5,494
Views
499
CrossRef citations to date
0
Altmetric
Original Articles

Gene Expression Profiling of Plants under Salt Stress

, , &
Pages 435-458 | Published online: 08 Sep 2011

REFERENCES

  • Abebe , T. , Guenzi , A. C. , Martin , B. and Cushman , J. C. 2003 . Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity . Plant Physiol. , 131 : 1748 – 1755 .
  • Allakhverdiev , S. I. , Nishiyama , Y. , Suzuki , I. , Tasaka , Y. and Murata , N. 1999 . Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress . Proc. Natl. Acad. Sci. USA , 96 : 5862 – 5867 .
  • Amtmann , A. , Fischer , M. , Marsh , E. L. , Stefanovic , A. , Sanders , D. and Schachtman , D. P. 2001 . The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain . Plant Physiol. , 126 : 1061 – 1071 .
  • Anoop , N. and Gupta , A. K. 2003 . Transgenic indica rice cv IR-50 over-expressing Vigna aconitifolia- pyrroline-5- carboxylate synthetase cDNA shows tolerance to high salt . J Plant Biochem. Biotechnol. , 12 : 109 – 116 .
  • Apse , M. P. , Aharon , G. S. , Snedden , W. A. and Blumwald , E. 1999 . Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis . Science , 285 : 1256 – 1258 .
  • Apse , M. P. and Blumwald , E. 2002 . Engineering salt tolerance in plants . Curr Opin Biotechnol , 13 : 146 – 150 .
  • Ashraf , M. 2009 . Biotechnological approach of improving plant salt tolerance using antioxidants as markers . Biotechnol Adv , 27 : 84 – 93 .
  • Ashraf , M. and Akram , N. A. 2009 . Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison . Biotechnol. Adv. , 27 : 744 – 752 .
  • Ashraf , M. , Athar , H. R. , Harris , P. J. C. and Kwon , T. R. 2008 . Some prospective strategies for improving crop salt tolerance . Adv. Agron. , 97 : 45 – 110 .
  • Balazadeh , S. , Siddiqui , H. , Allu , A. D. , Matallana-Ramirez , L. P. , Caldana , C. , Mehrnia , M. , Zanor , M. I. , Köhler , B. and Mueller-Roeber , B. 2010 . A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence . Plant J. , 62 : 250 – 264 .
  • Baldwin , D. , Crane , V. and Rice , D. 1999 . A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants . Curr. Opin. Plant Biol. , 2 : 96 – 103 .
  • Bertelsen , A. H. and Valculescu , V. E. 1998 . High-throughput gene expression analysis using SAGE . Drug Discovery Today , 3 : 152 – 159 .
  • Blum , A. 1988 . Plant Breeding for Stress Environment , Boca Raton, FL : CRC Press .
  • Blumwald , E. , Aharon , G. S. and Apse , M. P. 2000 . Sodium transport in plant cells . Biochim Biophys Acta. , 1465 : 140 – 151 .
  • Bohnert , H. J. , Ayoubi , P. , Borchert , C. , Bressan , R. A. , Burnap , R. L. , Cushman , J. C. , Cushman , M. A. , Deyholos , M. , Fischer , R. and Galbraith , D. W. 2001 . A genomics approach towards salt stress tolerance . Plant Physiol. Biochem. , 39 : 295 – 311 .
  • Bohnert , H. J. and Shen , B. 1999 . Transformation and compatible solutes . Scientia Hort. , 78 : 237 – 260 .
  • Boursiac , Y. , Chen , S. , Luu , D. T. , Sorieul , M. , van den Dries , N. and Maurel , C. 2005 . Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression . Plant Physiol. , 139 : 790 – 805 .
  • Brenner , S. , Johnson , M. , Bridgham , J. , Golda , G. , Lloyd , D. H. , Johnson , D. , Luo , S. , McCurdy , S. , Foy , M. and Ewan , M. 2000 . Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays . Nat Biotechnol. , 18 : 630 – 634 .
  • Brosche , M. , Vinocur , B. , Alatalo , E. R. , Lamminmaki , A. , Teichmann , T. , Ottow , E. A. , Djilianov , D. , Afif , D. , Bogeat-Triboulot , M. B. and Altman , A. 2005 . Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert . Genome Biol. , 6 : R101
  • Charrier , B. , Champion , A. , Henry , Y. and Kreis , M. 2002 . Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction . Plant Physiol. , 130 : 577 – 590 .
  • Chen , D. S. , Li , Y. G. and Zhou , J. C. 2007a . The symbiosis phenotype and expression patterns of five nodule-specific genes of Astragalus sinicus under ammonium and salt stress conditions . Plant Cell Rep. , 26 : 1421 – 1430 .
  • Chen , S. and Polle , A. 2010 . Salinity tolerance of Populus . Plant Biol. (Stuttg) , 12 : 317 – 333 .
  • Chen , S. H. , Guo , S. L. , Wang , Z. L. , Zhao , J. Q. , Zhao , Y. X. and Zhang , H. 2007b . Expressed sequence tags from the halophyte Limonium sinense . DNA Seq. , 18 : 61 – 67 .
  • Chinnusamy , V. , Jagendorf , A. and Zhu , J.-K. 2005 . Understanding and improving salt tolerance in plants . Crop Sci. , 45 : 437 – 448 .
  • Close , T. J. , Wanamaker , S. I. , Caldo , R. A. , Turner , S. M. , Ashlock , D. A. , Dickerson , J. A. , Wing , R. A. , Muehlbauer , G. J. , Kleinhofs , A. and Wise , R. P. 2004 . A new resource for cereal genomics: 22K barley GeneChip comes of age . Plant Physiol. , 134 : 960 – 968 .
  • Colmer , T. D. , Flowers , T. J. and Munns , R. 2006 . Use of wild relatives to improve salt tolerance in wheat . J. Exp. Bot. , 57 : 1059 – 1078 .
  • Coskun , D. , Britto , D. T. and Kronzucker , H. J. 2010 . Regulation and mechanism of potassium release from barley roots: an in planta42K+ analysis . New Phytol. , 188 : 1028 – 1038 .
  • Cuartero , J. , Bolarinj , M. C. , Moreno , V. and Pineda , B. 2009 . “ Molecular tools for enhancing salinity tolerance in plants ” . In Molecular Techniques in Crop Improvement , 2nd Edition , Edited by: Jain , S. M. 373 – 405 . The Netherlands : Springer .
  • Cuin , T. A. and Shabala , S. 2007 . Amino acids regulate salinity-induced potassium efflux in barley root epidermis . Planta. , 225 : 753 – 761 .
  • Cushman , J. C. and Bohnert , H. J. 2000 . Genomic approaches to plant stress tolerance . Curr Opin Plant Biol , 3 : 117 – 124 .
  • Cushman , J. C. , Tillett , R. L. , Wood , J. A. , Branco , J. M. and Schlauch , K. A. 2008 . Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM) . J. Exp. Bot. , 59 : 1875 – 1894 .
  • Dai , X. , Xu , Y. , Ma , Q. , Xu , W. , Wang , T. , Xue , Y. and Chong , K. 2007 . Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis . Plant Physiol. , 143 : 1739 – 1751 .
  • Davletova , S. , Schlauch , K. , Coutu , J. and Mittler , R. 2005 . The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis . Plant Physiol. , 139 : 847 – 856 .
  • de Lorenzo , L. , Merchan , F. , Blanchet , S. , Megias , M. , Frugier , F. , Crespi , M. and Sousa , C. 2007 . Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes . Plant Physiol. , 145 : 1521 – 1532 .
  • Demidchik , V. , Davenport , R. J. and Tester , M. 2002 . Nonselective cation channels in plants . Annul. Rev. Plant Biol. , 53 : 67 – 107 .
  • Denby , K. and Gehring , C. 2005 . Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis . Trends Biotechnol. , 23 : 547 – 552 .
  • Desai , M. K. , Mishra , R. N. , Verma , D. , Nair , S. , Sopory , S. K. and Reddy , M. K. 2006 . Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum) . Plant Physiol. Biochem , 44 : 483 – 493 .
  • Diedhiou , C. J. , Popova , O. V. , Dietz , K. J. and Golldack , D. 2008 . The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice . BMC Plant Biol. , 8 : 49
  • Ding , Z. , Li , S. , An , X. , Liu , X. , Qin , H. and Wang , D. 2009 . Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana . J. Genet. Genomics , 36 : 17 – 29 .
  • El Ouakfaoui , S. and Miki , B. 2005 . The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidA . Plant J. , 41 : 791 – 800 .
  • Epstein , E. , Norlyn , J. D. , Rush , D. W. , Kingsbury , R. W. , Kelly , D. B. , Gunningham , G. A. and Wrona , A. F. 1980 . Saline culture of crops: A genetic approach . Science , 210 : 399 – 404 .
  • Fang , Y. , You , J. , Xie , K. , Xie , W. and Xiong , L. 2008 . Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice . Mol. Genet. Genomics , 280 : 547 – 563 .
  • Fernandez , P. , Di Rienzo , J. , Fernandez , L. , Hopp , H. E. , Paniego , N. and Heinz , R. A. 2008 . Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis . BMC Plant Biol , 8 : 11
  • Flowers , T. J. 2004 . Improving crop salt tolerance . J. Exp. Bot. , 55 : 307 – 319 .
  • Flowers , T. J. , Hajibagheri , M. A. and Clipson , N. C.W. 1986 . Halophytes. Quart. Rev. Biol. , 61 : 313 – 337 .
  • Flowers , T. J. , Koyama , M. L. , Flowers , S. A. , Sudhakar , C. , Singh , K. P. and Yeo , A. R. 2000 . QTL: their place in engineering tolerance of rice to salinity . J. Exp. Bot. , 51 : 99 – 106 .
  • Flowers , T. J. and Yeo , A. R. 1995 . Breeding for salinity resistance in crop plants-where next? . Austr. J. Plant Physiol. , 22 : 875 – 884 .
  • Foolad , M. R. 1999 . Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping . Genome , 42 : 727 – 734 .
  • Foolad , M. R. 2004 . Recent advances in genetics of salt tolerance in tomato . Plant Cell, Tiss. Org. Cult. , 76 : 101 – 119 .
  • Foolad , M. R. and Chen , F. Q. 1999 . RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato . Theor. Appl. Genet. , 99 : 235 – 243 .
  • Foolad , M. R. , Chen , F. Q. and Lin , G. Y. 1998 . RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato . Theor. Appl. Genet. , 97 : 1133 – 1144 .
  • Foolad , M. R. , Zhang , L. P. and Lin , G. Y. 2001 . Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping . Genome , 44 : 444 – 454 .
  • Forster , B. P. , Russell , J. R. , Ellis , R. P. , Handley , L. L. , Robinson , D. , Hackett , C. A. , Nevo , E. , Waugh , R. , Gordon , D. C. and Keith , R. 1997 . Locating genotype and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species . New Phytol. , 137 : 141 – 147 .
  • Frova , C. , Caffulli , A. and Pallavera , E. 1999 . Mapping quantitative trait loci for tolerance to abiotic stresses in maize . J. Exp. Zool. , 282 : 164 – 170 .
  • Fukuda , A. , Nakamura , A. , Tagiri , A. , Tanaka , H. , Miyao , A. , Hirochika , H. and Tanaka , Y. 2004 . Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice . Plant Cell Physiol. , 45 : 146 – 159 .
  • Gale , M. D. and Devos , K. M. 1998 . Comparative genetics in the grasses . Proc. Natl. Acad. Sci. U S A , 95 : 1971 – 1974 .
  • Garg , A. K. , Kim , J. K. , Owens , T. G. , Ranwala , A. P. , Choi , Y. D. , Kochian , L. V. and Wu , R. J. 2002 . Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses . Proc. Natl. Acad. Sci. U S A , 99 : 15898 – 15903 .
  • Glenn , E. P. , Brown , J. J. and Blumwald , E. 1999 . Salt tolerance and crop potential of halophytes . Crit. Rev. Plant Sci. , 18 : 227 – 255 .
  • Grover , A. , Sahi , C. , Sanan , N. and Grover , A. 1999 . Taming abiotic stresses in plants through genetic engineering: current strategies and perspective . Plant Sci. , 143 : 101 – 111 .
  • Gu , R. , Fonseca , S. , Puskas , L. G. , Hackler , L. Jr , Zvara , A. , Dudits , D. and Pais , M. S. 2004 . Transcript identification and profiling during salt stress and recovery of Populus euphratica . Tree Physiol. , 24 : 265 – 276 .
  • Gu , Z. , Ma , B. , Jiang , Y. , Chen , Z. , Su , X. and Zhang , H. 2008 . Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L . ) under environmental stresses Gene , 415 : 1 – 12 .
  • Holtorf , H. , Guitton , M. C. and Reski , R. 2002 . Plant functional genomics . Naturwissenschaften , 89 : 235 – 249 .
  • Houde , M. , Belcaid , M. , Ouellet , F. , Danyluk , J. , Monroy , A. F. , Dryanova , A. , Gulick , P. , Bergeron , A. , Laroche , A. and Links , M. G. 2006 . Wheat EST resources for functional genomics of abiotic stress . BMC Genomics , 7 : 149
  • Hu , H. , Dai , M. , Yao , J. , Xiao , B. , Li , X. , Zhang , Q. and Xiong , L. 2006 . Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice . Proc Natl Acad Sci U S A , 103 : 12987 – 12992 .
  • Hu , H. , You , J. , Fang , Y. , Zhu , X. , Qi , Z. and Xiong , L. 2008 . Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice . Plant Mol. Biol. , 67 : 169 – 181 .
  • Hu , X. , Zhang , Z. , Xu , P. , Fu , Z. , Hu , S. and Song , W. 2010 . Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses . Biologia Plantarum , 54 : 213 – 223 .
  • Huang , J. , Hirji , R. , Adam , L. , Rozwadowski , K. L. , Hammerlindl , J. K. , Keller , W. A. and Selvaraj , G. 2000 . Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations . Plant Physiol , 122 : 747 – 756 .
  • Hwang , E. W. , Kim , K. A. , Park , S. C. , Jeong , M. J. , Byun , M. O. and Kwon , H. B. 2005 . Expression profiles of hot pepper (Capsicum annum) genes under cold stress conditions . J. Biosci , 30 : 657 – 667 .
  • Inada , M. , Ueda , A. , Shi , W. and Takabe , T. 2005 . A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na(+) and K(+) accumulation under salt stress . Planta , 220 : 395 – 402 .
  • Iordachescu , M. and Imai , R. 2008 . Trehalose biosynthesis in response to abiotic stresses . J. Integr. Plant Biol. , 50 : 1223 – 1229 .
  • Jain , M. and Khurana , J. P. 2009 . Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice . Febs. J. , 276 : 3148 – 3162 .
  • Jamil , A. , Anwar , F. and Ashraf , M. 2005 . “ Plant tolerance to biotic and abiotic stresses through modern genetic engineering techniques ” . In Crops: Growth, Quality & Biotechnology , Edited by: Dris , R. 1276 – 1299 . Helsinki, , Finland : WFL Publisher .
  • Jang , J. Y. , Kim , D. G. , Kim , Y. O. , Kim , J. S. and Kang , H. 2004 . An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana . Plant Mol. Biol. , 54 : 713 – 725 .
  • Ji , W. , Li , Y. , Li , J. , Dai , C. H. , Wang , X. , Bai , X. , Cai , H. , Yang , L. and Zhu , Y. M. 2006 . Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja . BMC Plant Biol. , 6 : 4
  • Jin , T. , Chang , Q. , Li , W. , Yin , D. , Li , Z. , Wang , D. , Liu , B. and Liu , L. 2010 . Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa Plant Cell, Tissue and Organ Culture . Plant Cell, Tissue and Organ Culture , 100 : 219 – 227 .
  • Jithesh , M. N. , Prashanth , S. R. , Sivaprakash , K. R. and Parida , A. K. 2006 . Antioxidative response mechanisms in halophytes: their role in stress defence . J. Genet. , 85 : 237 – 254 .
  • Jung , C. , Seo , J. S. , Han , S. W. , Koo , Y. J. , Kim , C. H. , Song , S. I. , Nahm , B. H. , Choi , Y. D. and Cheong , J. J. 2008 . Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis . Plant Physiol. , 146 : 623 – 635 .
  • Kant , S. , Kant , P. , Raveh , E. and Barak , S. 2006 . Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na +uptake in T. halophila . Plant Cell Environ. , 29 : 1220 – 1234 .
  • Kasuga , M. , Liu , Q. , Miura , S. , Yamaguchi-Shinozaki , K. and Shinozaki , K. 1999 . Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor . Nat. Biotechnol. , 17 : 287 – 291 .
  • Kavitha , K. , George , S. , Venkataraman , G. and Parida , A. 2010 . A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants . Biochimie , 92 : 1321 – 1329 .
  • Kawasaki , S. , Borchert , C. , Deyholos , M. , Wang , H. , Brazille , S. , Kawai , K. , Galbraith , D. and Bohnert , H. J. 2001 . Gene expression profiles during the initial phase of salt stress in rice . Plant Cell , 13 : 889 – 905 .
  • Kawaura , K. , Mochida , K. , Enju , A. , Totoki , Y. , Toyoda , A. , Sakaki , Y. , Kai , C. , Kawai , J. , Hayashizaki , Y. and Seki , M. 2009 . Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns . BMC Genomics , 10 : 271
  • Kiegerl , S. , Cardinale , F. , Siligan , C. , Gross , A. , Baudouin , E. , Liwosz , A. , Eklof , S. , Till , S. , Bogre , L. and Hirt , H. 2000 . SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK . Plant Cell , 12 : 2247 – 2258 .
  • Kilian , J. , Whitehead , D. , Horak , J. , Wanke , D. , Weinl , S. , Batistic , O. , D’Angelo , C. , Bornberg-Bauer , E. , Kudla , J. and Harter , K. 2007 . The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses . Plant J. , 50 : 347 – 363 .
  • Kizis , D. , Lumbreras , V. and Pages , M. 2001 . Role of AP2/EREBP transcription factors in gene regulation during abiotic stress . FEBS Lett. , 498 : 187 – 189 .
  • Konstantinova , T. , Parvanova , D. , Atanassov , A. and Djilianov , D. 2002 . Freezing tolerant tobacco, transformed to accumulate osmoprotectants . Plant Sci. , 163 : 157 – 164 .
  • Kore-eda , S. , Cushman , M. A. , Akselrod , I. , Bufford , D. , Fredrickson , M. , Clark , E. and Cushman , J. C. 2004 . Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum . Gene , 341 : 83 – 92 .
  • Kreps , J. A. , Wu , Y. , Chang , H. S. , Zhu , T. , Wang , X. and Harper , J. F. 2002 . Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress . Plant Physiol , 130 : 2129 – 2141 .
  • Krishnaswamy , S. S. , Srivastava , S. , Mohammadi , M. , Rahman , M. H. , Deyholos , M. K. and Kav , N. N. 2008 . Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana . BMC Plant Biol. , 8 : 91
  • Kumar , V. , Shriram , V. , Kishor , P. B. K. , Jawali , N. and Shitole , M. G. 2010 . Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene . Plant Biotechnol. Rep. , 4 : 37 – 48 .
  • Langridge , P. , Paltridge , N. and Fincher , G. 2006 . Functional genomics of abiotic stress tolerance in cereals . Brief Func.t Genomic Proteomic , 4 : 343 – 354 .
  • Law , P. J. , Claudel-Renard , C. , Joubert , F. , Louw , A. I. and Berger , D. K. 2008 . MADIBA: a web server toolkit for biological interpretation of Plasmodium and plant gene clusters . BMC Genomics , 9 : 105
  • Leader , D. J. 2005 . Transcriptional analysis and functional genomics in wheat . J. Cereal Sci. , 41 : 149 – 163 .
  • Lee , S. C. , Choi , D. S. , Hwang , I. S. and Hwang , B. K. 2010 . The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance . Plant Mol. Biol. , 73 : 409 – 424 .
  • Lee , S. C. , Lim , M. H. , Kim , J. A. , Lee , S. I. , Kim , J. S. , Jin , M. , Kwon , S. J. , Mun , J. H. , Kim , Y. K. and Kim , H. U. 2008 . Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray . Mol. Cells , 26 : 595 – 605 .
  • Li , J. Y. , He , X. W. , Xu , L. , Zhou , J. , Wu , P. , Shou , H. X. and Zhang , F. C. 2008 . Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species . J. Zhejiang Univ. Sci. B , 9 : 132 – 140 .
  • Li , Q. L. , Gao , X. R. , Yu , X. H. , Wang , X. Z. and An , L. J. 2003 . Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco . Biotechnol. Lett. , 25 : 1431 – 1436 .
  • Li , Z.-Y. and Chen , D. S. 2000 . Differential accumulation of the S adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses . Theor. Appl. Genet. , 100 : 782 – 788 .
  • Liang , P. and Pardee , A. B. 1992 . Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction . Science , 257 : 967 – 971 .
  • Liao , Y. , Zhang , J. S. , Chen , S. Y. and Zhang , W. K. 2008 . Role of soybean GmbZIP132 under abscisic acid and salt stresses . J. Integr. Plant Biol. , 50 : 221 – 230 .
  • Lilius , G. , Holmberg , N. and Bulow , L. 1996 . Enhanced NaCl stress tolerance in trangenic tobacco expressing bacterial choline dehydrogenase . Bio/technology , 14 : 177 – 180 .
  • Lipshutz , R. J. , Fodor , S. P. , Gingeras , T. R. and Lockhart , D. J. 1999 . High density synthetic oligonucleotide arrays . Nat. Genet. , 21 : 20 – 24 .
  • Liu , X. and Baird , W. M. 2003 . Differential expression of genes regulated in response to drought or salinity stress in sunflower . Crop Sci , 43 : 678 – 687 .
  • Liu , X. , Fu , J. , Gu , D. , Liu , W. , Liu , T. , Peng , Y. , Wang , J. and Wang , G. 2008 . Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.) . Genomics , 91 : 378 – 387 .
  • Lockhart , D. J. and Winzeler , E. A. 2000 . Genomics, gene expression and DNA arrays . Nature , 405 : 827 – 836 .
  • Ma , S. , Gong , Q. and Bohnert , H. J. 2006 . Dissecting salt stress pathways . J. Exp. Bot. , 57 : 1097 – 1107 .
  • Ma , S. Y. and Wu , W. H. 2007 . AtCPK23 functions in Arabidopsis responses to drought and salt stresses . Plant Mol. Biol. , 65 : 511 – 518 .
  • Mahajan , S. and Tuteja , N. 2005 . Cold, salinity and drought stresses: an overview . Arch. Biochem. Biophys. , 444 : 139 – 158 .
  • Mani , S. , Van De Cotte , B. , Van Montagu , M. and Verbruggen , N. 2002 . Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis . Plant Physiol. , 128 : 73 – 83 .
  • Mano , Y. and Takeda , K. 1997 . Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) . Euphytica , 94 : 263 – 272 .
  • Mao , X. , Zhang , H. , Tian , S. , Chang , X. and Jing , R. 2010 . TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis . J. Exp. Bot. , 61 : 683 – 696 .
  • Maser , P. , Eckelman , B. , Vaidyanathan , R. , Horie , T. , Fairbairn , D. J. , Kubo , M. , Yamagami , M. , Yamaguchi , K. , Nishimura , M. and Uozumi , N. 2002 . Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1 . FEBS Lett , 531 : 157 – 161 .
  • Matsui , A. , Ishida , J. , Morosawa , T. , Mochizuki , Y. , Kaminuma , E. , Endo , T. A. , Okamoto , M. , Nambara , E. , Nakajima , M. and Kawashima , M. 2008 . Arabidopsis transcriptome analysis under drought, cold, high–salinity and ABA treatment conditions using a tiling array . Plant Cell Physiol , 49 : 1135 – 1149 .
  • Megdiche , W. , Passaquet , C. , Zourrig , W. , Zuily Fodil , Y. and Abdelly , C. 2009 . Molecular cloning and characterization of novel cystatin gene in leaves Cakile maritima halophyte . J. Plant Physiol. , 166 : 739 – 749 .
  • Miyama , M. and Tada , Y. 2008 . Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress . Plant Mol. Biol. , 68 : 119 – 129 .
  • Mohammadi , M. , Kav , N. N. and Deyholos , M. K. 2007 . Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes . Plant Cell Environ. , 30 : 630 – 645 .
  • Mohanty , A. , Kathuria , H. , Ferjani , A. , Sakamoto , A. , Mohanty , P. , Murata , N. and Tyagi , A. K. 2002 . Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress . Theor. Appl. Genet , 106 : 51 – 57 .
  • Munns , R. 2002 . Comparative physiology of salt and water stress . Plant Cell Environ. , 25 : 239 – 250 .
  • Munns , R. 2005 . Genes and salt tolerance: bringing them together . New Phytol. , 167 : 645 – 663 .
  • Nakamura , H. , Hakata , M. , Amano , K. , Miyao , A. , Toki , N. , Kajikawa , M. , Pang , J. , Higashi , N. , Ando , S. and Toki , S. 2007 . A genome-wide gain-of function analysis of rice genes using the FOX-hunting system . Plant Mol. Biol. , 65 : 357 – 371 .
  • Nakano , M. , Nobuta , K. , Vemaraju , K. , Tej , S. S. , Skogen , J. W. and Meyers , B. C. 2006 . Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA . Nucleic Acids Res. , 34 : D731 – 735 .
  • Nakashima , K. , Tran , L. S. , Van Nguyen , D. , Fujita , M. , Maruyama , K. , Todaka , D. , Ito , Y. , Hayashi , N. , Shinozaki , K. and Yamaguchi-Shinozaki , K. 2007 . Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice . Plant J. , 51 : 617 – 630 .
  • Narusaka , Y. , Narusaka , M. , Seki , M. , Umezawa , T. , Ishida , J. , Nakajima , M. , Enju , A. and Shinozaki , K. 2004 . Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray . Plant Mol. Biol , 55 : 327 – 342 .
  • Nayidu , N. K. , Wang , L. , Xie , W. , Zhang , C. , Fan , C. , Lian , X. , Zhang , Q. and Xiong , L. 2008 . Comprehensive sequence and expression profile analysis of PEX11 gene family in rice . Gene , 412 : 59 – 70 .
  • Ni , Y. , Wang , X. , Li , D. , Wu , Y. , Xu , W. and Li , X. 2008 . Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones . Acta. Biochim. Biophys. Sin. (Shanghai) , 40 : 78 – 84 .
  • Orsini , F. , Cascone , P. , De Pascale , S. , Barbieri , G. , Corrado , G. , Rao , R. and Maggio , A. 2009 . Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses . Physiol. Plant. , 138 : 10 – 21. .
  • Plett , D. C. and Moller , I. S. 2010 . Na(+) transport in glycophytic plants: what we know and would like to know . Plant Cell Environ. , 33 : 612 – 626 .
  • Priyanka , B. , Sekhar , K. , Sunita , T. , Reddy , V. D. and Rao , K. V. 2010 . Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana . Mol. Genet. Genomics , 283 : 273 – 287 .
  • Qing , D. J. , Lu , H F. , Li , N. , Dong , H. T. , Dong , D. F. and Li , Y. Z. 2009 . Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress . Plant Cell Physiol. , 50 : 889 – 903 .
  • Qiu , Y. , Li , X. X. , Zhi , H. Y. , Shen , D. and Lu , P. 2009 . Differential expression of salt tolerance related genes in Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee . J Zhejiang Univ Sci B , 10 : 847 – 851 .
  • Ray , S. , Agarwal , P. , Arora , R. , Kapoor , S. and Tyagi , A. K. 2007 . Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica) . Mol. Genet. Genomics , 278 : 493 – 505 .
  • Rensink , W. A. and Buell , C. R. 2005 . Microarray expression profiling resources for plant genomics . Trends Plant Sci. , 10 : 603 – 609 .
  • Rensink , W. A. , Iobst , S. , Hart , A. , Stegalkina , S. , Liu , J. and Buell , C. R. 2005 . Gene expression profiling of potato responses to cold, heat, and salt stress . Funct. Integr. Genomics , 5 : 201 – 207 .
  • Reusch , T. B. , Veron , A. S. , Preuss , C. , Weiner , J. , Wissler , L. , Beck , A. , Klages , S. , Kube , M. , Reinhardt , R. and Bornberg-Bauer , E. 2008 . Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress . Mar. Biotechnol. (NY) , 10 : 297 – 309 .
  • Rhodes , D. , Nadolska-Orczyk , A. and Rich , P. J. 2002 . “ Salinity, osmolytes and compatible solutes ” . In Salinity: Environment - Plants- Molecules Edited by: Lauchli , A. and Liittge , U. 181 – 204 . Kluwer, Dordrecht, , the Netherlands
  • Richards , R. A. 1996 . Defining selection criteria to improve yield under drought . Plant Growth Regul. , 20 : 57 – 166 .
  • Richmond , T. and Somerville , S. 2000 . Chasing the dream: plant EST microarrays . Curr. Opin. Plant Biol. , 3 : 108 – 116 .
  • Rus , A. M. , Estaii , M. T. , Gisbert , C. , Garcia-Sogo , B. , Serrano , R. , Caro , M. and Bolarin , M. C. 2001 . Expressing the yeast H ALl gene in tomato increases fruit yield and enhances K +/Na +selectivity under salt stress . Plant Cell Environ. , 24 : 875 – 880 .
  • Sahi , C. , Singh , A. , Kumar , K. , Blumwald , E. and Grover , A. 2006 . Salt stress response in rice: genetics, molecular biology, and comparative genomics . Funct. Integr. Genomics , 6 : 263 – 284 .
  • Sahu , B. B. and Shaw , B. P. 2009 . Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization . BMC Plant Biol. , 9 : 69
  • Sanchez , D. H. , Lippold , F. , Redestig , H. , Hannah , M. A. , Erban , A. , Kramer , U. , Kopka , J. and Udvardi , M. K. 2008 . Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus . Plant J. , 53 : 973 – 987 .
  • Schachtman , D. P. , Kumar , R. , Schroeder , J. I. and Marsh , E. L. 1997 . Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants . Proc. Natl. Acad. Sci. USA , 94 : 11079 – 11084 .
  • Schulte , D. , Close , T. J. , Graner , A. , Langridge , P. , Matsumoto , T. , Muehlbauer , G. , Sato , K. , Schulman , A. H. , Waugh , R. and Wise , R. P. 2009 . The international barley sequencing consortium–at the threshold of efficient access to the barley genome . Plant Physiol. , 149 : 142 – 147 .
  • Seki , M. , Carninci , P. , Nishiyama , Y. , Hayashizaki , Y. and Shinozaki , K. 1998 . High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper . Plant J. , 15 : 707 – 720 .
  • Seki , M. , Ishida , J. , Narusaka , M. , Fujita , M. , Nanjo , T. , Umezawa , T. , Kamiya , A. , Nakajima , M. , Enju , A. and Sakurai , T. 2002a . Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray . Funct. Integr. Genomics , 2 : 282 – 291 .
  • Seki , M. , Kamei , A. , Yamaguchi-Shinozaki , K. and Shinozaki , K. 2003 . Molecular responses to drought, salinity and frost: common and different paths for plant protection . Curr. Opin. Biotechnol. , 14 : 194 – 199 .
  • Seki , M. , Narusaka , M. , Ishida , J. , Nanjo , T. , Fujita , M. , Oono , Y. , Kamiya , A. , Nakajima , M. , Enju , A. and Sakurai , T. 2002b . Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray . Plant J. , 31 : 279 – 292 .
  • Senadheera , P. , Singh , R. K. and Maathuis , F. J. 2009 . Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance . J. Exp. Bot. , 60 : 2553 – 2563 .
  • Serrano , R. , Culiañz-Macia , F. A. and Moreno , V. 1999 . Genetic engineering of salt and drought tolerance with yeast regulatory genes . Scientia Hort. , 78 : 261 – 269 .
  • Shabala , S. and Cuin , T. A. 2008 . Potassium transport and plant salt tolerance . Physiol. Plan. , 133 : 651 – 669 .
  • Shi , H. , Lee , B. H. , Wu , S. J. and Zhu , J. K. 2003 . Overexpression of a plasma membrane Na+/H +antiporter gene improves salt tolerance in Arabidopsis thaliana . Nat. Biotechnol. , 21 : 81 – 85 .
  • Silva , P. and Geros , H. 2009 . Regulation by salt of vacuolar H+-ATPase and H+ pyrophosphatase activities and Na+/H +exchange . Plant Signal Behav. , 4 : 718 – 726 .
  • Song , X.-J. and Matsuoka , M. 2009 . Bar the windows: an optimized strategy to survive drought and salt adversities . Genes Dev. , 23 : 1709 – 1713 .
  • Sreenivasulu , N. , Sopory , S. K. and Kavi Kishor , P. B. 2007 . Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches . Gene , 388 : 1 – 13 .
  • Stephenson , J. , Newman , K. and Mayhew , S. 2010 . Population dynamics and climate change: what are the links? . J. Public Health (Oxf) , 32 : 150 – 156 .
  • Strable , J. , Borsuk , L. , Nettleton , D. , Schnable , P. S. and Irish , E. E. 2008 . Microarray analysis of vegetative phase change in maize . Plant J. , 56 : 1045 – 1057 .
  • Sunkar , R. , Bartels , D. and Kirch , H. H. 2003 . Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance . Plant J. , 35 : 452 – 464 .
  • Swindell , W. R. , Huebner , M. and Weber , A. P. 2007 . Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways . BMC Genomics , 8 : 125
  • Szabolcs , I. 1994 . “ Soil salinization ” . In Handbook of Plant Crop Stress , Edited by: Pessarakli , M. 3 – 11 . New York : Marcel Dekker .
  • Taji , T. , Seki , M. , Satou , M. , Sakurai , T. , Kobayashi , M. , Ishiyama , K. , Narusaka , Y. , Narusaka , M. , Zhu , J. K. and Shinozaki , K. 2004 . Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray . Plant Physiol. , 135 : 1697 – 1709 .
  • Tal , M. and Shannon , M. C. 1983 . Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, Lycopersicon cheesmani, Lycopersicon peruvianum, Solanum pennelli, and F1 hybrids to high salinity . Aust. J. Plant Physiol. , 10 : 109 – 117 .
  • Tanji , K. K. 1990 . “ Nature and extent of agricultural salinity ” . In Agricultural Salinity Assessment and Management , Edited by: Tangi , K. K. 1 – 13 . New York : Am. Soc. Civil Engineers .
  • Tarczynski , M. C. , Jensen , R. G. and Bohnert , H. J. 1993 . Stress protection of transgenic tobacco by production of the osmolyte mannitol . Science , 259 : 508 – 510 .
  • Tester , M. and Bacic , A. 2005 . Abiotic stress tolerance in grasses. From model plants to crop plants . Plant Physiol. , 137 : 791 – 793 .
  • Thomas , J. C. , Sepahi , M. , Arndall , B. and Bohnert , H. J. 1995 . Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana . Plant Cell Envr. , 18 : 801 – 806 .
  • Ueda , A. , Kathiresan , A. , Bennett , J. and Takabe , T. 2006 . Comparative transcriptome analyses of barley and rice under salt stress . Theor. Appl. Genet. , 112 : 1286 – 1294 .
  • Ueda , A. , Shi , W. , Nakamura , T. and Takabe , T. 2002 . Analysis of salt-inducible genes in barley roots by differential display . J. Plant Res. , 115 : 119 – 130 .
  • Uozumi , N. , Kim , E. J. , Rubio , F. , Yamaguchi , T. , Muto , S. , Tsuboi , A. , Bakker , E. P. , Nakamura , T. and Schroeder , J. I. 2000 . The Arabidopsis HKT1 gene homolog mediates inward Na(+) currents in xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae . Plant Physiol. , 122 : 1249 – 1259 .
  • Urano , K. , Kurihara , Y. , Seki , M. and Shinozaki , K. 2010 . ‘Omics’ analyses of regulatory networks in plant abiotic stress responses . Curr. Opin. Plant Biol. , 13 : 32 – 138. .
  • Vij , S. and Tyagi , A. K. 2007 . Emerging trends in the functional genomics of the abiotic stress response in crop plants . Plant Biotechnol. J. , 5 : 361 – 380 .
  • Vinocur , B. and Altman , A. 2005 . Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations . Curr. Opin. Biotechnol. , 16 : 123 – 132 .
  • Walia , H. , Wilson , C. , Condamine , P. , Liu , X. , Ismail , A M. , Zeng , L. , Wanamaker , S. I. , Mandal , J. , Xu , J. and Cui , X. 2005 . Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage . Plant Physiol. , 139 : 822 – 835 .
  • Walia , H. , Wilson , C. , Ismail , A. M. , Close , T. J. and Cui , X. 2009 . Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress . BMC Genomics , 10 : 398
  • Walia , H. , Wilson , C. , Wahid , A. , Condamine , P. , Cui , X. and Close , T. J. 2006 . Expression analysis of barley (Hordeum vulgare L.) during salinity stress . Funct. Integr. Genomics , 6 : 143 – 156 .
  • Wang , H. , Liu , D. , Sun , J. and Zhang , A. 2005 . Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA . J. Plant Physiol. , 162 : 81 – 89 .
  • Wang , X. , Fan , P. , Song , H. , Chen , X. , Li , X. and Li , Y. 2009 . Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity . J. Proteome Res. , 8 : 3331 – 3345 .
  • Wang , Y. , Liu , C. , Li , K. , Sun , F. , Hu , H. , Li , X. , Zhao , Y. , Han , C. , Zhang , W. and Duan , Y. 2007a . Arabidopsis EIN2 modulates stress response through abscisic acid response pathway . Plant Mol. Biol. , 64 : 633 – 644 .
  • Wang , Y. , Yang , C. , Liu , G. and Jiang , J. 2007b . Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress . Plant Physiol. Biochem. , 45 : 567 – 576 .
  • Wei , W. , Bilsborrow , P. , Hooley , P. , Fincham , D. and Forster , B. 2001 . Variation between two near isogenic barley (Hordeum vulgare) cultivars in expression of the B subunit of the vacuolar ATPase in response to salinity . Hereditas , 135 : 227 – 231 .
  • Wong , C. E. , Li , Y. , Labbe , A. , Guevara , D. , Nuin , P. , Whitty , B. , Diaz , C. , Golding , G. B. , Gray , G. R. and Weretilnyk , E. A. 2006 . Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis . Plant Physiol. , 140 : 1437 – 1450 .
  • Wu , C. A. , Yang , G. D. , Meng , Q. W. and Zheng , C. C. 2004 . The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress . Plant Cell Physiol. , 45 : 600 – 607 .
  • Wu , L. , Fan , Z. , Guo , L. , Li , Y. , Chen , Z.-L. and Qu , L.-J. 2005 . Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance . Plant Sci. , 168 : 297 – 302 .
  • Xiang , Y. , Huang , Y. and Xiong , L. 2007 . Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement . Plant Physiol , 144 : 1416 – 1428 .
  • Xie , Z. M. , Zou , H. F. , Lei , G. , Wei , W. , Zhou , Q. Y. , Niu , C. F. , Liao , Y. , Tian , A. G. , Ma , B. and Zhang , W. K. 2009 . Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic arabidopsis . PLoS One , 4 : e6898
  • Xiong , L. , Schumaker , K. S. and Zhu , J. K. 2002 . Cell signaling during cold, drought, and salt stress . Plant Cell , 14 : S165 – S183 . Suppl
  • Xu , D. , Duan , X. , Wang , B. , Hong , B. , Ho , T. H.D. and Wu , R. 1996 . Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice . Plant Physiol. , 110 : 249 – 257 .
  • Xu , W. F. and Shi , W. M. 2006 . Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR . Ann. Bot. , 98 : 965 – 974 .
  • Xu , Z. S. , Liu , L. , Ni , Z. Y. , Liu , P. , Chen , M. , Li , L. C. , Chen , Y. F. and Ma , Y. Z. 2009 . W55a encodes a novel protein kinase that is involved in multiple stress responses . J. Integr. Plant Biol. , 51 : 58 – 66 .
  • Xue , Z.-Y. , Zhi , D.-Y. , Xue , G.-P. , Zhang , H. , Zhao , Y.-X. and Xia , G.-M. 2004 . Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H +antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+ . Plant Sci , 167 : 849 – 859 .
  • Yamaguchi , T. and Blumwald , E. 2005 . Developing salt-tolerant crop plants: challenges and opportunities . Trends Plant Sci. , 10 : 615 – 620 .
  • Yamanaka , T. , Miyama , M. and Tada , Y. 2009 . Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening . Biosci. Biotechnol. Biochem. , 73 : 304 – 310 .
  • Yang , C. P. , Wang , Y. C. , Liu , G. F. and Jiang , J. 2004 . Expression of some genes in Tamarix androssowii plant under NaHCO3 stress . Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao , 30 : 229 – 233 .
  • Yang , C. P. , Wang , Y. C. , Liu , G. F. , Jiang , J. and Zhang , G. D. 2005 . Study on expression of genes in Tamarix androssowii under NaHCO3 stress using gene chip technology . Sheng Wu Gong Cheng Xue Bao , 21 : 220 – 226 .
  • Yang , Q. , Chen , Z. Z. , Zhou , X. F. , Yin , H. B. , Li , X. , Xin , X. F. , Hong , X. H. , Zhu , J. K. and Gong , Z. 2009 . Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis . Mol. Plant , 2 : 22 – 31 .
  • Yin , X.-Y. , Yang , A.-F. , Zhang , K.-W. and Zhang , J.-R. 2004 . Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene . Acta. Bot. Sin. , 46 : 854 – 861 .
  • Yokoi , S. , Quintero , F. J. , Cubero , B. , Ruiz , M. T. , Bressan , R. A. , Hasegawa , P. M. and Pardo , J. M. 2002 . Differential expression and function of Arabidopsis thaliana NHX Na+/H +antiporters in the salt stress response . Plant J. , 30 : 529 – 539 .
  • Yokotani , N. , Ichikawa , T. , Kondou , Y. , Matsui , M. , Hirochika , H. , Iwabuchi , M. and Oda , K. 2008 . Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis . Planta , 227 : 957 – 967 .
  • Yokotani , N. , Ichikawa , T. , Kondou , Y. , Matsui , M. , Hirochika , H. , Iwabuchi , M. and Oda , K. 2009 . Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis . Planta , 229 : 1065 – 1075 .
  • Yoshiba , Y. , Aoki , C. , Iuchi , S. , Nanjo , T. , Seki , M. , Sekiguchi , F. , Yamaguchi-Shinozaki , K. and Shinozaki , K. 2001 . Characterization of four extensin genes in Arabidopsis thaliana by differential gene expression under stress and non-stress conditions . DNA Res. , 8 : 115 – 122 .
  • Zhang , H. , Sreenivasulu , N. , Weschke , W. , Stein , N. , Rudd , S. , Radchuk , V. , Potokina , E. , Scholz , U. , Schweizer , P. and Zierold , U. 2004 . Large-scale analysis of the barley transcriptome based on expressed sequence tags . Plant J. , 40 : 276 – 290 .
  • Zhang , H. X. and Blumwald , E. 2001 . Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit . Nat. Biotechnol. , 19 : 765 – 768 .
  • Zhang , H. X. , Hodson , J. N. , Williams , J. P. and Blumwald , E. 2001 . Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation . Proc. Natl. Acad. Sci. U S A , 98 : 12832 – 12836 .
  • Zhang , J.-L. , Flowers , T. J. and Wang , S.-M. 2010 . Mechanisms of sodium uptake by roots of higher plants . Plant Soil , 326 : 45 – 60 .
  • Zhou , Q. Y. , Tian , A. G. , Zou , H. F. , Xie , Z. M. , Lei , G. , Huang , J. , Wang , C. M. , Wang , H. W. , Zhang , J. S. and Chen , S. Y. 2008 . Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants . Plant Biotechnol. J. , 6 : 486 – 503 .
  • Zhu , J. K. 2000 . Genetic analysis of plant salt tolerance using Arabidopsis . Plant Physiol. , 124 : 941 – 948 .
  • Zhu , J. K. 2001a . Cell signaling under salt, water and cold stresses . Curr. Opin. Plant Biol. , 4 : 401 – 406 .
  • Zhu , J. K. 2001b . Plant salt tolerance . Trends Plant Sci. , 6 : 66 – 71 .
  • Zhu , J. K. 2002 . Salt and drought stress signal transduction in plants . Ann. Rev. Plant Biol. , 53 : 247 – 273 .
  • Zhu , J. K. 2003 . Regulation of ion homeostasis under salt stress . Curr. Opin. Plant Biol. , 6 : 441 – 445 .
  • Zimmermann , P. , Hirsch-Hoffmann , M. , Hennig , L. and Gruissem , W. 2004 . GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox . Plant Physiol. , 136 : 2621 – 2632 .
  • Zou , J. , Liu , A. , Chen , X. , Zhou , X. , Gao , G. , Wang , W. and Zhang , X. 2009 . Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment . J. Plant Physiol. , 166 : 851 – 861 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.