. Sci. 2021, 32(5), 1419–1430. DOI: https://doi.org/10.1007/s10876-020-01905-5.
  • Gutierrez, T. J. Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydr. Polym. 2017, 165, 169–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.