3,262
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Genomics and Functional Genomics of Winter Low Temperature Tolerance in Temperate Fruit Crops

REFERENCES

  • Adam-Blondon, A-F., Roux, C., Claux, D., Butterlin, G., Merdinoglu, D., and This, P. 2004. Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor. Appl. Genet. 109: 1017–1027.
  • Agrout, X., Salse, J., Aury, J-M., Guiltinan, M.J., Droc, G., Gouzy, J., Allegre, M., Chaparro, C., Legavre, T., Maximova, S.N., Abrouk, M., Murat, F., Fouet, O., Poulain, J., Ruiz, M., et al. 2011. The genome of Theobroma cacao. Nature Genet. 43: 101–106.
  • Ahmad, A., Zhang, Y., and Cao, X-F. 2010. Decoding the epigenetic language of plant development. Mol. Plant. 3: 719–728.
  • Aquea, F., Vega, A., Timmermann, T., Poupin, M.J., and Arce-Johnson, P. 2011. Genome-wide analysis of the SET DOMAIN GROUP family in grapevine. Plant Cell Rep. 30: 1087–1097.
  • Arora, R. and Rowland, L.J. 2011. Physiological research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design. HortScience. 46: 1070–1078.
  • Arora, R., Rowland, L.J., Lehman, J.S., Lim, C.C., Panta, G.R., and Vorsa, N. 2000. Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor. Appl. Genet. 100: 690–696.
  • Arora, R., Rowland, L.J., and Panta, G.R. 1997. Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions. Physiologia Plantarum 101: 8–16.
  • Arora, R., Rowland, L.J., and Tanino, K. 2003. Induction and release of bud dormancy in woody perennials a science comes of age. HortScience. 38: 911–921.
  • Arora, R. and Wisniewski, M.E. 1994. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60 kD polypeptide in cold acclimated bark tissue of peach is heat-stable and related to dehydrin family of proteins. Plant Physiol. 105: 95–101.
  • Arora, R. and Wisniewski, M.E. 1996. Accumulation of 60 kD dehydrin protein in peach xylem tissues and its relationship to cold acclimation. HortScience. 31: 923–925.
  • Arora, R., Wisniewski, M.E., and Scorza, R. 1992. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). Plant Physiol. 99: 1562–1568.
  • Artlip, T.S., Callahan, A.M., Basset C.L., and Wisniewski, E.N. 1997. Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch). Plant Mol. Biol. 33: 61–70.
  • Arús, P., Verde, I., Sosinski, B., Zhebentyayeva, T., and Abbott, A.G. 2012. The peach genome. Tree Genet. Genomes. 8: 531–547.
  • Ashworth, E.N. 1982. Properties of peach flower buds which facilitate supercooling. Plant Physiol. 70: 1475–1479.
  • Ashworth, E.N. 1984. Xylem development in Prunus flower buds and the relationship to deep supercooling. Plant Physiol. 74: 862–865.
  • Ashworth, E.N. 1992. Formation and spread of ice in plant tissues. Hortic. Rev. 13: 215–255.
  • Ashworth, E.N. and Wisniewski, M.E. 1991. Response of fruit tree tissues to freezing temperatures. HortScience. 26: 501–504.
  • Barakat, A., Sriram, A., Park, J., Zhebentyayeva, T., Main, D., and Abbott, A. 2012. Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13: 481.
  • Barros, P.M., Gonçalves, N., Saibo, N.J. M., and Oliveira, M.M. 2012a. Cold acclimation and floral development in almond bud break: insights into the regulatory pathways. J. Expt. Bot. 63: 4585–4596.
  • Barros, P.M., Gonçalves, N., Saibo, N.J. M., and Oliveira, M.M. 2012b. Functional characterization of two almond C-repeat-binding factors involved in cold response. Tree Physiol. 32: 1113–1128.
  • Bassett, C.L., Wisniewski, M.E., Artlip, T.S., and Norelli, J.L. 2006. Global analysis of genes regulated by low temperature and photoperiod in peach bark. J. Amer. Soc. Hort. Sci. 131: 551–563.
  • Bassett, C.L., Wisniewski, M.E., Artlip, T.S., Richart, G., Norelli, J.L., and Farrell, R.E. 2009. Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230: 107–118.
  • Batistič, O., Waadt, R., Steinhorts, L., Held, K., and Kudla, J. 2010. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J. 61: 211–222.
  • Bielenberg, D.G., Wang, Y., Li, Z., Zhebentyayeva, T., Fan, S., Reighard,G.L., Scorza, R., and Abbott, A.G. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet. Genomes. 4: 459–507.
  • Burke, M.J. and Stushnoff, C. 1978. Frost hardiness: a discussion of molecular causes of injury with particular reference to deep supercooling of water. In: Mussel1, H. and Staples, R. eds. Stress Physiology in Crop Plants.pp. 197–225. Wiley, New York.
  • Cain, C.W. and Anderson, R.L. 1980. Inheritance of wood hardiness among hybrids of commercial and wild asian peach genotypes. J. Amer. Soc. Hort. Sci. 105: 349–354.
  • Çakir, B., Kiliçkaya, O., and Olcay, A.C. 2013. Genome-wide analysis of Aux/IAA genes in Vitis vinifera: cloning and expression profiling of a grape Aux/IAA gene in response. Acta Physiol Plant 35: 365–377.
  • Cook, J.E., Eriksson, M.E., and Junttila, O. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 35: 1707–1728.
  • Davletova, S., Schlauch, K., Coutu, J., and Mittler, R. 2005. The zinc-finger protein ZAT12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139: 847–856.
  • Dhanaraj, A.L., Alkharouf, N.W, Beard, H.S., Choukha, I.B., Matthews, B.F., Wei, H., Arora, R., and Rowland, L.J. 2007. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta. 225: 735–751.
  • Dhanaraj A.L., Slovin, J.P., and Rowland, L.J. 2004. Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci. 166: 863–872.
  • Dhanaraj, A.L., Slovin, J.P, and Rowland, L.J. 2004. Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci. 166: 863–872.
  • Díaz-Riquelme, J., Grimplet, J., Marinez-Zapater, J.M., and Carmona, J.J. 2012. Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biol. 12: 181.
  • Díaz-Riquelme, J., Lijavetzky, D., Marinez-Zapater, J.M., and Carmona, J.J. 2009. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol. 149: 354–369.
  • Doherty, C.J., Van Bukirk, H.A., Myers, S.J., and Thomashow, M.F. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21: 972–984.
  • Dong, M.A., Farré, E.M., and Thomashow, M.F. 2011. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 108: 7241–7246.
  • Duchêne, E., Butterlin, G., Dumas, V., and Merdinoglu, D. 2012. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor. Appl. Genet. 126: 623–635.
  • Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., and Mitchell, S.E. 2011. A robust, simple genotyping by sequencing (GBS) approach for high diversity species. PloS ONE. 6: e19379.
  • Espinoza, C., Degenkolbe, T., Caldana, C., Zuther, E., Leisse, A., Willmitzer, L., Hincha, D.K., and Hannah, M.A. 2010. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PloS ONE. 5: e14101.
  • Fan, S., Bielenber, D.G., Zhebentyayeva, T.N., Reighard, G.L., Okie,W.R., Holland, D., and Abbott, A.G. 2009. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol. 185: 917–930.
  • Fasoli, M., Santo, D.S., Zenoni, S., Tornielli, G.B., Farina, L., Zamboni, A., Porceddu, A., Venturini, L., Bicego, M., Murino, V., Ferrarini, A., Delledonne, M., and Pezzotti, M. 2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell. 24: 3489–3505.
  • Fear, C.D., Lauer, F.I., Luby, J.J., and Stucker, R.L. 1985. Genetic components of variance for winter injury, fall growth cessation, and off-season flowering in blueberry progenies. J. Amer. Soc. Hort. Sci. 110: 262–266.
  • Fejer, S.O. 1976. Combining ability and correlations of winter survival, electrical impedance and morphology in juvenile apple trees. Can. J. Plant Sci. 56: 303–309.
  • Feng, X-M., Zhao, Q., Zhao, L-L., Qiao, Y., Xie, X-B., Li, H-F., Yao, Y-X., You, C-X., and Hao, Y-J. 2012. The cold-induced basic helix-loop-helix transcription factor gene MdClbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol. 12: 22.
  • Fennell, A. 2004. Freezing tolerance and injury in grapevines. J. Crop Improv. 10: 201–235.
  • Fennell, A. and E. Hoover. 1991. Photoperiod influences growth, bud dormancy, and cold acclimation in Vitis labruscana and V. riparia. J. Amer. Soc. Hort. Sci. 116: 270–273.
  • Garcia-Bañuelos, M.L., Gardea, A.A., Winzerling, J.J., and Vazquez-Moreno, L. 2009. Characterization of a midwinter-expressed dehydrin (DHN) gene from apple trees (Malus domestica). Plant Mol. Biol. Rep. 27: 476–487.
  • Garris, A., Clark, L., Owens, C., McKay, S., Luby, J., Mathiason, K., and Fennell, A. 2009. Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J. Amer. Soc. Hort. Sci. 134: 261–272.
  • George, M.F., Burke, M.J., Pellett, H.M., and Johnson, A.G. 1974. Low temperature exotherms and woody plant distribution. HortScience. 9: 519–522.
  • Giorno, F., Guerriero, G., Baric, S., and Mariani, C. 2012. Heat shock trancriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 13: 639.
  • Goes da Silva, F., Iandolino, S., Al-Kayal, F., Bohlmann, M.C., Cushman, M.A., Lim, H., Ergul, A., Figueroa, R., Kabuloglu, E.K., Osborne, C., Rowe, J., Tattersall, E., Leslie, A., Xu, J., Baek, J-M., Cramer, G.R., Cushman, J.C., and Cook, D.R. 2005. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol. 139: 574–597.
  • Griffith, M., Lumb, C., Wiseman, S.B., Wisniewski, M.E., Johnson, R.W., and Marangoni, A.G. 2005. Antifreeze proteins modify the freezing process in planta. Plant Physiol. 138: 330–340.
  • Grimplet, J., Cramer, G.R., Dickerson, J., Van Hemert, J., Mathiason, K., and Fennell, A. 2009. VitisNet: “Omics” integration through grapevine molecular networks. PLoS ONE. 4: e8365.
  • Grimplet, J., Dickerson, J., Adam-Blondon, A-F., and Cramer, G.R. 2011. Bioinformatic tools in grapevine genomics. In: Genetics, Genomics and Breeding of Grapes. pp. 317–331 Adam-Blondon, A-F., Martinez-Zapater, J.M., and Kole, C. eds. Enfield, NH: Science Publishers.
  • Gusta, L.V. and Wisniewski, M.E. 2012. Understanding plant cold hardiness: an opinion. Physiol Plant. preprint. ISSN 0031-9317.
  • Gusta, L.V., Wisniewski, M.E., and Trischuk, R.G. 2009. Patterns of freezing in plants: the influence of species, environment and experimental procedures. In: Plant Cold Hardiness: From Laboratory to the Field. pp.214–225. CABI, Cambridge, UK.
  • Guy, C.L. 2003. Freezing tolerance of plants: current understanding and selected emerging concepts. Can. J. Bot. 81: 1216–1223.
  • Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H-S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 290: 2110–2113.
  • Heide, O.M. and Prestrud, A.K. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25: 109–114.
  • Howell, G.S. and Shaulis, N. 1980. Factors influencing within-vine variation in the cold resistance of cane and primary bud tissues. Am. J. Enol. Vitic. 31: 158–161.
  • Ibañez, C., Ramos, A., Acebo, P., Contreras, A., Casado, R., Alona, I., and Aragoncillo, C. 2008. Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS ONE. 3: e3567.
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 449: 463–467.
  • Janska, A., Marsik, P., Zelenkova, S., and Ovesna, J. 2010. Cold stress and acclimation – what is important for metabolic adjustment. Plant Biol. 12: 395–405.
  • Jian, L-C., Li, J-H., and Li, P. 2000. Seasonal alterations in amount of Ca2+ in apical bud cells of mulberry (Morus bombciz Koidz): an electron microscopy-cytochemica study. Tree Physiol. 20: 623–628.
  • Jimenez, S., Li, Z., Reighard, G.L., and Bielenberg, D.G. 2010a. Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol. Biol. 73: 157–167.
  • Jimenez, S., Li, Z., Reighard, G.L., and Bielenberg, D.G. 2010b. Identfication of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol. 10: 25.
  • Jones, K.S., McKersie, B.D., and Paroschy, J. 2000. Prevention of ice propagation by permeability barriers in bud axes of Vitis vinifera. Can. J. Bot. 78: 3–9.
  • Kader, S.A., and Proebsting, E.L. 1992. Freezing behavior of Prunus, subgenus Padus, flower buds. J. Amer. Soc. Hort. Sci. 117: 995–960.
  • Khan, S.A., Chibon, P-Y., de Vos, R.C. H., Schipper, B.A., Walraven, E., Beekwilder, J., van Dijk, R., Finkers, R., Visser, R.G. F., van de Weg, E.W., Bovy, A., Cestaro, A., Velasco, R., Jacobsen, E., and Schouten, H.J. 2012. Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J. Exp. Bot. 63: 2895–2908.
  • Kitashiba, H., Ishizaka, T., Isuzugawa, K., Nishimura, K., and Suzuki, T. 2004. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J. Plant Physiol. 161: 1171–1176.
  • Kobayashi, M., Horiuchi, H., Fujita, K., Takuhara, Y., and Suziki, S. 2012. Characterization of grape C-repeat-binding factor 2 and B-box-type zinc finger protein in transgenic Arabidopsis plants under stress conditions. Mol. Biol. Rep. 39: 7933–7939.
  • Lee, D-M. and Thomashow, M.F. 2012. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA. 109: 15054–15059.
  • Leida, C., Conesa, A., LLácer. G., Badenes, M.L., and Ríos, G. 2011. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol. 193: 67–80.
  • Leida, C., Terol, J., Marti, G, Agusti, M., LLácer. G., Badenes, M.L., and Ríos, G. 2010. Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol. 30: 655–666.
  • Levitt, J. 1980. Responses of Plants to Environmental Stresses I. Chilling, Freezing, and Temperature Stresses. 2nd Ed. Academic Press, New York.
  • Li, Z., Reighard, G.L., Abbott, A.G., and Bielenberg, D.G. 2009. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J. Exp. Bot. 60: 3521–3530.
  • Licausi, F., Giorgi, F.M., Zenoni, S., Osti, F., Pezzotti, M., and Perata, P. 2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis viniferea. BMC Genomics. 11: 719.
  • Liang, D., Xia, H., Wu, S., and Ma, F. 2012. Genome-wide identification and expression profiling of dehydrin gen family in Malus domestica. Mol. Biol. Rep. 39: 10759–10768.
  • Lindlőf, A., 2010. Interplay between low-temperature pathways and light reduction. Plant Sig. Behavior. 5: 820–825.
  • Mathers, H.M. 2004. Supercooling and cold hardiness in sour cherry germplasm: Flower buds. J. Amer. Soc. Hort. Sci. 129: 675–681.
  • Mathiason, K., He, D., Grimplet, J., Venkateswari, J., Galbraith, D.W., Or, E., and Fennell, A. 2009. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression pattersn with optimized bud break. Funct. Integr. Genomics. 9: 81–96.
  • Michelmore, R.W. 2012. CoGePedia. . http://genomevolution.org/CoGe/ Accessed 11/2012.
  • Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H., Senin, P., et al. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 452: 991–997.
  • Miura, K., Ohta, M., Nakazawa, M., Ono, M., and Hasegwa, P.M. 2011. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J. 67: 269–279.
  • Muthalif, M.M. and Rowland, L.J. 1994. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol. 104: 1439–1447.
  • Obata, T. and Fernie, A.R. 2012. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69: 3225–3243.
  • Olukolu, B.A., Trainin, T., Fan, S., Kole, C., Bielenberg, G., Reighard, G.L., Abbott, A.G., and Holland, D. 2009. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome. 52: 819–828.
  • Owens, C.L. 2005. Breeding temperate fruit crops for improved freezing tolerance. HortScience. 40: 1950–1953.
  • Owens, C.L., Thomashow, M.F., Hancock, J.F., and Iezzoni, A.F. 2002. CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J. Amer. Soc. Hort. Sci. 127: 489–494.
  • Palonen, P. and D. Buszard. 1997. Current state of cold hardiness research on fruit crops. Can. J. Plant Sci. 77: 399–420.
  • Panta, G.R., Rowland, L.J., Arora, R., Ogden, E.L., and Lim, C-C. 2004. Inheritance of cold hardiness and dehydrin genes in diploid mapping populations of blueberry. J. Crop Improv. 10: 37–52.
  • Pearce, R.S. 2001. Plant freezing and damage. Ann. of Bot. 87: 417–424.
  • Pin, P.A. and Nilsson, O. 2012. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 35: 1742–1755.
  • Polashock, J.J., Arora, R., Peng, Y., Dhananjay, N., and Rowland, L.J. 2010. Functional identification of a blueberry CBF/DREB-like element associated with cold acclimation and freezing tolerance. J. Amer. Soc. Hort. Sci. 135: 40–48.
  • Quamme, H.A. 1973. The mechanism of freezing injury in xylem of winter apple twigs. Plant Physiol. 51: 273–277.
  • Quamme, H.A. 1976. Relationship of the low temperature exotherm to apple and pear production in North America. Can. J. Plant Sci. 56: 493–500.
  • Quamme, H.A., Su, W.A., and Veto, L.J. 1995. Anatomical features facilitating supercooling of the flower within the dormant peach flower bud. J. Amer. Soc. Hort. Sci. 120: 814–822.
  • Quamme, H., Wieser, C.J., and Stushnoff, C. 1973. The mechanism of freezing injury in xylem of winter apple twigs. Plant Physiol. 51: 273–277.
  • Renaut, J., Hausman, J-F., Bassett, C., Artlip, T., Cauchie, H-M., Witters, E., and Wisniewski, M.E. 2008. Quatitative proteomic analysis of short photoperiod and low temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet.Genomes. 4: 589–600.
  • Rodriguez, J., Sherman, W.B., Scorza, R., Wisniewski, M., and Okie, W.R. 1994. Evergreen peach, its inheritance and dormant behavior. J. Amer. Soc. Hort. Sci. 119: 789–792.
  • Rowland, L.J., Alkharouf, N.W., Darwish, O., Ogden, E.L., Polashock, J.J., Bassil, N.V., and Main, D. 2012. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flowers from cold acclimation through deacclimation. BMC Plant Biol. 12: 46.
  • Rowland, L.J., Dhanaraj, A.L., Naik, D., Alkharouf, N.W., Matthews, B., and Arora, R. 2008. Study of cold tolerance in blueberry using EST libraries cDNA microarrays, and subtractive hybridization. HortScience. 43: 1975–1981.
  • Rowland, L.J., Panta, G.R., Mehra, S., and Parmentier-Line, C. 2004. Molecular genetic and physiological analysis of the cold-responsive dehydrins of blueberry. J. Crop Improv. 10: 53–76.
  • Sarnighousen, E., Karlson, D.T., Zeng, Y., Goldsbrough, P.B., Raghothama, K.G., and Ashworth, E.N. 2004. Seasonal regulation of a novel YnSKn class of dehydrin-like cDNAs from cold acclimated red-osier dogwood (Cornus sericea L.) xylem. J. Crop Improv. 10: 17–35.
  • Santamaria, M.E., Rodriguez, R., Canal, M.J., and Toorop, P.E. 2011. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control for bud dormancy. Ann Bot. 108: 485–498.
  • Sasaki, R., Yamne, H., Ooka, T., Jotatsu, H., Kitamura, Y., Akagi, T., and Tao, R. 2011. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japenese apricot. Plant Physiol. 157: 485–497.
  • Schnabel, B.J. and Wample, R.L. 1987. Dormancy and cold hardiness in Vitis vinifera L. cv. White Riesling as influenced by photoperiod and temperature. Amer. J. Enol. Vitic. 38: 265–272.
  • Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., Jaiswal, P., et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genet. 43: 109–116.
  • Siddiqua, M. and Nassuth, A. 2011. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell Environ. 34: 1345–1359.
  • Smallwood, M. and Bowles, D.J. 2002. Plants in a cold climate. Phil. Trans. R. Soc. Lond. B 357: 831–847.
  • Stushnoff, C. 1972. Breeding and selection methods for cold hardiness in deciduous fruit crops. HortScience. 7: 10–13.
  • Takuhara, Y., Kobayshi, M., and Suzuki, S. 2011. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. J. Plant Physiol. 168: 967–975.
  • Tanino, K.K., Kalcsits, L., Silim, S., Kendall, E., and Gray, G.R. 2010. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol. Biol. 73: 49–65.
  • Tattersall, A.R., Grimplet, J., Deluc, L., Wheatley, M.D., Vincent, D., Osborne, C., Ergül, A., Lomen, E., Blank, R.R., Schlauch, K.A., Cushman, J.C., and Cramer, G.R. 2007. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct. Integr. Genomics. 7: 317–333.
  • Theocharis, A., Clément, C., and Barka, E.A. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta. 235: 1091–1105.
  • Tillett, R.L., Wheatley, M.D., Tattersall, E.A. R., Schlauch, K.A., Cramer, G.R., and Cushman, J.C. 2012. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotech. J. 10: 105–124.
  • Thomashow, M.F. 2010. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 154: 571–577.
  • Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S.K., et al. 2010. The genome of the domesticated apple (Malus x domestica Borkh.). Nature Genet. 42: 833–839.
  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Dmitry, P., Pruss, D., et al. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE.12: e1326.
  • Victor, K.J., Fennell, A.Y., and Grimplet, J. 2010. Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. Grapevines. Proteome Sci. 8: 44.
  • Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41: 195–211.
  • Walworth, A.E., Rowland, L.J., Polashock, J.J., Hancock, J.F., and Song, G. 2012. Overexpression of a blueberry-derived CBF enhances cold tolerance in a southern highbush blueberry cultivar. Mol. Breeding. 30: 1313–1323.
  • Wang, R.-K., Li, L-L., Cao, Z-H., Zhoa, Q., Li, M., Zhang, L.-Y., and Hao,Y.-J. 2012. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol. Biol. 79: 123–135.
  • Wang, H.B., Wang, X.D., Cheng, C.G., Wang, B.L., Li, M., Gao, D.S., and Liu, F.Z. 2008. Natural inducing factors of peach bud dormancy and roles of Ca2+ in the dormancy induction. Ying Yong Sheng Tai Bao. 19: 2333–2338.
  • Welling, A. and Palva, E.T. 2006. Molecular control of cold acclimation in trees. Physiol. Plant. 127: 167–181.
  • Welling, A., Rinne, P., Vihera-Aarnio, A., Kontunen,-Soppela, S., Heino, P., and Palva, E.T. 2004. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55: 507–516.
  • Wisniewski, M.E., Bassett, C.L., Norelli, J.L., Macarisin, D., Artlip, T.S., Gasic, K., and Korban, S. 2008. Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit. Physiol. Plant. 133: 298–317.
  • Wisniewski, M.E., Bassett, C.L., Renaut, J., Farrell, R., Tworkoski, T., and Artlip, T., 2006. Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol. 26: 575–584.
  • Wisniewski, M.E., Close, T., Artlip, T.S., and Arora, R. 1996. Seasonal patterns of dehydrins and 70 kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol Plant. 96: 496–505.
  • Wisniewski, M.E., Fuller, M., Palta, J., Carter, J., and Arora, R. 2004. Ice nucleation, propagation and deep supercooling in woody plants. J. Crop Improv. 10: 5–16.
  • Wisniewski, M.E., Gusta, L.V., Fuller, M.P., and Karlson, D. 2009. Ice nucleation, propagation and deep supercooling: the lost tribes of freezing studies. In: Plant Cold Hardiness: From Laboratory to the Field. pp. 214–225. CABI, Cambridge, UK.
  • Wisniewski, M.E., Norelli, J., Bassett, C., Artlip, T., and Macarisin, D. 2011. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestica) results in short-day induced dormancy and increased cold hardiness. Planta. 233: 971–983.
  • Wisniewski, M.E., Webb, R., Balsamo, R., Close, T.J., Yu, X-M., and Griffith, M. 1999. Purification, immunolocation, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol. Plant. 105: 600–608.
  • Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M.A., et al. 2013. The genome of pear (Pyrus bretschneideri Rehd.). Genome Res. 23: 396–408.
  • Xiao, H., Siddiqua, M., Braybrook, S., and Nassuth, A. 2006. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant, Cell Environ. 29: 1410–1421.
  • Xiao, H., Tattersall, E.A. R., Siddiqua, M., Cramer, G.R., and Nassuth, A. 2008. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant. Cell Environ. 31: 1–10.
  • Xu, Q., Chen, L.L., Ruan, X., Chen, D., Zhu, A., Chen, C., Bertrand, D., et al. 2012. The draft genome of sweet orange (Citrus sinensis). Nature Genet. . Preprint.
  • Yamane, H., Kashiwa, Y., Kakehi, E., Yonemori, K., Mori, H., Hayashi, K., Iwamoto, K., Tao, R., and Kataoka, I. 2006. Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiol. 26: 1559–1563.
  • Yamane, H., Ooka, T., Jatatsu, H., Hosaka, Y., Sasaki, R., and Tao, R. 2011. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS box genes, by low temperature and dormancy-breaking reagent treatment. J. Exp. Bot. 62: 3481–3488.
  • Yang, T., Cudhuri, S., Yang, L., Du, L., and Pooviah, W.B. 2010. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J. Biol. Chem. 285: 7119–7126.
  • Yang, Y., He, M., Zhu, Z., Li, S., Xu, Y., Zhang, C., Singer, S.D., and Wang,Y. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 21: 140.
  • Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song, L.L., Liu, X.M., Wang, Y.F., Wang, F.W., Zhang, C.M. Liu, Y.M. Xong, J.M., and Li, H.Y. 2011. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta. 233: 319–229.
  • Zhao, T., Liang, D., Wang, P., Liu, J., and Ma, F. 2012. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol. Genet. Genomics. 287: 423–436.
  • Zhu, J., Dong, C.-H., and Zhu, J.-K., 2007. Interplay between cold-responsive gene regulation, metabolism, and RNA processing during plant cold acclimation. Curr. Op. Plant Biol. 10: 290–295.
  • Zhuang, E.-B., Shi, T., Gao, Z.-H., Zhang, Z., and Zhang, J.-Y. 2012. Differential expression of proteins associated with seasonal bud dormancy at four critical stages in Japanese apricot. Plant Biol. 15: 233–242.