618
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Plant Molecular and Genomic Responses to Stresses in Projected Future CO2 Environment

, &

REFERENCES

  • Ahuja, I., de Vos, R., Bones, A.M., and Hall, R.D. 2010. Plant molecular stress responses face climate change. Trends in Plant Sci. 15: 664–674.
  • Ainsworth, E.A. and Long, S.P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165: 351–372.
  • Ainsworth, E.A. and Rogers, A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30: 258–270.
  • Ainsworth, E.A., Rogers, A., Vodkin, L.O., Walter, A., and Schurr, U. 2006. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol. 142: 135–147.
  • Ainsworth, E.A. and Ort, D.R. 2010. How do we improve crop production in a warming world? Plant Physiol. 154: 526–530.
  • Allen, L.H., Kakani, V.G., Vu, J.C.V., and Boote, K.J. 2011. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. J. Plant Physiol. 168: 1909–1918.
  • Aranjuelo, I., Pardo, A., Biel, C., Save, R., Azcón-Bieto, J., and Nogues, S. 2009. Leaf carbon management in slow-growing plants exposed to elevated CO2. Global Change Biol.5: 97–109.
  • Bauweraerts, I., Wertin, T.M., Ameye, M., McGuire, M.A., Teskey, R.O., and Steppe, K. 2012. The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Global Change Biol. 19: 517–528.
  • Bloom, A.J., Smart, D.R., Nguyen, D.T., and Searles, P.S. 2002. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc. Natl. Acad. Sci. USA 99: 1730–1735.
  • Bobich, E.G., Barron-Gafford, G.A., Rascher, K.G., and Murthy, R. 2010. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30: 866–875.
  • Burkart, S., Manderscheid, R., Wittich, K.P., Löpmeier, F.J., and Weigel, H.J. 2011. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biol. 13: 258–269.
  • von Caemmerer, S. and Quick, W.P. 2000. Rubisco: physiology in vivo. In: Photosynthesis: Physiology and Metabolism. pp. 85–113. Leegood, R.C., Sharkey, T.D., and von Caemmerer, S., Eds. Kluwer Academic, Dordrecht, the Netherlands.
  • Casteel, C.L., O’Neill, B.F., Zavala, J.A., Bilgin, D.D., Berenbaum, M.R., and Delucia, E.H. 2008. Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant Cell Environ. 31: 419–434.
  • Chun, J.A., Wang, Q., Timlin, D., Fleisher, D., and Reddy, V.R. 2011. Effect of elevated carbon dioxide and water stress on gas exchange and water use efficiency in corn. Agr. Forest Meteorology. 151: 378–384.
  • Cseke, L.J., Tsai, C.J., Rogers, A., Nelsen, M.P., White, H.L., Karnosky, D.F., and Podila, G.K. 2009. Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytol. 182: 891–911.
  • Davey, P.A., Olcer, H., Zakhleniuk, O., Bernacchi, C.J., Calfapietra, C., Long, S.P., and Raines, C.A. 2006. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ. 29: 1235–1244.
  • Druart, N., Rodríguez-Buey, M., Barron-Gafford, G., Sjödin, A., Bhalerao, R., and Hurry, V. 2006. Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. Funct Plant Biol. 33: 121–131.
  • Finzi, A.C., Norby, R.J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W.E., Hoosbeek, M.R., Iversen, C.M., Jackson, R.B., Kubiske, M.E., 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl. Acad. Sci. USA 104: 14014–14019.
  • Frenck, G., van der Linden, L., Mikkelsen, T.N., Brix, H., and Jørgensen, R.B. 2011. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. Europ. J. Agron. 35: 127–134.
  • Fukayama, H., Fukuda, T., Masumoto, C., Taniguchi, Y., Sakai, H., Cheng, W., Hasegawa, T., and Miyao, M. 2009. Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Sci. 177: 203–210.
  • Ge, Z.M., Zhou, X., Kellomäki, S., Biasi, C., Wang, K.Y., Peltola, H., and Martikainen, P.J. 2012. Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environ. Exp. Bot. 75: 150–158.
  • Ghannoum, O., von Caemmerer, S., Ziska, L.H., and Conroy, J.P. 2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ. 23: 931–942.
  • Ghannoum, O., Phillips, N.G., Sears, M.A., Logan, B.A., Lewis, J.D., Conroy, J.P., and Tissue, D.T. 2010. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant Cell Environ. 33: 1671–1681.
  • Ghannoum, O., Phillips, N.G., Conroy, J.P., Smith, R.A., Attard, R.D., Woodfield, R., Logan, B.A., Lewis, J.D., and Tissue, D.T. 2009. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biol. 16: 303–319.
  • Gillespie, K.M., Xu, F., Richter, K.T., McGrath, J.M., Markelz, R.J. C., Ort, D.R., Leakey, A.D. B., Ainsworth, E.A. 2012. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ. 35: 169–184.
  • Gleadow, R.M., Evans, J.R., McCaffery, S., and Cavagnaro, T.R. 2009. Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. Plant Biol. 11: 76–82.
  • Golldack, D., Lüking, I., and Yang, O. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep. 30: 1383–1391.
  • Gomez-Casanovas, N., Blanc-Betes, E., Gonzalez-Meler, M.A., and Azcon-Bieto, J. 2007. Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive Opuntia ficus-indica. Plant Physiol. 145: 49–61.
  • Guo, H., Sun, Y., Ren, Q., Zhu-Salzman, K., Kang, L., Wang, C., Li, C., and Ge, F. 2012. Elevated CO2 reduces the resistance and tolerance of tomato plants to helicoverpa armigera by suppressing the JA signaling pathway. PLoS One. 7: e41426.
  • Gupta, P., Duplessis, S., White, H., Karnosky, D.F., Martin, F., and Podila, G.K. 2005. Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytol. 167: 129–142.
  • He, J.S., Flynn, D.F. B., Wolfe-Bellin, K., Fang, J., and Bazzaz, F.A. 2005. CO2 and nitrogen, but not population density, alter the size and C/N ratio of Phytolacca americana seeds. Func. Ecology. 19: 437–444.
  • Houghton, J.T., Jenkins, G.J., and Ephraums, J.J. . Climate change: The IPCC scientific assessment. Cambridge: Cambridge University Press1990.
  • Howden, S.M., Soussana, J., Tubiello, F.N., Chhetri, N., Dunlop, M., and Meinke, H. 2007. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 104: 19691–19696.
  • Huang, L., Ren, Q., Sun, Y., Ye, L., Cao, H., and Ge, F. 2012. Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. Plant Biol. 14: 905–913
  • Jamil, A., Riaz, S., Ashraf, M., and Foolad, M.R. 2011. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 30: 435–458.
  • Kakani, V.G., Vu, J.C. V., Allen Jr., L.H., and Boote, K.J. 2011. Leaf photosynthesis and carbohydrates of CO2-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. J. Plant Physiol. 168: 2169–2176.
  • Kaplan, F., Zhao, W., Richards, J.T., Wheeler, R.M., Guy, C.L., and Levine, L.H. 2012. Transcriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2. PLoS One. 7: e43583.
  • Kim, S.H., Sicher, R.C., Bae, H., Gitz, D.C., Baker, J.T., Timlin, D.J., and Reddy, V.R. 2006. Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biol. 12: 588–600.
  • Kim, S.H., Gitz, D.C., Sicher, R.C., Baker, J.T., Timlin, D.J., and Reddy, V.R. 2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environ. Exp. Bot. 61: 224–236.
  • Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosché, M., Keinänen, M., Thakur, R.C., Kolehmainen, M., Kangasjärvi, J., Oksanen, E., Karnosky, D.F., and Vapaavuori, E. 2010. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Environ. Pollution. 158: 959–968.
  • Kontunen-Soppela, S., Riikonen, J., Ruhanen, H., Brosché, M., Somervuo, P., Peltonen, P., Kangasjärvi, J., Auvinen, P., Paulin, L., and Keinänen, M. 2010. Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone. Plant Cell Environ. 33: 1016–1028.
  • Kosová, K., Vítámvás, P., Prášil, I.T., and Renaut, J. 2011. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J. proteomics. 74: 1301–1322.
  • Leakey, A.D. B., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P., and Ort, D.R. 2009a. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60: 2859–2876.
  • Leakey, A.D. B., Xu, F., Gillespie, K.M., McGrath, J.M., Ainsworth, E.A., and Ort, D.R. 2009b. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc. Natl. Acad. Sci. USA 106: 3597–3602.
  • Levine, L.H., Richards, J.T., and Wheeler, R.M. 2009. Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max). J. Plant Physiol. 166: 903–913.
  • Li, P., Ainsworth, E.A., Leakey, A.D. B., Ulanov, A., Lozovaya, V., Ort, D.R., and Bohnert, H.J. 2008. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ. 31: 1673–1687.
  • Li, P., Sioson, A., Mane, S.P., Ulanov, A., Grothaus, G., Heath, L.S., Murali, T.M., Bohnert, H.J., and Grene, R. 2006. Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Mol. Biol. 62: 593–609.
  • Li, X.M., Zhang, L.H., Li, Y.Y., Ma, L.J., Chen, Q., Wang, L.L., and He, X.Y. 2011. Effects of elevated carbon dioxide and/or ozone on endogenous plant hormones in the leaves of Ginkgo biloba. Acta Physiologiae Plantarum. 33: 129–136.
  • Lobell, D.B. and Asner, G.P. 2003. Climate and management contributions to recent trends in U.S. agricultural yields. Science 299: 1032
  • Long, S.P., Ainsworth, E.A., Leakey, A.D. B., Nösberger, J., and Ort, D.R. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312: 1918–1921.
  • Long, S.P. and Ort, D.R. 2010. More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13: 241–248.
  • Ludewig, F. and Sonnewald, U. 2000. High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Letters. 479: 19–24.
  • Ludewig, F., Sonnewald, U., Kauder, F., Heineke, D., Geiger, M., Stitt, M., Müller-Röber, B.T., Gillissen, B., Kühn, C., and Frommer, W.B. 1998. The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Letters. 429: 147–151.
  • Madan, P., Jagadish, S.V. K., Craufurd, P.Q., Fitzgerald, M., Lafarge, T., and Wheeler, T.R. 2012. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J. Exp. Bot. 63: 3843–3852.
  • Markelz, R.J. C., Strellner, R.S., and Leakey, A.D. B. 2011. Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J. Exp. Bot. 62: 3235–3246.
  • McKee, I.F., Mulholland, B.J., Craigon, J., Black, C.R., Long, S.P. 2000. Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat. New Phytol. 146: 427–435.
  • Miyazaki, S., Fredricksen, M., Hollis, K.C., Poroyko, V., Shepley, D., Galbraith, D.W., Long, S.P., and Bohnert, H.J. 2004. Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res. 90: 47–59.
  • Moore, B.D., Cheng, S.H., Rice, J., and Seemann, J.R. 2002. Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 21: 905–915.
  • Moore, B.D., Cheng, S.H., Sims, D., and Seemann, J.R. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 22: 567–582.
  • Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149: 88–95.
  • Newton, A.C., Johnson, S.N., and Gregory, P.J. 2011. Implications of climate change for diseases, crop yields and food security. Euphytica. 179: 3–18.
  • Norby, R.J., Warren, J.M., Iversen, C.M., Medlyn, B.E., and McMurtrie, R.E. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 107: 19368–19373.
  • van Oosten, J.J. and Besford, R.T. 1994. Sugar feeding mimics effect of acclimation to high CO2 rapid down regulation of Rubisco small subunit transcripts but not of the large subunit transcripts. J. Plant Physiol. 143: 306–312.
  • van Oosten, J.J., Wilkins, D., and Besford, R.T. 1994. Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates: a mechanism for the acclimation of photosynthesis to high CO2? Plant Cell Environ. 17: 913–923.
  • Polle, A., Pfirrmann, T., Chakrabarti, S., and Rennenberg, H. 1993. The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environ. 16: 311–316.
  • Prasad, P.V. V., Boote, K.J., and Allen Jr., L.H. 2011. Longevity and temperature response of pollen as affected by elevated growth temperature and carbon dioxide in peanut and grain sorghum. Environ. Exp. Bot. 70: 51–57.
  • Prins, A., Mukubi, J.M.K. Pellny, T.K., Verrier, P.J., Beyene, G., Lopes, M.S., Emami, K., Treumann, A., Lelarge-trouverie, C., 2011. Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. Plant Cell Environ. 34: 314–331.
  • Qaderi, M.M., Kurepin, L.V., and Reid, D.M. 2006. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiologia plantarum. 128: 710–721.
  • Rao, M.V., Hale, B.A., and Ormrod, D.P. 1995. Amelioration of ozone-induced oxidative damage in Wheat plants grown under high carbon dioxide (Role of antioxidant enzymes). Plant Physiol. 109: 421–432.
  • dos Reis, S.P., Lima, A.M., and de Souza, C.R. B. 2012. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress. Int. J. of Mol. Sci. 13: 8628–8647.
  • Riikonen, J., Holopainen, T., Oksanen, E., and Vapaavuori, E. 2005. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol. 25: 621–632.
  • Riikonen, J., Lindsberg, M.M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., and Vapaavuori, E. 2004. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiol. 24: 1227–1237.
  • Robredo, A., Pérez-López, U., Miranda-Apodaca, J., Lacuesta, M., Mena-Petite, A., and Muñoz-Rueda, A. 2011. Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ. Exp. Bot. 71: 399–408.
  • Saeed, M., Dahab, A.A., Guo, W.Z., and Zhang, T.Z. 2012. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants. OMICS: A Journal of Integ. Biol. 16: 188–199.
  • Sicher, R.C. and Barnaby, J.Y. 2012. Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiologia plantarum. 3: 238–253.
  • Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M. B., Miller, H.L., and Chen, Z. 2007. Climate Change 2007. The physical science basis: Summary for policymakers. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
  • de Souza, A.P., Gaspar, M., da Silva, E.A., Ulian, E.C., Waclawovsky, A.J., Nishiyama, Jr, M.Y., dos Santos, R.V., Teixeira, M.M., Souza, G.M., and Buckeridge, M.S. 2008. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ. 31: 1116–1127.
  • Street, N.R., James, T.M., James, T., Mikael, B., Jaakko, K, Mark, B., and Taylor, G. 2011. The physiological, transcriptional and genetic responses of an ozone-sensitive and an ozone tolerant poplar and selected extremes of their F2 progeny. Environ. Pollution. 159: 45–54.
  • Sun, Y., Cao, H., Yin, J., Kang, L.E., and Ge, F. 2009. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ. 33: 729–739.
  • Tallis, M.J., Lin, Y., Rogers, A., Zhang, J., Street, N.R., Miglietta, F., Karnosky, D.F., de Angelis, P., Calfapietra, C., and Taylor, G. 2010. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytol. 186: 415–428.
  • Taylor, G., Street, N.R., Tricker, P.J., Sjödin, A., Graham, L., Skogström, O., Calfapietra, C., Scarascia-Mugnozza, G., and Jansson, S. 2005. The transcriptome of Populus in elevated CO2. New Phytol. 167: 143–154.
  • Thomas, J.M. G., Boote, K.J., Allen Jr., L.H., Gallo-Meagher, M., and Davis, J.M. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 43: 1548–1557.
  • Tobita, H., Uemura, A., Kitao, M., Kitaoka, S., and Utsugi, H. 2010. Interactive effects of elevated CO2, phosphorus deficiency, and soil drought on nodulation and nitrogenase activity in Alnus hirsuta and Alnus maximowiczii. Symbiosis. 50: 59–69.
  • Tuba, Z. and Lichtenthaler, H.K. 2007. Long-term acclimation of plants to elevated CO2 and its interaction with stresses. Ann. of the New York Acad. of Sci. 1113: 135–146.
  • Tubiello, F.N., Soussana, J.F., and Howden, S.M. 2007. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA 104: 19686.
  • Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu, J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523–539.
  • Vu, J.C. V. and Allen Jr., L.H. 2009. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. J. Plant Physiol. 166: 1141–1151.
  • Warren, J.M., Norby, R.J., and Wullschleger, S.D. 2011a. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31: 117–130.
  • Warren, J.M., Pötzelsberger, E., Wullschleger, S.D., Thornton, P.E., Hasenauer, H., and Norby, R.J. 2011b. Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology. 4: 196–210.
  • Way, D.A. 2011. The bigger they are, the harder they fall: CO2 concentration and tree size affect drought tolerance. Tree Physiol. 31: 115–116.
  • Way, D.A., Ladeau, S.L., McCarthy, H.R., Clark, J.S., Oren, R., Finzi, A.C., and Jackson, R.B. 2010. Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biol. 16: 1046–1056.
  • Way, D.A. and Sage, R.F. 2008. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Global Change Biol. 14: 624–636.
  • Wustman, B.A., Oksanen, E., Karnosky, D.F., Noormets, A., Isebrands, J.G., Pregitzer, K.S., Hendrey, G.R., Sober, J., and Podila, G.K. 2001. Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ. Poll. 115: 473–481.
  • Yu, J., Chen, L., Xu, M., and Huang, B. 2012a. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses. Crop Sci. 52: 1848–1858.
  • Yu, J., Du, H., Xu, M., and Huang, B. 2012. Metabolic responses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. J. Am. Soc. Hort. Sci. 137: 221–228.
  • Zou, X., Shen, Q.J. and Neuman, D. 2007. An ABA inducible WRKY gene integrates responses of creosote bush (Larrea tridentata) to elevated CO2 and abiotic stresses. Plant Sci. 172: 997–1004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.