4,014
Views
155
CrossRef citations to date
0
Altmetric
Original Articles

Achievements and Challenges in Improving the Nutritional Quality of Food Legumes

, , , , , & show all

REFERENCES

  • Achouri, A. and Boye, J.I. 2010. Emerging allergens and the future. In: Allergen Management in the Food Industry. Chapter 18. pp. 495–535. Boye, J.I. and Godefroy, S.B., Eds., John Wiley & Sons Inc.
  • Aguilera, Y., Esteban, R.M., Benítez, V., Esperanza, M., and Martín-Cabrejas, M.A. 2009a. Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing. J. Agric. Food Chem. 57: 10682–10688.
  • Aguilera, Y., Esteban, R.M., Benítez, V., Mollá, E., Martín-Cabrejas, M.A. 2009b. Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing. J. Agric. Food Chem. 57: 10682–10688.
  • Aguilera, Y., Martín-Cabrejas, M.A., Benítez, V., Mollá, E., López-Andreu, F.J., and Esteban, R.M. 2009c. Changes in carbohydrate fraction during dehydration process of common legumes. J. Food Comp. Anal. 22: 678–683.
  • Ali, F., Ippersiel, D., Lamarche, F. and Mondor, M. 2010. Characterization of low-phytate soy protein isolates produced by membrane technologies. Innovative Food Sci. Emerging Technol. 11: 162–168.
  • Almeida-Costa, G.E., Silva, K., Pissini, S.M., and Costa, A. 2006. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 94: 327330
  • Amarakoon, D., Thavarajah, D., McPhee, K., and Thavarajah, P. 2012. Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. J. Food Comp. Anal. 27: 8–13.
  • Amarowicz, R. 2009. Natural antioxidants as a subject of research. Eur. J. Lipid Sci. Technol. 111: 1053–1055.
  • Amarowicz, R., and Pegg, R.B. 2008. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110: 865–878.
  • Amarowicz, R., and Raab, B. 1997. Antioxidative activity of leguminous seed extracts evaluated by chemiluminescence methods. Z. Naturforsch. 52: 709–712.
  • Amarowicz, R., and Troszyńska, A. 2003. Antioxidant activity of extract of pea and its fractions of low molecular phenolics and tannins. Pol. J. Food Nutr. Sci. 53: 10–15.
  • Amarowicz, R., Estrela, I., Hernández, T., Dueñas, M., Troszyńka, A., Kosińska, A., and Pegg, R.B. 2009. Antioxidant activity of a red lentil extract and their fractions. Int. J. Mol. Sci. 10: 5513–5527.
  • Amarowicz, R., Estrela, I., Hernández, T., Robredo, S., Troszyńka, A., Kosińska, A., and Pegg, R.B. 2010. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 121: 705–711.
  • Amarowicz, R., Estrela, I., Hernández, T., and Troszyńka, A. 2008. Antioxidant activity of extract of adzuki bean and its fractions. J. Food Lipids 15: 119–136.
  • Amarowicz, R., Karamać, M., Kmita-Głażewska, H., Troszyńska, A., and Kozłowska, H. 1996. Antioxidant activity of phenolic fractions of everlasting pea, faba bean and broad bean. J. Food Lipids 3: 199–211.
  • Amarowicz, R., M. Karamać, M., and Chavan, U. 2001. Influence of the extraction procedure on the antioxidative activity of lentil seed extracts in a β-carotene-linoleate model system. Grasas y Aceites 52: 89–93.
  • Amarowicz, R., Karamać, M., and Shahidi, F. 2003. Antioxidant activity of phenolic fractions of lentil (Lens culinaris L.). J. Food Lipids 10: 1–10.
  • Amarowicz, R., Troszyńska, A., Baryłko-Pikielna, N., and Shahidi, F. 2004. Polyphenolics extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids 11: 278–286.
  • Amarowicz, R., Troszyńska, A., and Pegg, R.B. 2008. Antioxidative and radical scavenging effects of phenolics from Vicia sativum. Fititerapia 79: 121–122.
  • Annison, G. and Topping, D.L. 1994. Nutritional role of resistant starch: chemical structure vs. physiological function. Annu. Rev. Nutr. 14: 297–320.
  • AOAC 1995. Official Methods of Analysis, 16th edn. Washington, DC: Association of Official Analytical Chemists.
  • Ariza-Nieto, M., Blair, M.W., Welch, R.M., and Glahn, R.P. 2007. Screening of bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using Caco-2 cell in vitro model. J. Agric. Food Chem. 55: 7950–7956.
  • Arnoldi, A., Zanoni, C., Lammi, C., and Boschin, G., 2014. The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Crit. Rev. Plant Sci. 34(1–3): 142166.
  • Atwell, W.A., Hood, L.F., Lineback, D.R., Varriano-Marston, E., and Zobel, H.F. 1988. The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33: 306–311.
  • Avramenko, N.A., Low, N.H., and Nickerson M.T. 2013. The effects of limited enzymatic hydrolysis on the physicochemical and emulsifying properties of a lentil protein isolate. Food Res. Int. 51: 162–169.
  • Balistero, D.M., Rombaldi, C., and Genoves, M.I. 2013. Protein, isovlavones, tyrypsin inhibitory and in vitro antioxidant capacities: Comparison among conventional and organically grown soybeans. Food Res. Int. 51: 8–14.
  • Barbana, C. and Boye, J.I. 2010. Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. Food Res. Int. 43: 1642–1649.
  • Barbana, C. and Boye, J.I. 2011. Angiotensin I-converting enzyme inhibitory properties of enzymatic lentil protein hydrolysates: Determination of the kinetic of inhibition. Food Chem. 127: 94–101.
  • Barbana, C. and Boye, J.I. 2013. In vitro protein digestibility and physico-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris). Food Funct. 4: 310–321.
  • Barbana, C., Boye, J.I., and Boucher, A.C. 2011. In vitro binding of bile salts by lentil flours and protein concentrates and their hydrolysates. Food Res. Int. 44: 174–180.
  • Bari, M.L., Al-Haq, M.I., Kawasaki, T., Nakamura, M., Todoriki, S., Kawamoto, S., and Isshikii, K. 2004. Irradiation to kill Escherichia coli O157:H7 and Salmonella on ready-to-eat radish and mung bean sprouts. J. Food Prot. 67: 2263–2268.
  • Barroga, F.C., Laurena, A.C., and Mendoza, E.M. T. 1985. Polyphenols in mung (Vigna radiata (L.) Wiczek): determination and removal. J. Agric. Food Chem. 33: 1006–1009.
  • Bartolomé, B., I. Estrella, I., and Hernández, T. 1997. Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Z. Lebensmittel–Untersuch. Forsch. 205: 290–294.
  • Bassett, C., Boye, J., Tyler, R., and Oomah, B.D. 2010. Molecular, func­tional and processing characteristics of whole pulses and pulse fractions and their emerging food and nutraceutical applications. Food Res. Int. 43: 397–659.
  • Belmares, R., Contreras-Esquivel, J.C., Rodriguez-Herrera, R., Ramirez, A., and Aguilar, C.N. 2004. Microbial production of tannase: An enzyme with potential use in food industry. LWT Food Sci. Technol. 37: 857–864.
  • Benítez, V., Cantera, S., Aguilera, Y., Mollá, E., Esteban, R.M., Díaz, M.F., and Martín-Cabrejas, M.A. 2013. Impact of germination on starch, dietary fibre and physicochemical properties in non-conventional legumes. Food Res. Int. 50: 64–69.
  • Berger, M., Kűchler, T., Maaβen, A., Busch-Stockfisch, M., and Steinhart, H. 2007. Correlation of ingredients with sensory attributes in green beans and peas under different storage conditions. Food Chem. 103: 875–884.
  • Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordoñez, Y., and Fuertes-Blanco, S. 2004. Phytochemical characterization of lima bean (Phaseolus lunatus) and jack bean (Canavalia ensiformis) fibrous residues. Food Chem. 84: 287–295.
  • Biliaderis, C.G., Grant, D.R., and Vose, J.R. 1979. Molecular weight distribution of legume starches by gel chromatography. Cereal Chem. 56: 475–480.
  • Blair, M.W., Astudillo, C., Rengifo, J., Beebe, S.E., and Graham, R. 2011. QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor. Appl. Genet. 122: 511–21.
  • Blair, M.W., Izquierdo, P., Astudillo, C., and Grusak, M.A. 2013. A legume biofortification quandary: Variability and genetic control of seed coat micronutrient accumulation in common beans. Front. Plant Sci. 4: 1–14.
  • Blair, M.W., Medina, J.I., Astudillo, C., Rengifo, J., Beebe, S.E., Machado, G., and Graham, R. 2010. QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor. Appl. Genet. 121: 1059–1070.
  • Blandino, A., Al-Aseeri, M.E., Pandiella, S.S., Canterob, D. and Webb, C.C. 2003. Cereal-based fermented foods and beverages. Food Res. Int. 36: 527–543.
  • Bognár, A.A. 1987. Vitaminabbau bei der be- und verarbeitung von geműse. Lebensmitteltechnik 10: 541–554.
  • Bogracheva, T.Y., Morris, V.J., Ring S.G., and Hedley, C.L. 1998. The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 45: 323–332.
  • Bosscher, D., van Caillie-Bertrand, M., van Cauwenbergh, R. and Deelstra, H. 2003. Availabilities of calcium, iron, and zinc from dairy infant formulas is affected by soluble dietary fibers and modified starch fractions. Nutrition 19: 641–645.
  • Boye, J.I., and Ma, Z. 2012. Finger on the pulse. Food Sci. Technol. 26: 20–24.
  • Boye, J.I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth E.R., and Rajamohamed, S.H. 2010a. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 43: 537–546.
  • Boye, J.I., L’Hocine, L., and Rajamohamed, S.H. 2010b. Processing foods without soy ingredients. In: Allergen Management in the Food Industry. Chapter 13. pp. 355–391. Boye, J.I. and Godefroy, S.B., Eds. John Wiley & Sons Inc.
  • Boye, J.I., Roufik, S., Pesta, N., and Barbana, C. 2010c. Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci. Technol. 43: 987–991.
  • Boye, J., Wijesinha-Bettoni, R., and Burlingame, B. 2012. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Brit. J. Nutr. 108: S183–S211.
  • Boye, J., Zare, F., and Pletch, A. 2010d. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 43: 414–431.
  • Brinch-Pedersen, H., Borg, S., Tauris, B., and Holm, P.B. 2007. Molecular genetic approaches to increasing mineral availability and vitamin content in cereals. J. Cereal Sci. 46: 308–326.
  • Bugge, T.H., Antalis, T.M., and Wu, Q. 2009. Type II transmembrane serine proteases. J. Biol. Chem. 284: 23177–23181.
  • Carbonaro, M. and Nucara, A. 2010. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38: 679–690.
  • Cardador-Martínez, A., Loarca-Piña, G., and Oomah, B.D. 2002. Antioxidant activity in commoon beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 50: 6975–6980.
  • Carvalho, S.M. P., and Vasconcelos, M.W. 2013. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 54: 961–971.
  • CDC. 2013. CDC-DHDSP-Heart Disease Facts. http://www.cdc.gov/heartdisease/facts.htm (Retrieved: September 16, 2013).
  • Chau, C.F. and Cheung, P.C. K., 1999. Effects of the physico-chemical properties of three legume fibers on cholesterol absorption in hamsters. Nutr. Res. 19: 257–265.
  • Chavan, U.D., Amarowicz, R., and Shahidi, F. 1999. Antioxidant activity of phenolic fractions of beach pea (Lathyrus maritimus L.). J. Food Lipids 6: 1–11.
  • Cho, K.M., Ha, T.J., Lee, Y.B., Seo, W.D., Kim, J.Y., Ryu, H.W., Jeong, S.H., Kang, Y.M., and Lee, J.H. 2013. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods 5: 1065–1076.
  • Chun, J., Lee, J., Ye, L., Exler, J., and Eitenmiller, R.R. 2006. Tocopherol and tocotrienol content of raw and processed fruits and vegetables in the United States diet. J. Food Comp. Anal. 19: 196–204.
  • Chung, H.J. and Liu, Q. 2009. Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch. J. Food Sci. 74: C353–C361.
  • Chung, H.J. and Liu, Q. 2010. Molecular structure and physicochemical properties of potato and bean starches as affected by gamma-irradiation. Int. J. Biol. Macromol. 47: 241–222.
  • Chung, H.J., Liu, Q., Donner, E., Hoover, R., Warkentin, T.D., and Vandenberg, B. 2008a. Composition, molecular structure, properties and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chem. 85: 471–479.
  • Chung, H.J., Liu, Q., and Hoover, R. 2009. The impact of annealing and heat-moisture treatments on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr. Polym. 75: 436–447.
  • Chung, H.J., Liu, Q., and Hoover, R. 2010. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res. Int. 43: 501–508.
  • Chung, H.J., Liu, Q., Lee, L., and Wei, D. 2011. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloid. 25: 968–975.
  • Chung, H.J., Liu, Q., Pauls, K.P., Fan, M.Z., and Yada, R. 2008b. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 41: 869–875.
  • Clarke, E.J. and Wiseman, J. 2000. Developments in plant breeding for improved nutritional quality of soya beans I. Protein and amino acid content. J. Agric. Sci. 134: 111–124.
  • Clemente, A. 2000. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 11: 254–262.
  • Clemente, A. and Domoney, C. 2006. Biological significance of polymorphism in legume protease inhibitors from the Bowman-Birk family. Curr. Prot. Pep. Sci. 7: 201–216.
  • Clemente, A., Marín-Manzano, M.C., Arqués, M.C., and Domoney, C. 2013. Bowman-Birk inhibitors from legumes: utilisation in disease prevention and therapy. In: Bioactive Food Peptides in Health and Disease. pp. 23–44. Hernández-Ledesma B., and Hsieh, C.C., Eds. InTech Pub. ISBN 978-953-51-0964-8.
  • Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J., Bautista, J., and Millan, F. 1999. Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates. Food Chem. 67: 269–274.
  • Codex Committee on Nutrition and Foods for Special Dietary Uses 2009. Report on theThirty first session. FAO/WHO. Dusseldorf, Germany.
  • Colonna, P., Buleon, A., and Nercier, C. 1981. Pisum sativum and Vicia faba carbohydrates: structural studies of starches. J. Food Sci. 46: 88–93.
  • Cooke, D. and Gidley, M.J. 1992. Loss of crystalline and molecular order during starch gelatinization. Origin of the enthalpic transition. Carbohydr. Res. 227: 103–112.
  • Cox, D.N., Melo, L., Zabaras, D., and Delahunty, C.M. 2012. Acceptance of health-promoting Brassica vegetables: the influence of taste perception, information and attitudes. Public Health Nutr. 15: 1474–1482.
  • Cubero, J.I. 1994. Traditional varieties of grain legumes for human consumption. In: Neglected Crops: 1492 from a Different Perspective. pp. 289–301. Hernándo Bermejo J.E. and León J., Eds. Plant Production and Protection Series No. 26. FAO, Rome, Italy.
  • Curran, J. 2012. The nutritional value and health benefits of pulses in relation to obesity, diabetes, heart disease and cancer. Brit. J. Nutr. 108: S1–S2.
  • Dahl, W.J., Foster, L.M., and Tyler, R.T. 2012. Review of the health benefits of peas (Pisum sativum L.). Brit. J. Nut. 108: S3–S10.
  • DellaValle, D.M., Thavarajah, D., Thavarajah, P., Vandenberg, A., and Glahn, R.P. 2013. Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: Is there genetic potential for iron bioavailability? Field Crop Res. 144: 119–125.
  • Denbow, D.M., Grabau, E.A., Lacy, G.H., Kornegay, E.T.R. Russell, D.R., and Umbeck, P.F. 1998. Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci. 77: 878–881.
  • Dexter, A.F., and Middelberg, A.P. J. 2008. Peptides as functional surfactants. Ind. Eng. Chem. Res. 47: 6391–6398.
  • Diaz-Batalla, L., Widholm, J.M., Fahey, G.C., Castano-Tostado, E., and Paredes-Lopez, O. 2006. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J. Agric. Food Chem. 54: 2045–2052.
  • Doblado, R., Zielinski, H., Piskula, M., Kozlowska, H., Muñoz, R., Frías, J., and Vidal-Valverde, C. 2005. Effect of processing on the antioxidant vitamins and antioxidant capacity of Vigna sinensis var. Carilla. J. Agric. Food Chem. 53: 1215–1222.
  • Domoney, C., Knox, M., Moreau, C., Ambrose, M., Palmer, S., Smith, P., Christodoulou, V., Isaac, P.G., Hegarty, M., Blackmore, T., Swain, M., and Ellis, N. 2013. Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics. Funct. Plant Biol. 40:1261–1270.
  • Duc, G., Marget, P., Page, D., and Domoney, C. 2004. Facile breeding markers to lower contents of vicine and convicine in faba bean seeds and trypsin inhibitors in pea seeds. In: Recent Advances of Research in Antinutritional Factors in Legume Seeds and Oilseeds. pp. 281–285. Muzquiz, M., Hill, G.D., Cuadrado, C., Pedrosa, M.M., and Burbano, C., Eds. Wageningen Academic Pubs, Wageningen.
  • Dueñas, M., Estrela, I., and Hernández, T. 2004. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur. Food Res. Technol. 219: 116–123.
  • Dueñas, M., Fernández, D., Hernández, T., Estrella, I., and Munoz, R. 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14977. J. Sci. Food Agric. 85: 297–304.
  • Dueñas, M., Hernández, T., and Estrela, I. 2006. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 98: 95–103.
  • Dueñas, M., Hernández, T., and Estrela, I. 2007. Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem. 101: 90–97.
  • Dueñas, M., Hernández, T., Robredo, S., Lamparski, G., Estrella, I., and Muñoz, R. 2012. Bioactive phenolic compounds of soybean (Glycine max cv. Merit): Modifications by different microbiological fermentations. Pol. J. Food Nutr. Sci. 62: 241–250.
  • Dumont, E., Fontaine, V., Vuylsteker, C., Sellier, H., Bodèle, S., Voedts, N., Devaux, R., Frise, M., Avia, K., Hilbert, J.L., Bahrman, N., Hanocq, E., Lejeune-Hénaut, I., and Delbreil B. 2009. Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor. Appl. Genet. 118: 1561–1571.
  • Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77: 67–82.
  • Dwivedi, S.L., Sahrawat, K.L., Rai, K.N., Blair, M.W., Andersson, M., and Pfieffer, W. 2012. Nutritionally enhanced staple food crops. Plant Breed. Rev. 34: 169–262.
  • Editorial. 2006. Genetically modified mush. Nature Biotech. 24
  • Eliasson, A.C. 1996. Carbohydrates in Food. Marcel Dekker, Inc., New York, NY.
  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., and Attia, H. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 124: 411–421.
  • Englyst, H.N., Kingman, S.M., and Cummings, J.H. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33–S50.
  • Englyst, K.N., Vinoy, S., Englyst, H.N., and Lang, V. 2003. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Brit. J. Nutr. 89: 329–339.
  • Esteban, R.M., Mollá, E., Valiente, C., Jaime, L., López-Andréu, F.J., and Martín-Cabrejas, M.A. 1998. Dietary fibre: Chemical and physiological aspects. Recent Res. Devel. Agric. Food Chem. 2: 293–308.
  • FAO. 2009. http://faostat.fao.org.
  • FAO. 2011. http://faostat.fao.org.
  • FAO. 2012. http://faostat.fao.org.
  • FAO. 2013. Dietary Protein Quality Evaluation in Human Nutrition. FAO Food and Nutrition Paper 92, FAO, Rome, 2013.
  • Farooq, Z. and Boye, J.I. 2011. Novel food and industrial applications in pulse flours and fractions. In: Pulse Foods: Processing, Quality and Nutraceutical Applications. pp. 283–324. Tiwari, B.K., Gowen, A., and McKenna, B., Eds. Elsevier.
  • Favaro-Trindade, C.S., Santana, A.S., Monterrey-Quintero, E.S., Trindade, M.A., and Netto, F.M. 2010. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloid. 24: 336–340.
  • Favell, D.J. 1998. A composition of the vitamin C content of fresh and deep-frozen vegetables. Food Chem. 62: 59–64.
  • Fernandez-Orozco, R., Frias, J., Zielinski, H., Piskula, M.K., Kozlowska, H., and Vidal-Valverde, C. 2008. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emerald, Glycine cv. Jutro and Glycine max. cv. Merit. Food Chem. 111: 622–630.
  • Fernandez-Orozco, R., Zieliński, H., and Piskuła, M.K. 2003. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung – Food 47: 291–299.
  • FSANZ. 2010. Review of the Regulatory Management of Food Allergens. http://www.foodstandards.gov.au/consumer/foodallergies/review/documents/Review of the Regulatory Management of Food Allergens-FSANZ Dec 2010.doc (Retrieved: September 17, 2013).
  • Ferreira, J.G., Reis, A.P., Guimarães, V.M., Falkoski, D.L., da Silva Fialho, L., and de Rezende, S. 2011. Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides. Appl. Biochem. Biotechnol. 164: 1111–1125.
  • FitzGerald, R.J. and O’Cuinn, G. 2006. Enzymatic debittering of food protein hydrolysates. Biotechnol. Adv. 24: 234–237.
  • Gaur, V., Qureshi, I.A., Singh, A., Chanana, V., and Salunke, D.M. 2010. Crystal structure and functional insights of hemopexin fold protein from grass pea. Plant Physiol. 152: 1842–1850.
  • Getahun, H., Lambein, F., and Vanhoorne, M. 2002. Neurolathyrism in Ethiopia: assessment and comparison of knowledge and attitude of health workers and rural inhabitants. Social Sci. Med. 54: 1513–1524.
  • Getahun, H., Lambein, F., Vanhoorne, M., and Van der Stuyft, P. 2003. Food-aid cereals to reduce neurolathyrism related to grass-pea preparations during famine. The Lancet 362: 1808–1810.
  • Getahun, H., Lambein, F., Vanhoorne, M., and Van der Stuyft, P. 2005. Neurolathyrism risk depends on type of grass pea preparation and on mixing with cereals and antioxidants. Trop. Med. Int. Health 10: 169–178.
  • Gerrard, J.A., Brown, P.K., and Fayle, S.E. 2003. Maillard crosslinking of food proteins II: the reaction of glutaraldehyde, formaldehyde and glyceraldehyde with wheat proteins in vitro and in situ. Food Chem. 80: 35–43.
  • Ghavidel, A. and Prakash, J. 2007. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT- Food Sci. Tech. 40: 1292–1299.
  • Gilani, G.S., Xiao, C.W., and Cockell, K.A. 2012. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Brit. J. Nutr. 108: S315–S332.
  • Girma, D. and Korbu, L. 2012. Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: an unfulfilled promise. Plant Breeding 131: 231–236.
  • Goñi, I., Díaz-Rubio, M.E., Pérez-Jiménez, J., and Saura-Calixto, F. 2009. Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res. Int. 42: 840–846.
  • Górecka, D., Lampart-Szczapa, E., Janitz, W., and Sokolowska, B. 2000. Composition of fractional and functional properties of dietary fiber of lupines (L. luteus and L. albus). Nahrung 44: 229–232.
  • Grela, E.R. and Günter, K.D. 1995. Fatty acid composition and tocopherol content of some legume seeds. Animal Feed Sci. Technol. 52: 325–331.
  • Guillon, F. and Champ, M.M. J. 2002. Carbohydrate fractions of legumes: Uses in human nutrition and potential for health. Brit. J. Nutr. 88: 293–306.
  • Gujral, H.S., Sharma, P., Gupta, N., and Wani, A.A. 2013. Antioxidant properties of legumes and their morphological fractions as affected by cooking. Food Sci. Biotechnol. 22: 187–194.
  • Gutierrez, N., Duc, G., Marget, P., Avila, C.M., Suso, M.J., Cubero, J.I., Moreno, M.T., and Torres, A.M. 2004. Identification of molecular markers tightly linked to low tannin and vicine-convicine content in faba beans. In: Recent Advances of Research in Antinutritional Factors in Legume Seeds and Oilseeds. pp. 287–290. Muzquiz, M., Hill, G.D., Cuadrado, C., Pedrosa, M.M., and Burbano, C., Eds. Wageningen Academic Pubs, Wageningen.
  • Halvorsen, B.L., Holte, K., Myhrstad, M.C. W., Barikmo, I., Hvattum, E., Remberg, S.F., World, A.-B., Haffner, K., Baugerød, H., Andersen, L.F., Moskaug, J.Ø., Jacobs Jr., D.R., and Blopmhoff, R. 2002. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461–471.
  • Han, H. and Baik, B.K. 2008. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. Int. J. Food Sci. Technol. 43: 1971–1978.
  • Hanashiro, I., Abe, J., and Hizukuri, S. 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr. Res. 283: 151–159.
  • Hedley, C.L. 2001. Carbohydrates in Grain Legume Seeds: Improving Nutritional Quality and Agronomic Characteristics. CABI Publishing, Oxford, UK.
  • Heimler, D., Vignolini, P., Dini, M.G., and Romani, A. 2005. Rapid test to assess the antioxidant activity of Phaseolus vulgaris L. dry bean. J. Agric. Food Chem. 53: 3053–3056.
  • Heng, L., van Koningsveld, G.A., Gruppen H., van Boekel, M.A. J. S., Vinckeny, J.P., Roozeny, J.P., and Voragen, A.G. J. 2004. Protein–flavour interactions in relation to development of novel protein foods. Trends Food Sci. & Technol. 15: 217–224.
  • Hernandéz-Hernandéz, O., Mar'in-Manzano, M.C., Rubio, L.A., Moreno, F.J., Luz Sanz, M. and Clemente, A. 2012. Monomer and linkage type of galacto-oligosaccharides affect their resistance to ileal digestion and prebiotic properties in rats. J. Nutr. 142: 1232–1239.
  • Hernández-Ledesma, B., Hsieh, C.C., and de Lumen, B.O. 2009. Lunasin, a novel seed peptide for cancer prevention. Peptides 30: 426–430.
  • Hirschi, K.D. 2009. Nutrient biofortification of food crops. Annu. Rev. Nutr. 29: 401–421.
  • Hizukuri, S. 1986. Polymodal distribution of the chain lengths of amylopectins and its significance. Carbohydr. Res. 147: 342–346.
  • Hoover, R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym. 45: 253–267.
  • Hoover, R. and Ratnayake, W.S. 2002. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 78: 489–498.
  • Hoover, R. and Sosulski, F.W. 1985. Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Starch/Starke 37: 181–191.
  • Hoover, R. and Sosulski, F.W. 1991. Composition, structure, functionality and chemical modification of legume starches—a review. Can. J. Physiol. Pharmacol. 69: 79–92.
  • Hoover, R. and Zhou, Y. 2003. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes- a review. Carbohydr. Polym. 54: 401–417.
  • Hoover, R., Hughes, T., Chung, H.J., and Liu, Q. 2010. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 43: 399–413.
  • Hossain, S., Panozzo, J., Pittock, C., and Ford, R. 2011. Quantitative trait loci analysis of seed coat color components for selective breeding in chickpea (Cicer arietinum L.). Can J. Plant Sci. 91: 49–55.
  • Huang, S.C., Lia, T.S., Cheng, T.C., Chan, H.Y., Hwang, S.M., and Hwang, D.F. 2009. In vitro interactions on glucose by different fiber materials prepared from mung bean hulls, rice bran and lemon pomace. J. Food Drug Anal. 17: 307–314.
  • Humiski, L.M. and Aluko, R.E. 2007. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. J. Food Sci. 72: S607–S611.
  • Islam, N., Campbell, P.M., Higgins, T.J. V., Hirano, H., and Akhurst, R.J. (2009) Transgenic peas expressing an α -amylase inhibitor gene from beans show altered expression and modification of endogenous proteins. Electrophoresis 30: 1863–1868.
  • Jenkins, D.J. A., Kendall, C.W. C., Ransom, T.P. P. 1998. Dietary fiber, the evolution of the human diet and coronary heart disease. Nutr. Res. 18: 633–652.
  • Jenkins, D.J. A., Wolever, T.M. S., Taylor, R.H., Barker, H., and Fielen, H. 1980. Exceptionally low blood glucose responses to dried beans, comparison with other carbohydrate foods. Brit. Med. J. 281: 578–580.
  • Jenkins, D.J. A., Wolever, T.M. S., Taylor, R.H., Griffiths, C., Kizeminska, K., Lawrie, J.A., Bennett, C.M., Goff, D.V., Sarson, D.L., and Bloom, S.R. 1982. Slow release dietary carbohydrate improves second meal tolerance. Am. J. Clin. Nutr. 35: 1339–1346.
  • Jiao, C.J., Jiang, J.L., Ke, L.M., Cheng, W., Li, F.M., Li, Z.X., and Wang, Z.Y. 2011. Factors affecting β–ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem. Toxicol. 49: 543–549.
  • Jiménez-Martínez, C., Hernández-Sánchez, H., and Dávila-Ortiz, G. 2007. Diminution of quinolizidine alkaloids, oligosaccharides and phenolic compounds from two species of Lupinus and soybean seeds by the effect of Rhizopus oligosporus. J. Sci. Food Agric. 87: 1315–1322.
  • Kahlon, T.S. and Woodruff, C.L. 2002. In vitro binding of bile acids by soy protein, pinto beans, black beans and wheat gluten. Food Chem. 79: 425–429.
  • Karamać, M., Amarowicz, R., Weidner, S., and Shahidi, F. 2004. Antioxidant activity of phenolic fractions of white bean (Phaseolus vulgaris). J. Food Lipids 11: 165–177.
  • Kaur, M. and Singh, N. 2007. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem. 102: 366–374.
  • Khattab, R.Y. and Arntfield, S.D. 2009. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Sci. Technol. 42: 1113–1118.
  • Kim, E.H., Ro, H.M., Kim, S.L., Kim, H.S., and Chung, I.M. 2012. Analysis of isovlavone, phenolic, soyasapogenol, and tocopherol cpmpounds in soybean [Glycine max (L.) Merrill] germplasms of different seed weights and origins. J. Agric. Food Chem. 60: 6045–6055.
  • Klein, M.A. and Grusak, M.A. 2009. Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome 52: 677–691.
  • Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., and Schoessler, K. 2011. Emerging technologies in food processing. Annu. Rev. Food Sci. Technol. 2: 203–235.
  • Korus, A., Lisiewska, Z., and Kmiecik, W. 2002. Effect of freezing and canning on the content of selected vitamins and pigments in seed of two grass pea (Lathyrus sativus L.) cultivars at the not fully mature stage. Nahrung-Food 46: 233–237.
  • Krishnan, H.B., Jang, S., Kim, W.S., Kerley, M.S., Oliver, M.J., and Trick, H.N. 2011. Biofortification of soybean meal: Immunological properties of the 27 kDa γ–zein. J. Agric. Food Chem. 59: 1223–1228.
  • Kumar, S., Bejiga, G., Ahmed, S., Nakkoul, H., and Sarker, A. 2011. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem. Toxicol. 49: 589–600.
  • Kumar, C.S., Subramanian, R., and Rao, L.J. 2013. Application of enzymes in the production of RTD black tea beverages: A Review. Crit. Rev. Food Sci. Nutr. 53: 180–197.
  • Kuo, Y.H., Bau, H.M., Rozan, P., Chowdhury, B., and Lambein, F. 2000. Reduction efficiency of the neurotoxin beta-ODAP in low-toxin varieties of Lathyrus sativus seeds by solid state fermentation with Aspergillus oryzae and Rhizopus microsporus var chinensis. J. Sci. Food Agric. 80: 2209–2215.
  • Kutos, T., Golob, T., Kac, M., and Plestenjak, A. 2003. Dietary content of dry and processed beans. Food Chem. 80: 231–235.
  • Lambein, F. and Kuo, Y.H. 2009. Lathyrism. Grain Legumes 54: 8–9.
  • Lehesranta, S.J., Davies, H.V., Shepherd, L.V. T., Nunan, N., McNicol, J.W., Auriola, S., Koistinen, K.M., Suomalainen, S., Kokko H.I., and Kärenlampi, S.O. 2005. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 138: 1690–1699.
  • Lehmann, U. and Robin, F. 2007. Slowly digestible starch-its structure and health implications: a review. Trends Food Sci. Tech. 18: 46–355.
  • Lekha, P. and Lonsane, K. 1997. Production and application of tannin acyl hydrolase: State of the art. Adv. Appl. Microbiol. 44: 215–260.
  • Li, Z., Meyer, S., Essig, J.S., Liu, Y., Schapaugh, M.A., Muthukrishnan, S., Hainline, B.E., and Trick, H.N. 2005. High-level expression of maize-zein protein in transgenic soybean (Glycine max). Mol. Breeding 16: 11–20.
  • Linde, G.A., Junior, A.L., Vaz de Faria, E., Colauto, N.B., de Moraes, F.F., and Zanin, G.M. 2009. Taste modification of amino acids and protein hydrolysate by α-cyclodextrin. Food Res. Int. 42: 814–818.
  • Lineback, D.R. and Ke, C.H. 1975. Starches and low molecular weight carbohydrates from chickpea and horse gram flours. Cereal Chem. 52: 334–347.
  • Livingstone, D., Beilinson, V., Kalyaeva, M., Schmidt, M.A., Herman, E.M., and Nielsen, N.C. 2007. Reduction of protease inhibitor activity by expression of a mutant Bowman-Birk gene in soybean seed. Plant Mol. Biol. 64: 397–408.
  • López, A., El-Naggar, T., Dueñas, M., Ortega, T., Estrella, I., Hernández, t., Gómez-Serranillos, O.M., and Carretero, M.E. 2013. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 138: 547–555.
  • López-Amorós, M.L., Hernández, T., and Estrela, I. 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal. 19: 277–283.
  • Louis, S., Delobel, B., Gressent, F., Duport, G., Diol, O., Rahioui, I., Charles, H., and Rahbe, Y. 2007. Broad screening of the legume family for variability in seed insecticidal activities and for the occurrence of the A1b-like knottin peptide entomotoxins. Phytochemistry 68: 521–535.
  • Louis, S., Delobel, B., Gressent, F., Rahioui, I., Quillien, L., Vallier, A., and Rahbé, Y. 2004. Molecular and biological screening for insect-toxic seed albumins from four legume species. Plant Sci. 167: 705–714.
  • Madhujith, T. and Shahidi, F. 2005. Antioxidant potential of pea beans (Phaseolus vulgaris L.). J. Food Sci. 70: S85–S90.
  • Madhujith, T., Amarowicz, R., and Shahidi, F. 2004a. Phenolic antioxidants in beans and their effects on inhibition of radical-induced DNA damage. J. Am. Oil.Chem. Soc. 81: 691–696.
  • Madhujith, T., Naczk, M., and Shahidi, F. 2004b. Antioxidant activity of common beans (Phaseolus vulgaris L.). J. Food Lipids 11: 220–233.
  • Mahadevamma, S. and Tharanathan, R.N. 2004. Processing of legumes: resistant starch and dietary fiber contents. J. Food Qual. 27: 289–303.
  • Mahasukhonthachat, K., Sopade, P.A., and Gidley, M.J. 2010. Kinetics of starch digestion in sorghum as affected by particle size. J. Food Eng. 96: 18–28.
  • Marconi, E., Ruggeri, S., Cappelloni, M., Leonardi, D., and Carnovale, E. 2000. Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking. J. Agric. Food Chem. 48: 5986–5994.
  • Marlett, J.A., McBurney, M.I., and Slavin, J.L. 2002. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 102: 993–1000.
  • Martin, J.A., Compaired, J.A., de la Hoz, B., Quirce, S., Alonso, M.D., Igea, J.M., and Losada, E. 1992. Bronchial asthma induced by chick pea and lentil. Allergy 47: 185–187.
  • Martín-Cabrejas, M.A., Aguilera, Y., Benítez, V., Mollá, E., López-Andréu, F.J., and Esteban, R.M. 2006. Effect of industrial dehydration on the soluble carbohydrates and dietary fibre fractions in legumes. J. Agric. Food Chem. 54: 7652–7657.
  • Martín-Cabrejas, M.A., Aguilera, Y., Pedrosa, M.M., Cuadrado, C., Hernandez, T., Diaz, S., and Esteban, R.M. 2009. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chem. 114: 1063–1068.
  • Martín-Cabrejas, M.A., Ariza, N., Esteban, R., Mollá, E., Waldron, K., and López-Andréu, F.J., 2003. Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). J. Agric Food.Chem. 51: 1254–1259.
  • Martín-Cabrejas, M.A., Díaz, M.F., Aguilera, Y., Benítez, V., Mollá, E., and Esteban, R.M. 2008. Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes. Food Chem. 107: 1045–1052.
  • Martín-Cabrejas, M.A., Jaime, L., Karanja, C., Downie, A.J., Parker, M.L., López-Andreu, F.J., Maina, G., Esteban, R.M., Smith, A., and Waldron, K. 1999. Modifications to physicochemical and nutritional properties of hard-to-cook beans (Phaseolus vulgaris L.) by extrusion cooking. J. Agric. Food Chem. 47: 1174–1182.
  • Martín-Cabrejas, M.A., Sanfiz, B., Vidal, A., Molla, E., Esteban, R.M., and López-Andréu, F.J. 2004. Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 52: 261–266.
  • Mayer, J.E., Pfeiffer, W.H., and Bouis, P. 2008. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 11: 166–170.
  • McErlain, L., Marson, H., Ainsworth, P., and Burnett, S.A. 2001. Ascorbic acid loss in vegetables: adequacy of a hospital cook-chill system. Int. J. Food Sci. Nutr. 52: 205–211.
  • Miao, M., Zhang, T., and Jiang, B. 2009. Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chem. 113: 1025–1032.
  • Mondor, M., Aksay, S., Drolet, H., Roufik, S., Farnworth, E., and Boye, J.I. 2009. Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innov. Food Sci. Emerg. Technol. 10: 342–347.
  • Monsoor, M.A. and Yusuf, H.K. M. 2002. In vitro protein digestibility of lathyrus pea (Lathyrus sativus), lentil (Lens culinaris) and chickpea (Cicer arietunum). Int. J. Food Sci. Technol. 37: 97–99.
  • Morita, T., Kasaoka, S., Hase, K., and Kiriyama, S. 1999. Psyllium shifts the fermentation site of high-amylose corn starch toward the distal colon and increases fecal butyrate concentration in rats. J. Nutr. 129: 2081–2087.
  • Moriyama, M. and Oba, K.M. 2008. Comparative study on the vitamin C contents of the food legume seeds. J. Nutr. Sci. Vitaminol. 54: 1–6.
  • Morton, R.L., Schroeder, H.E., Bateman, K.S., Chrispeels, M.J., Armstrong, E., and Higgins, T.J. V. 2000. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc. Natl. Acad. Sci. USA 97: 3820–3825.
  • Muralami, H., Asakawa, T., Terao, J., and Matushita, S. 1984. Antioxidative stability of tempeh and liberation of isoflavons by fermentation. J. Agric. Biol. Chem. 45: 2971–2975.
  • Muzquiz, M., Hill, G.D., Cuadrado, C., Pedrosa, M.M., and Burbano, C. 2004. Recent Advances of Research in Antinutritional Factors in Legume Seeds and Oilseeds. Wageningen Academic Pubs, Wageningen.
  • Nair, R.M., Yang, R.Y., Easdown, W.J., Thavarajah, D., Thavarajah, P., d’A Hughes, J., and Keating, J.D. H. 2013. Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J. Sci. Food Agric. 93: 1805–1813.
  • Nalle, C.L., Ravindran, G., and Ravindran, V. 2010. Influence of dehulling on the apparent metabolisable energy and ileal amino acid digestibility of grain legumes for broilers. J. Sci. Food Agric. 90: 1227–1231.
  • Nilsson, J., Stegmark, R., and Åkessen, B. 2004. Total antioxidant capacity in different pea (Pisum sativum) varieties after blanching and freezing. Food Chem. 86: 501–507.
  • Nithiyanantham, S., Selvakumar, S., and Siddhuraju, P. 2012. Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L. J. Food Comp. Anal. 27: 52–60.
  • Onyeneho, S.N. and Hettiarachchy, N.S. 1991. Effect of navy bean hull extract on the oxidative stability of soy and sunflower oils. J. Agric. Food Chem. 39: 1701–1704.
  • Öste, R.E., Dahlqvist, A., Sjöström, H., Norén, O., and Miller, R. 1986. Effect of Maillard reaction products on protein digestion. In vitro studies. J. Agric. Food Chem. 34: 355–358.
  • Page, D., Aubert, G., Duc, G., Welham, T., and Domoney, C. 2002. Combinatorial variation in coding and promoter sequences of genes at the Tri locus in Pisum sativum accounts for variation in trypsin inhibitor activity in seeds. Mol. Genet. Genomics 267: 359–369.
  • Pelgrom, P.J. M., Vissers, A.M., Boom, R.M., and Schutyser, M.A. I. 2013. Dry fractionation for production of functional pea protein concentrates. Food Res. Int. 53: 232–239.
  • Pen, J., Verwoerd, T.C., van Paridin, P.A., Beukeder, R.F., van der Elzen, P.J. M., Geerse, K., van der Klis, J.D., Versteegh, H.A., van Ooyen, A.J., and Hoekema, A. 1993. Phytase-containing transgenic seed as a novel feed additive for improved improved phosphorus utilization. Bio/Technology 11: 811–814.
  • Peterbauer, T. and Richter, A. 2001. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 11: 185–197.
  • Phillips, G.O. 2013. Dietary fibre: A chemical category or a health ingredient? Bioact. Carbohyd. Diet. Fibre 1: 3–9.
  • Plans, M., Simó, J., Casañas, F., and Sabaté, J. 2012. Near-infrared spectroscopy analysis of seed oat of common beans (Phaseolus vulgaris L.): A potential tool for breeding and quality evaluation. J. Agric. Food Chem. 60: 706–712.
  • Plaza, L., De Ancos, B., and Cano, P. 2003. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum L.) and alfalfa (Medicago sativa) treated by a new drying method. Eur. Food Res. Technol. 216: 138–144.
  • Poblaciones, M.J., Rodrigo, S.M., and Santamaría, O. 2013. Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol. Trace Elem. Res. 151: 132–137.
  • Price, K.R., Colquhoum, I.J., Barnes, K.A., and Phodes, J.C. 1998. Composition and content of flavonol glycosides in green beans and their fate during processing. J. Agric. Food Chem. 46: 2686–2693.
  • Proteggente, A.R., Pannala, A.S., Paganga, G., Van Buren, L., Wagner, E., Wisman, S., Van de Put, F., and Dacombe, C. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Rad. Res. 36: 217–233.
  • Pulse Canada. 2011. Protein Quality of Cooked Pulses (PDCAAS Method). http://www.pulsecanada.com/food-and-nutrition/fact-sheets/protein-quality-of-cooked-pulses. (Retrieved: September 16, 2013).
  • Radcliffe, M., Scadding, G., and Brown, H.M. 2005. Lupin flour anaphylaxis. The Lancet 365: 1360.
  • Rajamohamed, S.H. and Boye, J.I. 2010. Processing foods without peanuts and tree nuts. In: Allergen Management in the Food Industry. Chapter 11. pp. 289–331. Boye, J.I. and Godefroy, S.B., Eds. John Wiley & Sons, Inc.
  • Rao, S.L. N. 2011. A look at the brighter facets of β-N-oxalyl-L-α,β-diaminopropionic acid, homoarginine and the grass pea. Food Chem. Toxicol. 49: 620–622.
  • Rao, S.L. N., Adiga, P.R., and Sarma, P.S. 1964. The isolation and characterization of β-N-oxalyl-L-α,β,-diaminopropionic acid: a neurotoxin from the seeds of Lathyrus sativus. Biochemistry 3: 432–436.
  • Ring, S.G., Gee, J.M., Whittam, M., Orford, P., and Johnson, I.T. 1988. Resistant starch: Its chemical form in food stuffs and effects on digestibility in vitro. Food Chem. 28: 97–109.
  • Rizkalla, S.W., Bellisle, F., and Slama, G. 2002. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and health individuals. Brit. J. Nutr. 88: S255–S262.
  • Roberts, S.B. 2000. High-glycemic index foods, hunger, and obesity: Is there a connection? Nutr. Rev. 58: 163–169.
  • Rocha-Guzmán, N.E., Herzog, A., Rubén, G.L. R., Ibarra-Pérez, F.J., Zambrano-Galván, G., and Gallegos-Infante, J.A. 2007. Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris). Food Chem. 103: 521–527.
  • Rubiales, D. and Mikic, A. 2014. Introduction: Legumes in sustainable agriculture. Crit. Rev. Plant Sci. 34(1–3): 23.
  • Rui, X., Boye, J.I. Barbana, C., Simpson, B.K., and Prasher, S.O. 2012. Electrophoretic profiles and angiotensin I-converting enzyme inhibitory activities of nine varieties of Phaseolus vulgaris protein hydrolysates. J. Nutr. Food Sci. 2: 1000156.
  • Rumiyati, James, A.P., and Jayasena, V. 2012. Effect of germination on the nutritional and protein profile of Australian sweet lupin (Lupinus angustifolius L.). Food Nutr. Sci. 3: 621–626.
  • Ryan, E., Galvin, K., O’Connor, T.P., Maguire, A.R., and O’Brien, N.M. 2007. Phytosterol, squalene, tocpherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 62: 85–91.
  • Saalbach, I., Waddell, D., Pickardt, T., Schieder, O., and Muntz, K. 1995. Stable expression of the sulfur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seeds. J. Plant Physiol. 145: 674–681.
  • Saha, B.C. and Hayashi, K. 2001. Debittering of protein hydrolyzates. Biotechnol. Adv. 19: 355–370.
  • Sajilata, M.G., Singhal, R.S., and Kulkarni, P.R. 2006. Resistant starch-A review. Compr. Rev. Food Sci. Food Safety 5: 1–17.
  • Sanchez-Monge, R., Lopez-Torrejón, G., Pascual, C.Y., Varela, J., Martin-Esteban, M., and Salcedo, G. 2004. Vicilin and convicilin are potential major allergens from pea. Clin. Exp. Allergy 34: 1747–1753.
  • Sandhu, K.S. and Lim, S.T. 2008. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr. Polym. 71: 245–252.
  • Sankaran, R.P., Huguet, T., and Grusak, M.A. 2009. Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor. Appl. Genet. 119: 241–253.
  • Sathe, S.K., Rangnekar, P.D., Deshpande, S.S. and Salunkhe, D.K. 1982. Isolation and partial characterization of black gram (Phaseolus mungo L) starch. J. Food Sci. 47: 1524–1538.
  • Sattar, A., Atta, S., Akhtar, M.A., Wahid, M., and Ahmad, B. 1991. Biosynthesis of ascorbic acid and riboflavin in radiated germinating chickpea. Int. J. Vitam. Nutr. Res. 61: 149–154.
  • Schwenke, K.D. 2001. Reflections about the functional potential of legume proteins. Die Nahrung 45: 377–381.
  • Serpen, A., Gőkmen, K.S., Bahçeci, J., and Acar, J. 2007. Reversible degradation kinetics of vitamin C in peas during frozen storage. Eur. Food Res. Technol. 224: 749–753.
  • Shahidi, F. and Zhong, F. 2010. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipids Sci. Technol. 112: 930–940.
  • Shahidi, F., Chavan, U.D., Naczk, M., and Amarowicz, R. 2001. Nutrient distribution and phenolic antioxidants in air-classified fractions of beach pea (Lathyrus maritimus L.). J. Agric. Food Chem. 49: 926–933.
  • Shewry, P.R. and Lucas, J.A. 1997. Plant proteins that confer resistance to pests and pathogens. Adv. Bot. Res. 26: 135–192.
  • Shohag, M.J. L., Wei, Y., and Yang, X. 2012. Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. J. Agric. Food Chem. 60: 9137–9143.
  • Siddhuraju, P. and Becker, K. 2007. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chem. 101: 10–19.
  • Singh, N., Kaur, S., Isono, N., Ichihashi, Y., Noda, T., Kaur, A., and Rana, J. 2012. Diversity in characteristics of starch amongst rice bean (Vigna umbellata) germplasm: Amylopectin structure, granule size distribution, thermal and rheology. Food Res. Int. 46: 194–200.
  • Singh, N., Kaur, N., Sandhu, K.S., and Guraya, H.S. 2004. Physicochemical, thermal, morphological and pasting properties of starches from some Indian black gram (Phaseolus mungo L.) cultivars. Starch/Starke 56: 535–544.
  • Singh, N., Nakaura, Y., Inouchi, N., and Nishinari, K. 2008. Structure and viscoelastic properties of starches separated from different legumes. Starch/Starke 60: 349–357.
  • Sompong, U., Kaewprasit C., Nakasathien, S., and Srinives, P. 2010. Inheritance of seed phytate in mungbean (Vigna radiata (L.) Wilczek). Euphytica 171: 389–396.
  • Sosulski, F.W. and Dąbrowski, K.J. 1984. Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J. Agric. Food Chem. 32: 131–133.
  • Sowndhararajan, K., Siddhuraju, P., and Manian, S. 2011. Antioxidant activity of differentially processed seeds of jack bean (Canavalia ensiformis L. DC). Food Sci. Biotechnol. 20: 585–591.
  • Sreerama, Y., Sashikala, V., and Pratape, V. 2010. Variabillity in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: Evaluation of their antioxidant properties. J. Agric. Food Chem. 58: 8322–8330.
  • Sreerama, Y.N., Takahashi, Y., and Yamaki, K. 2012. Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. J. Food Sci. 77: C927–C933.
  • Srichuwong, S. and Jane, J. 2007. Physicochemical properties of starch affected by molecular composition and structure: A review. Food Sci. Biotech. 16: 663–674.
  • Stevenson, D.E., Ofman, D.J., Morgan, K.R., and Stanley, R.A. 1998. Protease-catalyzed condensation of peptides as a potential means to reduce the bitter taste of hydrophobic peptides found in protein hydrolysates. Enzyme Microb. Tech. 22: 100–110.
  • Sulieman, M.A., Hassan, A.B., Gamaa, A.O., El Tyeb, M.M., El Khalil, E.A. I., El Tinay, A.H., and Babiker, E.E. 2008. Changes in true protein digestibility, fractions content and structure during cooking of lentil cultivars. Pakistan J. Nutri. 7: 801–805.
  • Szejtli, J. and Szente L. 2005. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61: 115–125.
  • Tabe, L.M. and Droux, M. 2002. Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 128: 1137–1148.
  • Takada, Y., Sayama, T., Kikuchi, A., Kato, S., Tatsuzaki, N., Nakamoto, Y., Suzuki, A., Tsukamoto, C. and Ishimoto, M. 2010. Genetic analysis of variation in sugar chain composition at the C-22 position of group A saponins in soybean, Glycine max (L.) Merrill. Breeding Sci. 60: 3–8.
  • Tako, E. and Glahn, R.P. 2011. White beans provide more bioavailable iron than red beans: Studies in poultry (Gallus gallus) and in vitro digestion/Caco-2 model. Int. J. Vit. Nutr. Res. 81: 42–48.
  • Tako, E., Blair, M.W., and Glahn, R.P. 2011. Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: Studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Nutr. J. 10: 113.
  • Tako, E., Laparra, M., Glahn, R.P., Welch, R.M., Lei, X., Beebe, S., and Miller, D. 2009. Biofortified black beans in a maize and bean diet provide more bioavailable iron to piglets than standard black beans. J. Nutr. 139: 305–309.
  • Tester, R.F. 1997. Influence of growth conditions on barley starch properties. Int. J. Biol. Macromol. 21: 37–45.
  • Tester, R.F. and Morrison, W.R. 1990. Swelling and gelatinization of cereal starches I. Effects of amylopectin, amylose and lipids. Cereal Chem. 67: 551–559.
  • Tester, R.F., Karkalas, J., and Qi, X. 2004. Starch-composition, fine structure and architecture. J. Cereal Sci. 39: 151–165.
  • Tharanathan, R.N. and Mahadevamma, S. 2003. Grain legumes- a boon to human nutrition. Trends Food Sci. Tech. 14: 507–518.
  • Thavarajah, D. and Thavarajah, P. 2012. Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: Biofortification opportunities to combat global micronutrient malnutrition. Food Res. Int. 49: 99–104.
  • Thavarajah, D., Ruszkowski, J., and Vandenberg, A. 2008. High potential for selenium biofortification of lentils (Lens culinaris L.). J. Agric. Food Chem. 56: 10747–10753.
  • Thavarajah, D., Thavarajah, P., Sarker, A., and Vandenberg, A. 2009. Lentils (Lens culinaris Medikus subspecies culinaris): a whole food for increased iron and zinc intake. J. Agric. Food Chem. 57: 5413–5419.
  • Thavarajah, D., Warkentin, T., and Vandenberg, A. 2010. Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.). Can. J. Plant Sci. 90: 383–389.
  • Thomas, D.J. and Atwell, W.A. 1999. Starches. Eagan Press, St. Paul, MN.
  • Tinus, T., Damour, M., van Riel, V., and Sopade, P.A. 2012. Particle size-starch-protein digestibility relationships in cowpea (Vigna unguiculata). J. Food Eng. 113: 254–264.
  • Tiwari, U. and Cummins, E. 2011. Functional and physicochemical properties of legume fibers. In: Pulse Foods: Processing, Quality and Nutraceutical Applications. pp. 121–156. Tiwari, B.K., Gowen, A., and McKenna, B., Eds. Elsevier, Amsterdam.
  • Tiwari, B. and Singh, N. 2012. Pulse Chemistry and Technology. RSC Publishing, Cambridge, UK.
  • Tomasik, P. and Horton, D. 2012. Enzymatic conversions of starch. Adv. Carbohyd. Chem. Bi. 68: 59–436.
  • Torres, A., Frias, J., Granito, M., and Vidal-Valverde, C. 2006. Fermented pigeon pea (Cajanus cajan) ingredients in pasta product. J. Agric. Food Chem. 54: 6685–6691.
  • Torres, A., Frias, J., Granito, M., and Vidal-Valverde, C. 2009. Germinated Cajanus cajan seeds as ingredients in pasta products: chemical, biological and sensory evaluation. Food Chem. 101: 202–211.
  • Tosh, S.M. and Yada S. 2010. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 43: 450–460.
  • Tsuda, T., Osawa, S., Nakayama, S., Kawakishi, K., and Ohshima, K. 1993. Antioxidant activity of pea bean (Phaseolus vulgaris L.) extract. J. Am. Oil Chem. Soc. 70: 910–913.
  • Turkmen, N., Sari, F., and Velioglu, S. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93: 713–718.
  • Vandecasteele, C., Teulat-Merah, B., Morère-Le Paven, M.C., Leprince, O., Vu, B.L., Viau, L., Ledroit, L., Pelletier, S., Payet, N., Satour, P., Lebras, C., Gallardo, K., Huguet, T., Limami, A.M., Prosperi, J.M., and Buitink, J. 2011. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. Plant Cell Env. 34: 1473–1487.
  • van den Ende, W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 4: 247.
  • Vanderslice, J.T., Higgs, D.J., Hayes, J.M., and Block, G. 1990. Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. J. Food Comp. Anal. 3: 105–118.
  • van Rhijn, P., Fujishige, N.A., Lim, P.O., and Hirsch, A.M. 2001. Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol. 126: 133–144.
  • van Soest, J.J. G., Tournois, H., de Wit, D., and Vliegenthart, J.F. G. 1995. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 279: 201–214.
  • Varsheney, R.K., Glaszmann, J.C., Leung, H., and Ribaut, J.M. 2010. More genomic resources for less-studied crops. Trends Biotechnol. 28: 452–460.
  • Vaz Patto, M.C. and Rubiales, D. 2014. Lathyrus diversity: Available resources with relevance to crop improvement. Ann. Bot. 113: 895–908.
  • Verma, A.K., Kumar, S., Das, M., and Dwivedi, P.D. 2012. Impact of thermal processing on legume allergens. Plant Foods Hum. Nutr. 67: 430–441.
  • Vermeirssen, V., Van Camp, J., and Verstraete, W. 2005. Fractionation of angiotensin I converting enzyme inhibitory activity from pea and whey protein in vitro gastrointestinal digests. J. Sci. Food Agric. 85: 399–405.
  • Vidal-Valverde, C., Frias, J., Sierra, I., Blazquez, I., Lambein, F., and Kuo, Y.H. 2002. New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Tech. 215: 472–477.
  • Vigeolas, H., Chinoy, C., Zuther, E., Blessington, B., Geigenberger, P., and Domoney, C. 2008. Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol. 146: 74–82.
  • Voysest, O. and Dessert, M. 1991. Bean cultivars: classes and commercial seed types. In: Common Beans: Research for Crop Improvement. pp. 119–162. van Schoonhoven, A. and Voysest, O., Eds. Commonwealth Agricultural Bureaux International, Wallingford, United Kingdom.
  • Wang, N. and Daun, J.K. 2006. Effect of variety and crude protein content on nutrient and certain antinutrients in lentil (Lens culinaris). Food Chem. 95: 493–502.
  • Wang, N., Hatcher, D.W., Toews, R., and Gawalko, E.J. 2009. Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT-Food Sci. Technol. 42: 842–848.
  • Watts, P. 2011. Global pulse industry: state of production, consumption and trade; marketing challenges and opportunities. In: Pulse Foods: Processing, Quality and Nutraceutical Applications. pp. 437–464. Tiwari, B.K., Gowen, A., and McKenna, B., Eds. Elsevier.
  • Weignerová, L., Simerská, P., and Vladimír Křen, V. 2009. α-Galactosidases and their applications in biotransformations. Biocatal. Biotransfor. 27: 79–89.
  • Welch, R.M. 1999. Making harvest more nutritious. Agric. Res. 47: 4–6.
  • Welch, R.M. and Graham, R.D. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55: 353–364.
  • Welch, R.M., House, W.A., Beebe, S., and Cheng, Z. 2000. Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J. Agric. Food Chem. 48: 3576–3580.
  • Westenbrink, S., Brunt, K., and Van der Kamp, J.W. 2013. Dietary fibre: Challenges in production and use of food composition data. Food Chem. 140: 562–567.
  • Whistler, R.L., BeMiller, J.N., and Paschall, E.F. 1984. Starch: Chemistry and Technology. Academic Press, Inc., New York, NY.
  • White, P., Abbas, I., and Johnson, L. 1989. Freeze-thaw stability and refrigerated-storage retrogradation of starches. Starch/Starke 41: 176–180.
  • White, P.J. and Broadley, M.R. 2009. Biofortification of crops with seven mineral elements often lacking in human diets – Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182: 49–84.
  • WHO. 2007. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation, Geneva, Switzerland.
  • WHO. 2013. Cardiovascular Diseases (CVDs) Fact sheet N°317. . http://www.who.int/mediacentre/factsheets/fs317/en/ (Retrieved: September 16, 2013).
  • Wojtyla, Ł., Garnczarska, M., Zalewski, T., Bednarski, W., Ratajczak, L., and Jurga, S. 2006. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J. Plant Physiol. 163: 1207–1220.
  • Wolosiak, R., Worobiej, E., Piecyk, M., Druzynska, B., Nowak, D., and Lewicki, P.P. 2010, Activities of amine and phenolic antioxidants and their changes in broad beans (Vicia faba) after freezing and steam cooking. Int. J. Food Sci. Technol. 45: 29–37.
  • Wu, Z., Song, L., Feng, S., Liu, Y., He, G., Yioe, Y., Liu, S.Q., and Huang, D. 2012. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arienum L.) seeds. J. Agric Food Chem. 60: 8606–8615.
  • Wyatt, C.J., Carballido, S.P., and Méndez, R.O. 1998. α- and γ-tocopherol content of selected foods in the Mexican diet: effect of cooking losses. J. Agric. Food Chem. 46: 4657–4661.
  • Wysocka, W. and Jasiczak, J. 2004. The correlation between taste and structure of lupin alkaloids. In: Recent Advances of Research in Antinutritional Factors in Legume Seeds and Oilseeds. pp. 81–84. Muzquiz, M., Hill, G.D., Cuadrado, C., Pedrosa, M.M., and Burbano, C., Eds., Wageningen Academic Pubs, Wageningen.
  • Xu, B.J. and Chang, S.K. C. 2007. Comparative studies on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72: S159–S166.
  • Xu, B.J., Yuan, S.H., and Chang, S.K. C. 2007a. Comparative analysis of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 72: S167–S177.
  • Xu, B.J., Yuan, S.H., and Chang, S.K. C. 2007b. Comparative studies on the antioxidant activities of nine common food legumes against copper-induced human low-density lipoprotein oxidation in vitro. J. Food Sci. 72: S522–S527.
  • Yao, Y., Cheng, X., Wang, L., Wang, S., and Ren, G. 2011. Biological potential of sixtieen legumes in China. Int. J. Mol. Sci. 12: 7048–7058.
  • Yoshida, H., Tomiyama, Y., Saiki, Mizushima, Y. 2007. Tocopherol content and fatty acid distribution of peas (Pisum sativum L.). J. Am. Oil Chem. Soc. 84: 1031–1038.
  • Yoshie-Stark, Y. and Wäsche, A. 2004. In vitro binding of bile acids by lupin protein isolates and their hydrolysates. Food Chem. 88: 179–184.
  • Yoshiki, Y., Sirakura, T., Okuda, K., Okubo, K., Sakabe, T., Ngoya, I., and Tamura, N. 1996. Hydrophilic oxygen radical scavengers in the leguminous seeds and derived foods. In: Agri-Food Quality: An Interdisciplinary Approach. pp. 360–365. Fenwick, G.R., Hedley, C., Richards, R.L., and Khokahr, S., Eds., The Royal Society of Chemistry, UK.
  • Yu, L., Perret, J., Parker, T. and Allen, K.G. D. 2003. Enzymatic modification to improve the water-absorbing and gelling properties of Psyllium. Food Chem. 82: 243–248.
  • Zhang, W. and Popovich, D.G. 2009. Chemical and biological characterization of oleanane triterpenoids from soy. Molecules 14: 2959–2975.
  • Zhang, X., Gao, B., Shi, H., Slavin, M., Huang, H., Whent, M., Sheng, Y., and Yu, L. 2012. Chemical composition of 13 commercial soybean samples and their antioxidant and anti-inflammantory properties. J. Agric. Food Chem. 60: 10027–10034.
  • Zhao, F.J., and McGrath, S.P. 2009. Biofortification and phytoremediation. Curr. Opin. Plant Biol. 12: 373–380.
  • Zhou, Y., Hoover, R., and Liu, Q. 2004. Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr. Polym. 57: 299–317.
  • Zia-Ul-Haq, M., Ahmad, S., Amarowicz, R., and De Feo, V. 2013. Antioxidant activity of the extracts of some cowpea (Vigna unguiculata (L) Walp.) cultivars commonly consumed in Pakistan. Molecules 18: 2005–2017.
  • Zia-Ul-Haq, M., Ahmad, S., Iqbal, S., Luthria, D.L., and Amarowicz, R. 2011. Antioxidant potential of lentil cultivars commonly consumed in Pakistan. Oxidat. Commun. 34: 820–831.
  • Zieliński, H. 2002. Peroxyl radical-trapong capacity of germinated legume seeds. Nahrung-Food 46: 100–104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.