3,164
Views
126
CrossRef citations to date
0
Altmetric
Original Articles

Achievements and Challenges in Legume Breeding for Pest and Disease Resistance

, , , , , , & show all

REFERENCES

  • Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C., Caillaud, M.C., Coutinho, P.M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J.V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T.R., Markov, G.V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Segurens, B., Steinbach, D., Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T.J., Blaxter, M., Bleve-Zacheo, T., Davis, E.L., Ewbank, J.J., Favery, B., Grenier, E., Henrissat, B., Jones, J.T., Laudet, V., Maule, A.G., Quesneville, H., Rosso, M.N., Schiex, T., Smant, G., Weissenbach, J., and Wincker, P. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotech. 26: 909–915.
  • Abawi, G.S. and Pastor-Corrales, M.A. 1989. Charcoal rot screening procedure and virulence of Macrophomina phaseolina isolates on dry edible beans. Turrialba 39: 200–207.
  • Abberton, M.T. 2007. Interspecific hybridization in the genus Trifolium. Plant Breeding 126: 337–342.
  • Abd El-Rahman, S.S., Mazen, M.M., Mohamed, H.I., and Mahmoud, N.M. 2012. Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against fusarium wilt. Eur. J. Plant Pathol. 134: 105–116.
  • Abdallah, C., Sergeant, K., Guillier, C., Dumas-Gaudot, E., Leclercq, C.C., and Renaut, J. 2012. Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medicago truncatula roots. Proteome Sci. 10: 37.
  • Acharjee, S., Sarmah, B.K., Kumar, P.A., Olsen, K., Mahon, R., Moar, W.J., Moore, A., and Higgins, T. 2010. Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci. 178: 333–339.
  • Adesoye, A., Machuka, J., and Togun, A. 2008. CRY 1AB trangenic cowpea obtained by nodal electroporation. Afr. J. Biotech. 7: 3200–3210.
  • Afouda, L., Wolf, G., and Wydra, K. 2009. Development of a sensitive serological method for specific detection of latent infection of Macrophomina phaseolina in cowpea. J. Phytopath. 157: 15–23.
  • Ahloowalia, B.S., Maluszynski, M., and Nichterlein, K. 2004. Global impact of mutation-derived varieties. Euphytica 135: 187–204.
  • Ahmed, S., Akem, C., and Abd El Moneim, A.M. 2000. Sources of resistance to downy mildew in narbon (Vicia narbonensis) and common (Vicia sativa) vetches. Genet. Resour. Crop Evol. 47: 153–156.
  • Akiyama, K., Matsuzaki, K., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.
  • Alam, S.S., Bilton, J.N., Slawin, A.M. Z., Williams, D.J., Sheppard, R.N., and Strange, R.N. 1989 Chickpea blight: Production of the phytotoxins solanapyrones A and C by Ascochyta rabiei. Phytochemistry 28: 2627–2630.
  • Ali S.M., Nitschke L.F., Dube A.J., Krause M.R., and Cameron M.R. 1978. Reaction of pea lines to pathotypes of Ascochyta pinodes, A. pisi and Phoma medicagines var pinodella. Aust. J. Agric. Res. 29: 841–849.
  • Almeida, A.M. R., Binneck, E., Piuga, F.F., Marin, S.R. R., do Ribeiro Valle, P.R. Z., and Silveira, C.Z. 2008. Characterization of powdery mildews strains from soybean, bean, sunflower, and weeds in Brazil using rDNA-ITS sequences. Tropical Plant Pathol. 33: 20–26.
  • Almeida, N.F., Leitao, S.T., Rotter, B., Winter, P., Rubiales, D., and Vaz Patto, M.C. 2013. Transcriptional profiling of grass pea genes differentially regulated in response to infection with Ascochyta pisi. In: First Legume Society Conference, p 140. Novi Sad, Serbia.
  • Alzate-Marin, A.L., Menarim, H., Arruda, M.C. C., Chagas, J.M., Barros, E.G., and Moreira, M.A., 1999b. Backcross assisted by RAPD markers for introgression of Co-4 and Co-6 anthracnose resistant genes in common bean cultivars. Ann. Rev. Rep. Bean. Improv. Coop. 42: 15–16.
  • Alzate-Marin, A.L., Menarim, H., Assis de Carvalho, G., de Paula Junior, T.J., Gonalves de Barros, E., and Alves Moreira, M. 1999a. Improved selection with newly identified RAPD markers linked to resistance gene to four pathotypes of Colletotrichum lindemuthianum in common bean. Phytopathology 89: 281–285.
  • Ameline-Torregrosa, C., Cazaux, M., Danesh, D., Chardon, F., Cannon, S.B., Esquerré-Tugayé, M.T., Dumas, B., Young, N.D., Samac, D.A., Huguet, T., and Jacquet, C. 2008. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol. Plant Microbe Interact. 21: 61–69.
  • Ameline-Torregrosa, C., Dumas, B., Krajinski, F., Esquerre-Tugaye, M.T., and Jacquet, C. 2006. Transcriptomic approaches to unravel plant–pathogen interactions in legumes. Euphytica 147: 25–36.
  • Amey, R.C., Schleicher, T., Slinn, J., Lewis, M., Macdonald, H., Neill, S.J., and Spencer-Phillips, P.T. N. 2008. Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur. J. Plant Pathol. 122: 41–55.
  • Amian, A.A., Papenbrock, J., Jacobsen, H.J., and Hassan, F. 2011. Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2: 104–109.
  • Anand, R.P., Ganapathi, A., Vengadesan, G., Selvaraj, N., Anbazhagan, V.R., and Kulothungan, S. 2001. Plant regeneration from immature cotyledon-derived callus of Vigna unguiculata (L.) Walp (cowpea). Curr. Sci. 80: 671–674.
  • Anderson, J.P., Lichtenzveig, J., Gleason, C.A., Oliver, R.P., and Singh, K.B. 2010. B-3 Ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol. 154: 861–873.
  • Anderson, J.P., Lichtenzveig, J., Oliver, R.P., and Singh, K.B. 2013. Medicago truncatula as a model host for studying legume infecting Rhizoctonia solani and identification of a locus affecting resistance to root canker. Plant Pathol. 62: 908–921.
  • Andolfi, A., Cimmino, A., Villegas-Fernández, A., Tuzi, A., Santini, A., Melck, D., Rubiales D., and Evidente, A. 2013. Lentisone, a new phytotoxic anthraquinone produced by Ascochyta lentis, the causal agent of Ascochyta blight in Lens culinaris. J. Agric. Food Chem 61: 7301–7308.
  • Andrahennadi, C.P., Slinkard, A.E., and Vandenberg, A. 1996. Ascochyta resistance in lentil. LENS Newslett. 23: 5–7.
  • Angot, A., Peeters, N., Lechner, E., Vailleau, F., Baud, C., Gentzbittel, L., Sartorel, E., Genschik, P., Boucher, C., and Genin, S. 2006. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc. Natl. Acad. Sci. U.S.A. 103: 14620–14625.
  • Antonopoulos, D.F. and Elena, K. 2008. Susceptibility of Greek alfalfa and clover cultivars to Fusarium oxysporum f. sp. medicaginis and potential methods of disease control. J. Plant Dis. Prot. 115: 162–166.
  • Arcioni, S., Pezzotti, M., and Damiani, F. 1987. Invitro selection of alfalfa plants resistant to Fusarium oxysporum f. sp. medicaginis. Theor. Appl. Genet. 74: 700–705.
  • Arimura, G., Ozawa, R., Kugimiya, S., Takabayashi, J., and Bohlmann, J. 2004. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus. Plant Physiol. 135: 1976–1983.
  • Arimura, G., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kuhnemann, F., and Takabayashi, J. 2002. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J. 29: 87–98.
  • Arnold, D.L., Lovell, H.C., Jackson, R.W., and Mansfield, J.W. 2011. Pseudomonas syringae pv. phaseolicola: from “has bean” to supermodel. Mol. Plant Pathol. 12: 617–627.
  • Ashfield, T., Bocian, A., Held, D., Henk, A.D., Marek, L.F., Danesh, D., Peñuela, S., Meksem, K., Lightfoot, D.A., Young, N.D., Shoemaker, R.C., and Innes, R.W. 2003. Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Mol. Plant Microbe Interact. 16: 817–826.
  • Ashfield, T., Ong, L.E., Nobuta, K., Schneider, C.M., and Innes, R.W. 2004. Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16:, 309–318.
  • Attanayake, K.P. R. N., Glawe, D.A., Dugan, F.M., and Chen, W. 2009. Erysiphe trifolii causing powdery mildew of lentil (Lens culinaris). Plant Dis. 93: 797–803.
  • Attanayake, K.P. R. N., Glawe, D.A., McPhee, K.E., Dugan, F.M., and Chen, W. 2008. First report of powdery mildew of chickpea (Cicer arietinum) caused by Leveillula taurica in Washington State. Online. Plant Health Progress doi:10.1094/PHP-2008-0702-01-BR.
  • Attanayake, K.P. R. N., Glawe, D.A., McPhee, K.E., Dugan, F.M., and Chen, W. 2010. Erysiphe trifolii – a newly recognized powdery mildew pathogen of pea. Plant Pathol. 59: 712–720.
  • Avila, C.M., Satovic, Z., Sillero, J.C., Rubiales, D., Moreno, M.T., and Torres, A.M. 2004. Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theor. Appl. Genet. 108: 1071–1078.
  • Avila, C.M., Sillero, J.C., Rubiales, D., Moreno, M.T., and Torres, A.M. 2003. Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor. Appl. Genet. 107: 353–358.
  • Babu, R.M., Sajeena, A., Seetharaman, K., and Reddy, M.S. 2003. Advances in genetically engineered (transgenic) plants in pest management - an over view. Crop Prot. 22: 1071–1086.
  • Bagnaresi, P., Biselli, C., Orrù, L., Urso, S., Crispino, L., Abbruscato, P., Piffanelli, P., Lupotto, E., Cattivelli, L., and Valè, G. 2012. Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS ONE 7: e51609.
  • Bai, Y.H., Michaels, T.E., and Pauls, K.P. 1997. Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40: 544–551.
  • Bakshi, S., Roy, N.K., and Sahoo, L. 2012. Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tiss. Org. 110: 77–91.
  • Baldridge, G.D., O’Neill, N.R., and Samac, D.A. 1998. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol. Biol. 38: 999–1010.
  • Bani, M., Rubiales, D., and Rispail, N. 2012. A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol. 61: 532–542.
  • Barbetti, M., You, M.P., Li, H., Ma, X.U. A. N. L. I., and Sivasithamparam, K. 2007. Management of root diseases of annual pasture legumes in Mediterranean ecosystems - a case study of subterranean clover root diseases in the south-west of Western Australia. Phytopathol. Mediterr. 46: 239–258.
  • Barbulova, A., D’Apuzzo, E., Rogato, A., and Chiurazzi, M. 2005. Improved procedures for in vitro regeneration and for phenotypic analysis in the model legume Lotus japonicus. Funct. Plant Biol. 32: 529–536.
  • Barilli, E., Rubiales, D., and Castillejo, M.A. 2012. Comparative proteomic analysis of BTH and BABA-induced resistance in pea (Pisum sativum) toward infection with pea rust (Uromyces pisi). J. Proteomics 75: 5189–5205.
  • Barilli, E., Rubiales, D., Gjetting, T., and Lyngkjaer, M.F. 2014. Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack. Euphytica 198: 1328.
  • Barilli, E., Satovic, Z., Sillero, J.C., Rubiales, D., and Torres, A.M. 2011. Phylogenetic analysis of Uromyces species infecting grain and forage legumes by sequence analysis of nuclear ribosomal internal transcribed spacer region. J. Phytopath. 159: 137–145.
  • Barilli, E., Sillero, J.C. Moral, A., and Rubiales, D. 2009a. Characterization of resistance response of pea (Pisum sp.) against rust (Uromyces pisi). Plant Breeding 128: 665–670.
  • Barilli, E., Sillero, J.C., Serrano, A., and Rubiales, D., 2009b. Differential response of pea (Pisum sativum) to rusts incited by Uromyces viciae-fabae and U. pisi. Crop Prot. 28: 980–986.
  • Barros de Carvalho, G.A., Silva Batista, J.S., Marcelino-Guimarães, F.C., Costa do Nascimento, L., and Hungria, M. 2013. Transcriptional analysis of genes involved in nodulation in soybean roots inoculated with Bradyrhizobium japonicum strain CPAC 15. BMC Genomics 14: 153.
  • Barsch, A., Carvalho, H.G., Cullimore, J.V., and Niehaus, K. 2006. GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J. Biotechnol. 127: 79–83.
  • Bartsev, A.V., Deakin, W.J., Boukli, N.M., McAlvin, C.B., Stacey, G., Malnoë, P., Broughton, W.J., and Staehelin, C. 2004. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134: 871–879.
  • Bayaa, B., Erskine, W., and Singh, M. 1997. Screening lentil for resistance to fusarium wilt: methodology and sources of resistance. Euphytica 98: 69–74.
  • Beckman, C.H. 1987. The Nature of Wilt Diseases of Plants. APS Press, St. Paul, MN.
  • Beed, F.D., Strange, R.N., Onfroy, C., and Tivoli, B. 1994. Virulence for faba bean and production of ascochitine by Ascochyta fabae. Plant Pathol. 43: 987–997.
  • Begara-Morales, J.C., Chaki, M., Sanchez-Calvo, B., Mata-Perez, C., Leterrier, M., Palma, J.M., Barroso, J.B., and Corpas, F.J. 2013. Protein tyrosine nitration in pea roots during development and senescence. J. Exp. Bot. 64: 1121–1134.
  • Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., and Dangl, J.L. 2004. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial Type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16: 2822–2835.
  • Bell, C.J., Dixon, R.A., Farmer, A.D., Flores, R., Inman, J., Gonzales, R.A., Harrison, M.J., Paiva, N.L., Scott, A.D., Weller, J.W., and May, G.D. 2001. The Medicago Genome Initiative: a model legume database. Nucleic Acids Res. 29: 114–117.
  • Ben, C., Debellé, F., Berges, H., Bellec, A., Jardinaud, M.F., Anson, P., Huguet, T., Gentzbittel, L., and Vailleau, F. 2013. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytol. 199: 758–772.
  • Ben, C., Toueni, M., Montanari, S., Tardin, M.C., Fervel, M., Negahi, A., Saint-Pierre, L., Mathieu, G., Gras, M.C., Noël, D., Prospéri, J.M., Pilet-Nayel, M.L., Baranger, A., Huguet, T., Julier, B., Rickauer, M., and Gentzbittel, L. 2013. Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to verticillium wilt. J. Exp. Bot. 64: 317–332.
  • Bendezu, I.F. and Starr, J. 2003. Mechanism of resistance to Meloidogyne arenaria in the peanut cultivar COAN. J. Nematol. 35:115–118.
  • Benhamou, N., Kloepper, J.W., QuadtHallman, A., and Tuzun, S. 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112: 919–929.
  • Berbegal, M. and Armengol, J. 2009. First report of verticillium wilt of faba bean caused by Verticillium dahliae in Spain. Plant Dis. 93: 432.
  • Berdnikov, V.A., Trusov, Y.A., Bogdanova, V.S., Kosterin, O.E., Rozov, S.M., Nedel’kina, S.V., and Nikulina, Y.N. 1992. The neoplastic pod gene (Np) may be a factor for resistance to the pest Bruchus pisorum L. Pisum Genet. 24: 37–39.
  • Berestetskiy, A.O. 2008. A review of fungal phytotoxins: from basic studies to practical use. Appl. Biochem. Microbiol. 44: 453–465.
  • Bernard, E.C. and Jennings, P.L. 1997. Host range and distribution of the clover root-knot nematode, Meloidogyne trifoliophila. J. Nematol. 29: 662–672.
  • Bevan, J.R, Taylor, J.D., Crute, I.R., Hunter, P.J., and Vivian, A. 1995. Genetics of specific resistance in pea (Pisum sativum) cultivars to seven races of Pseudomonas syringae pv. pisi. Plant Pathol. 44: 98–108.
  • Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., and Wei, Y. 2011. EST mining identifies proteins secreted at the hemibiotrophic switch of the anthracnose pathogen Colletotrichum truncatum. BMC Genomics 12: e327.
  • Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., and Wei, Y. 2013. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryot. Cell 12: 2–11.
  • Bhatia, C.R., Nichterlein, K., and Maluszynski, M. 2001. Mutations affecting nodulation in grain legumes and their potential in sustainable cropping systems. Euphytica 120: 415–432.
  • Biddle, A.J. 2001. Downy mildew. In: Compendium of Pea Diseases and Pests, 2nd edn., pp. 29–30. Kraft, J.M., and Pfleger, F.L., eds. APS Press, St. Paul, MN.
  • Binarova, P., Nedelnik, J., Fellner, M., and Nedbalkova, B. 1990. Selection for resistance to filtrates of Fusarium spp. in embryogenic cell suspension culture of Medicago sativa L. Plant Cell Tiss. Org. 22: 191–196.
  • Blair, M.V., Cortés, A.J., Penmetsa, R.V., Farmer, A., Carrasquilla-Garcia, N., and Cook D.R. 2013. Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. Theor. Appl. Genet. 126: 535–548.
  • Block, A. and Alfano, J.R. 2011. Plant targets for Pseudomonas syringae type III effectors: Virulence targets or guarded decoys? Curr. Opin. Microbiol. 14: 39–46.
  • Block, A., Li, G., Fu, Z.Q., and Alfano, J.R. 2008. Phytopathogen type III effector weaponry and their plant targets. Curr. Opin. Plant Biol. 11: 396–403.
  • Boerema, G.H., Pieters, R., and Hamers, M.E. C. 1993. Check-list for scientific names of common parasitic fungi. Supplement Series 2c, d (additions and corrections): Fungi on field crops: pulse (legumes), forage crops (herbage legumes), vegetables and cruciferous crops. Neth. J. Plant Pathol. 99: 1–32.
  • Boland, G.J. and Hall, R. 1994. Index of plant hosts for Sclerotinia sclerotiorum. Can. J. Bot. 16: 93–108.
  • Bond, D.A., Jellis, G.J., Rowland, G.G., Le Guen, J., Robertson, L.D., Khalil, S.A., and Li-Juan, L. 1994. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 73: 151–166.
  • Bonfim, K., Faria, J.C., Nogueira, E.O. P. L., Mendes, É.A., and Aragão, F.J. L. 2007. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common Bean (Phaseolus vulgaris). Mol. Plant-Microbe Interact. 20: 717–726.
  • Bourgeois, M., Jacquin, F., Cassecuelle, F., Savois, V., Belghazi, M., Aubert, G., Quillien, L., Huart, M., Marget, P., and Burstin, J. 2011. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11: 1581–1594.
  • Branca, A., Paape, T.D., Zhou, P., Briskine, R., Farmer, A.D., Mudge, J., Bharti, A.K., Woodward, J.E., May, G.D., Gentzbittel, L., Ben, C., Denny, R., Sadowsky, M.J., Ronfort, J., Bataillon, T., Young, N.D., and Tiffin, P. 2011. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc. Natl. Acad. Sci. U. S. A. 108: 864–870.
  • Brier, H.B. and Rogers, D.J. 1991. Susceptibility of soybeans to damage by Nezara viridula (L.) Hemiptera: Penttatomidae) and Riptortus serripes (F.) Hemiptera: Alydidae) during three stages of pod development. J. Aust. Entomol. Soc. 30: 123–128.
  • Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P., Dixon R.A., and Sumner L.W. 2005. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56: 323–336.
  • Broughton, W.J., Hernandez, G., Blair, M., Beebe, S., Gepts, P., and Vanderleyden, J. 2003. Beans (Phaseolus spp.) - model food legumes. Plant Soil 252: 55–128.
  • Buchwaldt, L., Anderson, K.L., Morrall, R.A. A., Gossen, B.D., and Bernier, C.C. 2004. Identification of lentil germ plasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94: 236–243.
  • Burow, M.D., Simpson, C.E., Starr, J.L., and Paterson, A.H. 2001. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypagaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics 159: 823–837.
  • Buxton, E.W. 1960. Effects of pea root exudate on the antagonism of some rhizosphere micro organisms towards Fusarium oxysporum f. sp. pisi. J. Gen. Microbiol. 22: 678–689.
  • Byrne, O.M., Hardie, D.C., Khan, T., Speijer, J., and Yan, G. 2008. Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust. J. Agri. Res. 59: 854–862.
  • Cadle-Davidson, M. and Jahn, M.M. 2006. Differential gene expression in Phaseolus vulgaris I locus NILs challenged with Bean common mosaic virus. Theor. Appl. Genet. 112: 1452–1457.
  • Camejo, D., Romero-Puertas, M.C.L. , Rodriguez-Serrano, M.L., Sandalio, M.L. , Lazaro, J., Jimenez, A., and Sevilla, F. 2013. Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J. Proteomics 79: 87–99.
  • Cannon, S.B. 2013. The model legume genomes. Methods Mol. Biol. 1069: 1–14.
  • Cánovas, F., Dumas-Gaudot, E., Recorbet, G., Jorrín, J., Mock, H.P., and Rossignol, M. 2004. Plant proteome analysis. Proteomics 4: 285–298.
  • Carolan, J.C., Fitzroy, C.I. J., Ashton, P.D., Douglas, A.E., and Wilkinson, T.L. 2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9: 2457–2467.
  • Carrillo, E., Rubiales, D., and Castillejo, M.A. 2014a. Proteomic analysis of pea (Pisum sativum L.) response during compatible and incompatible interactions with pea aphid (Acyrthosiphon pisum H.). Plant Mol. Biol. Rep. 32: 697–718.
  • Carrillo E., Rubiales, D., Pérez-de-Luque, A., and Fondevilla, S. 2013. Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur. J. Plant Pathol. 135: 761–769.
  • Carrillo, E., Satovic, Z., Aubert, G., Boucherot, K., Rubiales, D., and Fondevilla, S. 2014b. Identification of Quantitative Trait Loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Reports 33: 11331145.
  • Castillejo, M.A., Amiour, N., Dumas-Gaudot, E., Rubiales, D., and Jorrín, J. 2004. A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65: 1817–1828.
  • Castillejo, M.A., Curto, M., Fondevilla, S., Rubiales, D., and Jorrin, J.V. 2010a. Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J. Agric. Food Chem. 58: 12822–12832.
  • Castillejo, M.A., Fernández-Aparicio, M., and Rubiales, D. 2012. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J. Exp. Bot. 63: 107–119.
  • Castillejo, M.A., Maldonado, A.M., Dumas-Gaudot, E., Fernandez-Aparicio, M., Susin, R., Rubiales, D., and Jorrín, J. 2009. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula. BMC Genomics 10: 294.
  • Castillejo, M.A., Susin, R., Madrid, E., Fernández-Aparicio, M., Jorrín, J.V., and Rubiales, D. 2010b. Two-dimensional gel electrophoresis-based proteomic analysis of the Medicago truncatula-rust (Uromyces striatus) interaction. Ann. Appl. Biol. 157: 243–257.
  • Castillo, P., Navas-Cortés, J.A., Gomar-Tinoco, D., Di Vito, M., and Jiménez-Díaz, R.M. 2003. Interactions between Meloidogyne artiellia, the cereal and legume root-knot nematode, and Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Phytopathology 93:1513–1523.
  • Chakraborti, D., Sarkar, A., Mondal, H.A., and Das, S. 2009. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res. 18: 529–544.
  • Chand, R., Srivastava, C.P., Singh, B.D., and Sarode, S.B. 2006. Identification and characterization of slow rusting components in pea (Pisum sativum L.). Gen. Res. Crop Evol. 53: 219–224.
  • Chandra, A. and Pental, D. 2003. Regeneration and genetic transformation of grain legumes: An overview. Curr. Sci. 84: 381–387.
  • Charchar, J.M., Eisenback, J.D., Charchar, M.J., and Boiteux, M.E. N. 2008a. Meloidogyne pisi n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising pea in Brazil. Nematology 10: 479–493.
  • Charchar, J.M., Eisenback, J.D., Charchar, M.J., and Boiteux, M.E. N. 2008b. Meloidogyne phaseoli n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising bean in Brazil. Nematology 10: 525–538.
  • Charlton, A.J., Allnutt, T., Holmes, S., Chisholm, J., Bean, S., Ellis, N., Mullineaux, P., and Oehlschlager, S. 2004. NMR profiling of transgenic peas. Plant Biotechnol. J. 2: 27–35.
  • Charlton, A.J., Donarski, J.A., Harrison, M., Jones, S.A., Godward, J., Oehlschlager, S., Arques, J.L., Ambrose, M., Chinoy, C., Mullineaux, P.M., and Domoney, C. 2008. Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4: 312–327.
  • Chattopadhyay, A., Subba, P., Pandey, A., Bhushan, D., Kumar, R., Datta, A., Chakraborty, S., and Chakraborty, N. 2011. Analysis of the grass pea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72: 1293–1307.
  • Chaudhary, S., Anderson, T.R., Park, S.J., and Yu, K. 2006. Comparison of screening methods for resistance to Fusarium root rot in common beans (Phaseolus vulgaris L.). J. Phytopathol. 154: 303–308.
  • Chawla, H.S. and Wenzel, G. 1987. In vitro selection for fusaric acid resistant barley plants. Plant Breeding 99: 159–163.
  • Chen, H., Bodulovic, G., Hall, P.J., Moore, A., Higgins, T.J. V., Djordjevic, M.A., and Rolfe, B.G. 2009. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene. Proteomics 9: 4406–4415.
  • Chen, N.W. G., Sevignac, M., Thareau, V., Magdelenat, G., David, P., Ashfield, T., Innes, R.W., and Geffroy, V. 2010. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean, soybean, and Arabidopsis. New Phytol. 187: 941–956.
  • Chen, W., Coyne, C.J., Peever, T.L., and Muehlbauer, F.J. 2004. Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol. 53: 759–769.
  • Chen, W., Schatz, B., Henson, B., McPhee, K.E., and Muehlbauer, F.J. 2006. First report of sclerotinia stem rot of chickpea caused by Sclerotinia sclerotiorum in North Dakota and Washington. Plant Dis. 90: 114.
  • Chen, W., Sharma, H.C., and Muehlbauer, F.J. 2011. Compendium of Chickpea and Lentil Diseases and Pests. APS Press, St. Paul, MN.
  • Chen, Y.M. and Strange, R.N. 1991. Synthesis of the solanapyrone phytotoxins by Ascochyta rabiei in response to metal cations and development of a defined medium for toxin production. Plant Pathol. 40: 401–407.
  • Chintapalli, P.L., Moss, J.P., Sharma, K.K., and Bhalla, J.K. 1997. In vitro culture provides additional variation for pigeonpea [Cajanus cajan (L) Millsp] crop improvement. In Vitro Cell. Dev-Pl. 33: 30–37.
  • Cho, S., Chen, W., and Muehlbauer, F.J. 2004. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor. Appl. Genet. 109: 733–739.
  • Cho, S., Chen, W., and Muehlbauer, F.J. 2005. Constitutive expression of the flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol. Mol. Plant Pathol. 67: 100–107.
  • Choi, H.K., Mun, J.H., Kim, D.J., Zhu, H., Baek, J.M., Mudge, J., Roe, B., Ellis, T.H. N., Doyle, J., Kiss, G.B., Young, N.D., and Cook, D.R. 2004. Estimating genome conservation between crop and model legume species. Proc. Natl. Acad. Sci. USA 101: 15289–15294.
  • Choi, J.J., Alkharouf, N.W., Schneider, K.T., Matthews, B.F., and Frederick, R.D. 2008. Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct. Integr. Genomics 8: 341–359.
  • Choudhary, K., Singh, M., Rathore, M.S., and Shekhawat, N.S. 2009. Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume. Plant Biotechnol. Rep. 3: 205–211.
  • Chowdhury, M.A., Andrahennnadi, C.P., Slinkard, A.E., and Vandenberg, A. 2001. RAPD and SCAR markers for resistance to ascochyta blight in lentil. Euphytica 118: 331–337.
  • Chowdhury, M.A. and Slinkard, A.E. 1999. Linkage of random amplified polymorphic DNA, isozyme and morphological markers in grass pea (Lathyrus sativus). J. Agric. Sci. 133: 389–395.
  • Chowrira, G.M., Akella, V., Fuerst, P.E., and Lurquin, P.F. 1996. Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol. Biotechnol. 5: 85–96.
  • Chowrira, G.M., Cavileer, T.D., Gupta, S.K., Lurquin, P.F., and Berger, P.H. 1998. Coat protein-mediated resistance to pea enation mosaic virus in transgenic Pisum sativum L. Transgenic Res. 7: 265–271.
  • Chu, P.W. G., Anderson, B.J., Khan, M.R. I., Shukla, D., and Higgins, T.J. V. 1999. Production of Bean yellow mosaic virus resistant subterranean clover (Trifolium subterraneum) plants by transformation with the virus coat protein gene. Ann. Appl. Biol. 135: 469–480.
  • Cimmino, A., Andolfi, A., Fondevilla, S., Abouzeid, M.A., Rubiales, D., and Evidente, A. 2012. Pinolide, a new nonenolide produced by Didymella pinodes, the causal agent of Ascochyta blight on Pisum sativum. J. Agric. Food Chem. 60: 5273–5278.
  • Cimmino, A., Villegas-Fernández, A.M., Andolfi, A., Melck, D., Rubiales, D., and Evidente, A. 2011. Botrytone, a new naphthalenone pentaketide produced by Botrytis fabae, the causal agent of chocolate spot disease on Vicia faba. J. Agric. Food Chem. 59: 92011–9206.
  • Clarke, H.J., Wilson, J.G., Kuo, I., Lulsdorf, M.M., Mallikarjuna, N., Kuo, J., and Siddique, K.H. M. 2006. Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell Tiss. Org. 85: 197–204.
  • Clulow, S.A., Matthews, P., and Lewis, B.G. 1991. Genetic analysis of resistance to Mycosphaerella pinodes in pea-seedlings. Euphytica 58: 18–189.
  • Cobos, M.J., Rubiales, D., and Fondevilla, S. 2013. Saturation of a quantitative trait loci controlling resistance to Orobanche crenata in pea. In: First Legume Society Conference, p. 197. Novi Sad, Serbia.
  • Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H.P., and Krajinski, F. 2004. Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol. Biol. 55: 109–120.
  • Collard, B.C. Y., Ades, P.K., Pang, E.C. K., Brouwer, J.B., and Taylor, P.W. J. 2001. Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australas. Plant Pathol. 30: 271–276.
  • Collard, B.C. Y., Pang, E.C. K., Ades, P.K., and Taylor, P.W. J. 2003. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor. Appl. Genet. 107: 719–729.
  • Cooper, J.L., Till, B.J., Laport, R.G., Darlow, M.C., Kleffner, J.M., Jamai, A., El-Mellouki, T., Liu, S., Ritchie, R., Nielsen, N., Bilyeu, K.D., Meksem, K., Comai, L., and Henikoff, S. 2008. TILLING to detect induced mutations in soybean. BMC Plant Biol. 8: 9.
  • Coram, T.E. and Pang, E.C. K. 2006. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol. J. 4: 647–666.
  • Cormack, M.W. and Moffatt, J.E. 1956. Occurrence of the bacterial wilt organism in alfalfa seed. Phytopathology 46: 407–409.
  • Cornelissen, B.J., Brederode, F.T., Moormann, R.J., and Bol, J.F. 1983. Complete nucleotide sequence of alfalfa mosaic virus RNA 1. Nucleic Acids Res. 11: 1253–1265.
  • Cottage, A., Gostkiewicz, K., Thomas, J.E., Borrows, R., Torres, A.M., and O’Sullivan, D.M. 2012. Heterozygosity and diversity analysis using mapped single nucleotide polymorphisms in a faba bean inbreeding programm. Mol. Breeding 30: 1799–1809.
  • Coyne, C.J. and Pilet-Nayel, M.L. 2008. Candidate genes associated with QTL controlling resistance to fusarium root rot in pea. In: Plant and Animal Genome VX Conference Abstracts. San Diego, CA.
  • Coyne, C.J., Porter, L.D., Inglis, D.A., Gruenwald, N.J., McPhee, K.E., and Muehlbauer, F.J. 2008. Registration of W6 26740, W6 26743, and W6 26745 green pea germplasm resistant to Fusarium root rot. J. Plant Regist. 2: 137–139.
  • Crawford, E., Lake, A., and Boyce, K. 1989. Breeding annual Medicago species for semiarid conditions in Southern Australia. Adv. Agron. 42: 399–437.
  • Credali, A., Garcia-Calderon, M., Dam, S., Perry, J., Diaz-Quintana, A., Parniske, M., Wang, T.L., Stougaard, J., Vega, J.M., and Marquez, A.J., 2013. The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus. Plant Cell Physiol. 54: 107–118.
  • Cucuzza, J.D. and Kao, J. 1986. In vitro assay of excised cotyledons of alfalfa (Medicago sativa) to screen for resistance to Colletotrichum trifolii. Plant Dis. 70: 111–115.
  • Cunha, W.G., Tinoco, M.L. P., Pancoti1, H.L., Ribeiro, R.E., and Aragão, F.J. L. 2010. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathol. 59: 654–660.
  • Curto, M., Camafeita, E., Lopez, J.A., Maldonado, A.M., Rubiales, D., and Jorrin, J.V. 2006. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 6: S163–S174.
  • Dalmais, M., Schmidt, J., Le Signor, C., Moussy, F., Burstin, J., Savois, V., Aubert, G., Brunaud, V., de Oliveira, Y., Guichard, C., Thompson, R., and Bendahmane, A., 2008. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 9: R43.
  • Dang, J.K., Sangwan, M.S., Yadar, R.K., and Chowdhury, R.K. 1994. Sources of resistance against powdery mildew in pea. Legume Res. 17: 231–232.
  • Darby, P., Lewis, B.G., and Matthews, P. 1985. Inheritance and expression of resistance to Ascochyta pisi. In: The Pea Crop, pp. 231–236. Hebblethwaite, P.D., Heath, M.C., and Dawkins, T.C. K., eds., Butterworths, London, UK.
  • Darwish, S.A., Pan, L., Ide, C., and Bede, J.C. 2008. caterpillar-specific gene expression in the legume, Medicago truncatula. Plant Mol. Biol. Rep. 26: 12–31.
  • Daugherty, M.P., Lopes, J.R. S., Almeida, R.P. P. 2010. Strain-specific alfalfa water stress induced by Xylella fastidiosa. Eur J Plant Pathol 12: 333–340.
  • Davidson, J.A., Hartley, D., Priest, M., Herdina, M.K. K., Mckay, A., and Scott, E.S. 2009. A new species of Phoma causes ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 101: 120–128.
  • Davidson, J.A., Pande, S., Bretag, T.W., Lindbeck, K.D., and Krishna-Kishore, G. 2004. Biology and management of Botrytis spp. in legume crops. In: Botrytis: Biology, Pathology and Control. Pp. 295–318. Elad, Y., Williamson, B., Tudzynski, P., and Denle, N., Eds. Kluwer Academic Publishers, Dordrecht, Netherlands.
  • Davis, E.L., Hussey, R.S., and Baum, T.J., 2004. Getting to the roots of parasitism by nematodes. Trends Parasitol. 20: 134–141.
  • Davis, E.L., Meyers, D.M., Burton, J.W., and Barker, K.R. 1998. Resistance to root-knot, reniform, and soybean cyst nematodes in selected soybean breeding lines. J. Nematol. 30: 530–541.
  • Demler, S.A. and de Zoeten, G.A. 1991. The nucleotide sequence and luteovirus-like nature of RNA 1 of an aphid non-transmissible strain of pea enation mosaic virus. J. Gen Virol. 72: 1819–1834.
  • De Meutter, J., Tytgat, T., Witters, E., Gheysen, G., Van Onckelen, H., and Gheysen, G., 2003. Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Mol. Plant Pathol. 4: 271–277.
  • de Oliveira, E.J., Alzate-Marin, A.L., Borem, A., de Azeredo, F.S., de Barros, E.G., and Moreira, M.A. 2005. Molecular marker assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breeding 124: 572–575.
  • D’Erfurth, I., Le Signor, C., Aubert, G., Sanchez, M., Vernoud, V., Darchy, B., Lherminier, J., Bourion, V., Bouteiller, N., Bendahmane, A., Buitink, J., Prosperi, J.M., Thompson, R., Burstin, J., and Gallardo, K. 2012. A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytol. 196: 738–751.
  • Desbrosses, G.G., Kopka, J., and Udvardi, M.K. 2005. Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol. 137: 1302–1318.
  • Deulvot, C., Charrel, H., Marty, A., Jacquin, F., Donnadieu, C., Lejeune-Hénaut, I., Burstin, J., and Aubert, G. 2010. Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11: 468.
  • Devi, S.I., Talukdar, N.C., Sharma, K.C., Jeyaram, K., and Rohinikumar, M. 2011. Screening of rhizobacteria for their plant growth promotion ability and antagonism against damping off and root rot diseases of broad bean (Vicia faba L.). Indian J. Microbiol. 51: 14–21.
  • Dhandaydham, M., Charles, L., Zhu, H., Starr, J.L., Huguet, T., Cook, D.R., Prosperi, J.M., and Opperman, C. 2008. Characterization of root-knot nematode resistance in Medicago truncatula. J. Nematol. 40: 46–54.
  • Di Vito, M., Abbad Andaloussi, F., Caubel, G., and Greco, N. 2001. Resistance of faba bean and chickpea to root nematodes. In: LEGUMED Grain Legumes in Mediterranean Agriculture, pp. 57–60. European Association for Grain Legume Research.
  • Di Vito, M., Singh, K.B., Greco, N., and Saxena, M.C. 1996. Sources of resistance to cyst nematode in cultivated and wild Cicer species. Gen. Res. Crop Evol. 43: 103–107.
  • Die, J.V., Dita, M.A., Krajinski, F., González-Verdejo, C.I., Rubiales, D., Moreno, M.A., and Román, B. 2007. Identification by suppression subtractive hybridization and expression analysis of Medicago truncatula putative defence genes in response to Orobanche crenata parasitization. Physiol. Mol. Plant Pathol. 70: 49–59.
  • Dirlewanger, E., Isaac, P., Ranade, S., Belajouza, M., Cousin, R., and Devienne, D. 1994. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor. Appl. Genet. 88: 17–27.
  • Djébali, N., Jauneau, A., Ameline-Torregrosa, C., Chardon, F., Jaulneau, V., Mathé, C., Bottin, A., Cazaux, M., Pilet-Nayel, M.L., Baranger, A., Aouani, M.E., Esquerré-Tugayé, M.T., Dumas, B., Huguet, T., and Jacquet, C. 2009. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Mol. Plant Microbe Interact. 22: 1043–1055.
  • Dita, M.A., Die, J.V., Román, B., Krajinski, F., Küster, H., Moreno, M.T., Cubero, J.I. and Rubiales, D. 2009. Gene expression profiling of Medicago truncatula roots in response to the parasitic plant Orobanche crenata. Weed Res. 49: 66–80.
  • Dixon, R.A. 2001. Natural products and plant disease resistance. Nature 411: 843–847.
  • Domier, L.L., McCoppin, N.K., Larsen, R.C., and D’Arcy, C.J. 2002. Nucleotide sequence shows that Bean leafroll virus has a Luteovirus-like genome organization. J. Gen. Virol. 83: 1791–1798.
  • Donaldson, P.A., Anderson, T., Lane, B.G., Davidson, A.L., and Simmonds, D.H. 2001. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiol. Mol. Plant Pathol. 59: 297–307.
  • Doyle, E.A. and Lambert, K.N., 2003. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol. Plant Microbe Interact. 16: 123–131.
  • Duan, X., Schmidt, E., Li, P., Lenox, D., Liu, L., Shu, C., Zhang, J., and Liang, C. 2012. PeanutDB: An integrated bioinformatics web portal for Arachis hypogaea transcriptomics. BMC Plant Biol. 12: 94.
  • Du, Z., Zhou, X., Li, L., and Su, Z. 2009. PlantsUPS: a database of plants’ Ubiquitin Proteasome System. BMC Genomics 10: 227.
  • Duque, A.S., Pires, A.S., Metelo Dos Santos, D., and Fevereiro, P. 2006. Efficient somatic embryogenesis and plant regeneration from long-term cell suspension cultures of Medicago truncatula cv. Jemalong. In Vitro Cell. Dev-Pl. 42: 270–273.
  • Durieu, P. and Ochatt, S.J. 2000. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J. Exp. Bot. 51: 1237–1242.
  • Edwards, O. and Singh, K.B. 2006. Resistance to insect pests; what do legumes have to offer. Euphytica 147: 273–285.
  • Eichenlaub, R. and Gartemann, K.H. 2011. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Ann. Rev. Phytopathol. 49: 445–464.
  • Eisenback, J.D., Bernard, E.C., Starr, J.L., Lee, T.A. J., and Tomaszewski, E.K. 2003. Meloidogyne haplanaria n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing peanut in Texas. J. Nematol. 35: 395–403.
  • Ellis, M.L., McHale, L.K., Paul, P.A., St Martin, S.K., and Dorrance, A.E. 2013. Soybean germplasm resistant to Pythium irregulare and molecular mapping of resistance quantitative trait loci derived from the soybean accession PI 424354. Crop Sci. 53: 1008–1021.
  • Ellis, M.L., Wang, H., Paul, P.A., St Martin, S.K., McHale, L.K., and Dorrance, A.E. 2012. Identification of soybean genotypes resistant to Fusarium graminearum and genetic mapping of resistance quantitative trait loci in the cultivar Conrad. Crop Sci. 52: 2224–2233.
  • Ellwood, S.R., Kamphuis, L.G., Oliver, R.P. 2006. Identification of sources of resistance to Phoma medicaginis isolates in Medicago truncatula SARDI core collection accessions, and multigene differentiation of isolates. Phytopathology 96: 1330–1336.
  • Elvira-Recuenco, M. and Taylor, J.D. 2001. Resistance to bacterial blight (Pseudomonas syringae pv. pisi) in Spanish pea (Pisum sativum) landraces. Euphytica 118: 305–311.
  • Emeran, A.A., Román, B., Sillero, J.C., Satovic, Z., and Rubiales, D. 2008. Genetic variation among and within Uromyces species infecting legumes. J. Phytopath. 156: 419–424.
  • Emeran, A. A., Sillero, J.C., Niks, R.E., and Rubiales, D. 2005. Infection structures of host-specialized isolates of Uromyces viciae-fabae and of other species of Uromyces infecting leguminous crops. Plant Dis. 89: 17–22.
  • Ender, M., Terpstra, K., and Kelly, J.D. 2008. Marker-assisted selection for white mold resistance in common bean. Mol. Breeding 21: 149–157.
  • Erskine, W., Tufail, M., Russell, A., Tyagi, M.C., Rahman, M.M., and Saxena, M.C. 1993. Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 73: 127–135.
  • Etebu, E. and Osborn, A.M. 2009. Molecular assays reveal the presence and diversity of genes encoding pea footrot pathogenicity determinants in Nectria haematococca and in agricultural soils. J. App. Microbiol. 106: 1629–1639.
  • Eujayl, I., Erskine, W., Bayaa, B., Baum, M., and Pehu, E. 1998. Fusarium vascular wilt in lentil. Inheritance and identification of DNA markers for resistance. Plant Breeding 117: 497–499.
  • Evidente, A., Capasso, R., Vurro, M., and Bottalico, A. 1993. Ascosalitoxin, a phytotoxic trisubstituted salicylic aldehyde from Ascochyta pisi. Phytochemistry 34: 995–998.
  • Evidente, A., Cimmino, A., Fernández-Aparicio, M., Andolfi, A., Rubiales, D., and Motta, A. 2010. Polyphenols, including the new Peapolyphenols A-C, from pea root exudates stimulate Orobanche foetida seed germination. J. Agric. Food Chem. 58: 2902–2907.
  • Evidente, A., Cimmino, A., Fernández-Aparicio, M., Rubiales, D., Andolfi, A., and Melck, D. 2011. Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manage. Sci. 67: 1015–1022.
  • Evidente, A., Fernández-Aparicio, M., Cimmino, A., Rubiales, D., Andolfi, A., and Motta, A. 2009. Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett. 50: 6955–6958.
  • Fadl, F.A. M. 1983. Induced mutations in beans and peas for resistance to rust. Vienna: IAEA.
  • Faleiro, F.G., Vinhadelli, W.S., Ragagnin, V.A., Correa, R.X., Moreira, M.A., and de Barros, E.G. 2000. RAPD markers linked to a block of genes conferring rust resistance to the common bean. Genet. Mol. Biol. 23: 399–402.
  • Falloon, R.E. and Viljanen-Rollinson, S.L. H. 2001. Powdery mildew. In: Compendium of pea diseases and pests, pp. 28–29. Kraft, J.M., and Plfleger, F.L., Eds. American Phytopathological Society, St. Paul, Minnesota, USA.
  • Feng, J., Chang, K.F., Hwang, S.F., Strelkov, S.E., Conner, R.L., Gossen, B.D., McLaren, D.L., and Chen, Y.Y. 2012. Analysis of expressed sequence tags derived from pea leaves infected by Peronospora viciae f. sp. pisi. Ann. Appl. Biol. 161: 214–222.
  • Fernández-Aparicio, M., Flores, F., and Rubiales, D. 2009a. Field response of Lathyrus cicera germplasm to crenate broomrape (Orobanche crenata). Field Crops Res. 113: 321–327.
  • Fernández-Aparicio, M., Flores, F., and Rubiales, D., 2011a. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res. 125: 92–97.
  • Fernández-Aparicio, M., Moral, A., Kharrat, M., and Rubiales, D. 2012. Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica 186: 897–905.
  • Fernández-Aparicio, M., Sillero, J.C., Pérez-de-Luque, A., and Rubiales, D. 2008a. Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res. 48: 85–94.
  • Fernández-Aparicio, M., Sillero, J.C., and Rubiales, D. 2008b. Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Prot. 28: 7–12.
  • Fernández-Aparicio, M., Sillero, J.C., and Rubiales, D. 2009b. Resistance to broomrape in wild lentils (Lens spp.). Plant Breeding 128: 266–270.
  • Fernández-Aparicio, M., Westwood, J.H., and Rubiales, D. 2011b. Agronomic, breeding, and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany 89: 813–826.
  • Fernández-Aparicio, M., Yoneyama, K., and Rubiales, D. 2011c. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci. Res. 21: 55–61.
  • Fernie, A.R. and Schauer, N. 2009. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 25: 39–48.
  • Ferradini, N., Nicolia, A., Capomaccio, S., Veronesi, F., and Rosellini, D. 2011. Assessment of simple marker-free genetic transformation techniques in alfalfa. Plant Cell Rep. 30: 1991–2000.
  • Fiala, J.V., Tullu, A., Banniza, S., Seguin-Swartz, G., Vandenberg, A. 2009. Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medic.). Crop Sci. 49: 825–830.
  • Fiehn, O. 2002. Metabolomics - the link between genotypes and phenotypes. Plant Mol. Biol. 48: 155–171.
  • Flanagan, J.C., Lang, J.M., Darling, A.E., Eisen, J.A., and Coil, D.A. 2013. Draft genome sequence of Curtobacterium flaccumfaciens Strain UCD-AKU (Phylum Actinobacteria). Genome Announce. 1: E00244–13.
  • Fondevilla, S., Almeida, N.F., Satovic, Z., Rubiales, D., Vaz Patto, M.C., Cubero, J.I., and Torres, A.M. 2011a. Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 182: 43–52.
  • Fondevilla, S., Avila, C.M., Cubero, J.I., and Rubiales, D. 2005. Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breeding 124: 313–315.
  • Fondevilla, S., Carver, T.L. W., Moreno, M.T., and Rubiales, D. 2006. Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur. J. Plant Pathol. 115: 309–321.
  • Fondevilla, S., Carver, T.L. W., Moreno, M.T., and Rubiales, D. 2007a. Identification and characterisation of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breeding 126: 113–119.
  • Fondevilla, S., Chattopadhyay, C., Khare, N., and Rubiales, D. 2013. Erysiphe trifolii is able to overcome er1 and Er3, but not er2, resistance genes in pea. Eur. J. Plant Pathol. 136: 557–563.
  • Fondevilla, S., Cubero, J.I., and Rubiales, D. 2007b. Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Eur. J. Plant Pathol. 119: 53–58.
  • Fondevilla, S., Cubero, J.I., and Rubiales, D. 2011b. Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breeding 130: 281–282.
  • Fondevilla, S., Fernández-Aparicio, M., Satovic, Z., Emeran, A.A., Torres, A.M., Moreno, M.T., and Rubiales, D. 2010. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol. Breeding 25: 259–272.
  • Fondevilla, S., Küster, H.I. , Krajinski, F.I. , Cubero, J.I., and Rubiales, D. 2011c. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 12: 28.
  • Fondevilla, S., Rotter, B., Krezdorn, N., Jüngling, R., Winter, P., and Rubiales, D. 2014. Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE transcriptome profiling. Plant Mol. Biol. Rep. 32: 258–269.
  • Fondevilla, S., Rubiales, D., Moreno, M.T., and Torres, A.M. 2008a. Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol. Breeding 22: 193–200.
  • Fondevilla, S., Rubiales, D., Zatovic, S., and Torres, A.M. 2008b. Mapping of quantitative trait loci for resistanceto Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol. Breeding 21: 439–454.
  • Fondevilla, S., Torres, A.M., Moreno, M.T., and Rubiales, D. 2007c. Identification of a new gene for resistance to Erysiphe pisi Syd. in pea. Breeding Sci. 57: 181–184.
  • Ford, R., Pang, E.C. K., and Taylor, P.W. J. 1999. Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor. Appl. Genet. 98: 93–98.
  • Ford, R.R. and Taylor, P.W. J. 2003. Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor. Appl. Genet. 107: 910–916.
  • Foremska, E., Marcinkowska, J., and Chelkowski, J. 1990. Formation of ascochitine by plant pathogens of the genus Ascochyta. Mycotoxin Res. 6: 93–97.
  • Foster-Hartnett, D., Danesh, D., Penuela, S., Sharopova, N., Endre, G., Vandenbosch, K.A., Young, N.D., and Samac, D.A. 2007. Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol. Plant Pathol. 8: 307–319.
  • Fourie, H., Mc Donald, A., De Waele, D., and Jordaan, A. 2013. Comparative cellular responses in susceptible and resistant soybean cultivars infected by Meloidogyne incognita. Nematology 15: 1–14.
  • Frame, B., Yu, K., Christie, B.R., and Pauls, K.P. 1991. In vitro selection for resistance to verticillium wilt in alfalfa (Medicago sativa L.) using a fungal culture filtrate. Physiol. Mol. Plant Pathol. 38: 325–340.
  • Franssen, S.U., Shrestha, R.P., Bräutigam, A., Bornberg-Bauer, E., and Weber, A.P. M. 2011. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12: 227.
  • Fratini, R. and Ruiz, M.L. 2006. Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150: 271–280.
  • Gadh, I.P. S. and Bernier, C.C. 1984. Resistance in faba bean (Vicia faba) to bean yellow mosaic virus. Plant Dis. 68: 109–111.
  • Gao, L., Tu, Z.J., Millett, B.P., and Bradeen, J.M. 2013. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC genomics 14: 340.
  • Gao, L.L., Anderson, J.P., Klingler, J.P., Nair, R.M., Edwards, O.R., and Singh, K.S. 2007. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol. Plant-Microbe Interact. 20: 82–93.
  • Gao, L.L., Kamphuis, L.G., Kakar, K., Edwards, O.R., Udvardi, M.K., and Singh, K.B. 2010. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytol. 186: 980–994.
  • Gao, L.L., Klingler, J.P., Anderson, J.P., Edwards, O.R., and Singh, K.B. 2008. Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol. 146: 996–1009.
  • Gao, Z., Eyers, S., Thomas, C., Ellis, N., and Maule, A. 2004. Identification of markers tightly linked to sbm recessive genes for resistance to Pea seed-borne mosaic virus. Theor. Appl. Genet. 109: 488–494.
  • García, P., Sáen de Miera, L., Vaquero, F., Vence, J., Jungling, R., Frank, A., Horres, R., Krezdorn, N., Rotter, B., Winter, P., Kahl, G., and Pérez de la Vega, M. 2013. DeepSuperSAGE transcription profiling reveals significant changes of the lentil (Lens culinaris Medik.) transcriptome in response to A. lentis infection. Phytopathol. Mediterr. 52: 235.
  • Garcia-Villalba, R., Leon, C., Dinelli, G., Segura-Carretero, A., Fernandez-Gutierrez, A., Garcia-Canas, V., and Cifuentes, A. 2008. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. J. Chromatogr. A. 1195: 164–173.
  • Gardiner, D.M., Stiller, J., Covarelli, L., Lindeberg, M., Shivas, R.G., and Manners, J.M. 2013. Genome sequences of Pseudomonas spp. isolated from cereal crops. Genome Announc. 1: E00209–13.
  • Garg, R., Patel, R.K., Tyagi, A.K., and Jain, M. 2011. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18: 53–63.
  • Gaulin, E., Jacquet, C., Bottin, A., and Dumas, B. 2007. Root rot disease of legumes caused by Aphanomyces euteiches. Mol. Plant Pathol. 8: 539–548.
  • Gaur, R., Azam, S., Jeena, G., Khan, A.W., Choudhary, S., Jain, M., Yadav, G., Tyagi, A.K., Chattopadhyay, D., and Bhatia, S. 2012. High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.) DNA Res. 19: 357–373.
  • Gil, J., Martín, L.M., and Cubero, J.I. 1987. Genetics of resistance in Vicia sativa L. to Orobanche crenata Forsk. Plant Breeding 99: 134–143.
  • Goldwasser, Y., Hershenhorn, J., Plakhine, D., Kleifeld, Y., and Rubin, B. 1999. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol. Molec. Plant Pathol. 54: 87–96.
  • Gosal, S.S. and Bajaj, Y.P. S. 1983. Interspecific hybridization between Vigna mungo and Vigna radiata through embryo culture. Euphytica 32: 129–137.
  • Govrin, E.M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10: 751–757.
  • Graham, P.H. and Vance, C.P. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131: 872–877.
  • Grajal-Martin, M.J. and Muehlbauer, F.J. 2002. Genomic location of the Fw gene for resistance to fusarium wilt race 1 in peas. J. Heredity 93: 291–293.
  • Griga, M., Stejskal, J., and Beber, K. 1995. Analysis of tissue culture derived variation in pea (Pisum sativum L.) – preliminary results. Euphytica 85: 335–339.
  • Gritton, E.T. and Hagedorn, D.J. 1979. Mutation breeding for pea (Pisum sativum L.) root rot resistance. Agronomy Abstract 62.
  • Groll, M., Schellenberg, B., Bachmann, A.S., Archer, C.R., Huber, R., Powell, T.K., Lindow, S., Kaiser, M., and Dudler, R. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452: 755–758.
  • Grunwald, N.J., Coffman, V.A., and Kraft, J.M. 2003. Sources of partial resistance to fusarium root rot in the Pisum core collection. Plant Dis. 87: 1197–1200.
  • Gualtieri, G., Kulikova, O., Limpens, E., Kim, D.J., Cook, D.R., Bisseling, T., and Geurts, R. 2002. Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol. Biol. 50: 225–235.
  • Gulati, A., Schryer, P., and McHughen, A. 2002. Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell. Dev-Pl. 38: 316–324.
  • Guo, S., Kamphuis, L.G. , Gao, L.L., Klingler, J.P., Lichtenzveig, J., Edwards, O.R., and Singh, K.B. 2012. Identification of distinct quantitative trait loci associated with defense against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. J. Exp. Bot. 63: 3913–3922.
  • Gupta, G.K., Sharma, S.K., and Ramteke, R. 2012. Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopath. 160: 167–180.
  • Gupta, S., Chakraborti, D., Rangi, R.K., Basu, D., and Das, S. 2009. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) interaction through cDNA-AFLP analysis. Phytopathology 99: 1245–1257.
  • Gupta, S., Chakraborti, D., Sengupta, A., Basu, D., and Das, S. 2010. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race 1. PLoS ONE 5: e9030.
  • Gutiérrez, N., Palomino, C., Satovic, Z., Ruiz-Rodríguez, M.D. , Vitale, S., Gutiérrez, M.V. , Rubiales, D., Kharrat, M., Amri, M., Emeran, A., Cubero, J.I. , Atienza, S., Torres, A.M. , and Avila, C.M. 2013. QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Mol. Breeding 32: 909–922.
  • Gygi, S.P. and Aebersold, R. 2000. Mass spectrometry and proteomics. Curr. Opin. Chem. Biol. 4: 489–494.
  • Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19: 1720–1730.
  • Haegeman, A., Mantelin, S., Jones, J.T., and Gheysen, G. 2012. Functional roles of effectors of plant-parasitic nematodes. Gene 492: 19–31.
  • Hagedorn, D.J. and Gritton, E.T. 1973. Inheritance of resistance to the pea seed-borne mosaic virus. Phytopathology 63: 1130–1133.
  • Hakeem, K.R., Khan, F., Chandna, R., Siddiqui, T.O., and Iqbal, M. 2012. Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype. Appl. Biochem. Biotech. 168: 2309–2329.
  • Hammatt, N., Lister, A., Jones, B., Cocking, E.C., and Davey, M.R. 1992. Shoot formation from somatic hybrid callus between soybean and a perennial wild relative. Plant Sci. 85: 215–222.
  • Hammett, K.R. W., Murray, B.G., Markham, K.R., and Hallett, I.C. 1994. Interspecific hybridization between Lathyrus odoratus and L. belinensis. Int. J. Plant Sci. 155: 763–771.
  • Hamon, C., Coyne, C.J., McGee, R.J., Lesne, A., Esnault, R., Mangin, P., Herve, M., Le Goff, I., Deniot, G., Roux-Duparque, M., Morin, G., McPhee, K.E., Delourme, R., Baranger, A., and Pilet-Nayel, M.L. 2013. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC Plant Biol. 13: 45.
  • Hamwieh, A., Udupa, S.M., Choumane, W., Sarker, A., Dreyer, F., Jung, C. and Baum M., 2005. A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor. Appl. Genet. 110: 669–677.
  • Hanounik, S. 1980. Effect of chemical treatments and host genotypes on disease severity/yield relationships of ascochyta blight in faba beans. FABIS Newslett. 2: 50.
  • Hanounik, S.B., Halila, H., and Harrabi, M. 1986. Resistance in Vicia faba to stem nematodes (Ditylenchus dipsaci). FABIS Newsl. 16: 37–39.
  • Hanounik, S.B. and Robertson, L.D. 1988. New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 72: 696–698.
  • Harland, S.C. 1948. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2: 263–269.
  • Harmel, N., Letocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E., and Francis, F. 2008. Identification of aphid salivary proteins: A proteomic investigation of Myzus persicae. Insect Mol. Biol. 17: 165–174.
  • Hartman, C.L., McCoy, T.J., and Knous, T.R. 1984. Selection of alfalfa (Medicago sativa) cell lines and regeneration of plants resistant to the toxin(s) produced by Fusarium oxysporum f.sp. medicaginis. Plant Sci. Lett. 34: 183–194.
  • Hassan, F., Meens, J., Jacobsen, H.J., and Kiesecker, H. 2009. A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro. J. Biotech. 143: 302–308.
  • He, S.Y. and Jin, Q. 2003. The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6: 15–19.
  • He, X.Z. and Dixon, R.A. 2000. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4 ‘-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12: 1689–1702.
  • Heringa, R.J., Van Norel, A., and Tazelaar, M.F. 1969. Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18: 163–169.
  • Hernandez, G., Ramirez, M.A., Valdes-Lopez, O.A., Tesfaye, M.A., Graham, M.A. , Czechowski, T., Schlereth, A., Wandrey, M., Erban, A., Cheung, F., Wu, H.C., Lara, M., Town, C.D., Kopka, J., Udvardi, M.K., and Vance, C.P. 2007. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiol. 144: 752–767.
  • Hernandez, G., Valdes-Lopez, O., Ramirez, M., Goffard, N., Weiller, G., Aparicio-Fabre, R., Fuentes, S.I., Erban, A., Kopka, J., Udvardi, M.K., and Vance, C.P. 2009. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol. 151: 1221–1238.
  • Higgins, T.J. V., Gollasch, S., Molvig, L., Moore, A., Popelka, C., Armstrong, J., Mahon, R., Ehlers, J., Huesing, J., Margam, V., Shade, R., and Murdock, L. 2012. Insect-protected cowpeas using gene technology. In: Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference, pp. 131–137. Boukar, O.C., Fatokun, C.A., Lopez, K., and Tamo, M., Eds., IITA, Saly, Senegal.
  • Hijano, E.H., Barnes, D.K., and Frosheiser, F.I. 1983. Inheritance of resistance to fusarium wilt in alfalfa. Crop Sci. 23: 31–34.
  • Hill, C.B., Li, Y., and Hartman, G.L. 2004. Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). J. Econ. Entomol. 97: 1071–1077.
  • Hiraoka, Y., Ueda, H., and Sugimoto, Y. 2009. Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J. Exp. Bot. 60: 641–650.
  • Hiremath, P.J., Farmer, A., Cannon, S.B., Woodward, J., Kudapa, H., Tuteja, R., Kumar, A., BhanuPrakash, A., Mulaosmanovic, B., Gujaria, N., Krishnamurthy, L., Gaur, P.M., KaviKishor, P.B., Shah, T., Srinivasan, R., Lohse, M., Xiao, Y., Town, C.D., Cook, D.R., May, G.D., and Varshney, R.K. 2011. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotech. J. 9: 922–931.
  • Hoffmann, D., Jiang, Q., Men, A., Kinkema, M., and Gresshoff, P.M. 2007. Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus. J. Plant Physiol. 164: 460–469.
  • Hogenhout, S.A. and Bos, J.I. B. 2011. Effector proteins that modulate plant-insect interactions. Curr. Opin. Plant Biol. 14: 422–428.
  • Holme, I.B., Wendt, T., and Holm, P.B. 2013. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotech. J. 11: 395–407.
  • Horst, I., Welham, T., Kelly, S., Kaneko, T., Sato, S., Tabata, S., Parniske, M., and Wang, T.L. 2007. TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol. 144: 806–820.
  • Hoshino, T., Takagi, Y., and Anai, T. 2010. Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a mutant alleles. Breed. Sci. 60: 419–425.
  • Huang, K., Mellor, K.E., Paul, S.N., Lawson, M.J., Mackey, A.J., and Timko 2012a. Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. BMC Genomics 13: 402.
  • Huang, J., Yan, L., Lei, Y., Jiang, H., Ren, X., and Liao, B. 2012b. Expressed sequence tags in cultivated peanut (Arachis hypogaea): discovery of genes in seed development and response to Ralstonia solanacearum challenge. J. Plant Res. 125: 755–769.
  • Humphry, M., Reinstädler, A., Ivanov, S., Bisseling, T., and Panstruga, R. 2011. Durable broadspectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol. Plant Pathol. 12: 866–878.
  • Hunter, P.J., Ellis, N., and Taylor, J.D. 2001. Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor. Appl. Genet. 103: 129–135.
  • Hyten, D.L., Hartman, G.L., Nelson, R.L., Frederick, R.D., Concibido, V.C., Narvel, J.M., and Cregan, P.B. 2007. Map location of the locus that confers resistance to soybean rust in soybean. Crop Sci. 47: 837–838.
  • Ibiza, V.P., Canizares, J., and Nuez, F. 2010. EcoTILLING in Capsicum species: Searching for new virus resistances. BMC Genom. 11: 631.
  • Ichinose, Y., Hisayasu, Y., Sanematsu, S., Ishiga, Y., Seki, H., Toyoda, K., Shiraishi, T., and Yamada, T. 2001. Molecular cloning and functional analysis of pea cDNA E86 encoding homologous protein to hypersensitivity-related hsr203J. Plant Sci. 160: 997–1006.
  • Infantino, A., Kharrat, M., Riccioni, L., Coyne, C.J., McPhee, K.E., and Grunwald, N.J. 2006. Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147: 201–221.
  • International Aphid Genomics Consortium, 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8: e1000313.
  • Iqbal, M., Yaegashi, S., Njiti, V., Ahsan, R., Cryder, K., and Lightfoot, D. 2002. Resistance locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f. sp. glycines. Mol. Gen. Genom. 268: 407–417.
  • Irigoyen, E.D. and Garbagnoli, C. 1997. Common bacteriosis in bean (Xanthomonas campestris pv. phaseoli [E.F. Smith] Dowson): detection, infection and transmission through seeds. Fitopatología 32: 166–172.
  • Iruela, M., Rubio, J., Barro, F., Cubero, J.I., Millán, T., and Gil, J. 2006. Detection of two QTL for resistance to ascochyt ablight in an intraspecific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated to resistance. Theor. Appl. Genet. 112: 278–287.
  • Isaac, I. and Rogers, W.G. 1974. Verticillium wilt of pea (Pisum sativum). Ann. Appl. Biol. 76: 27–35.
  • Ishimoto, M., Sato, T., Chrispeels, M.J., and Kitamura, K. 1996. Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol. Exp. Appl. 79: 309–315.
  • Islam, M.S., Haque, M.S., Islam, M.M., Emdad, E.M., Halim, A., Hossen, Q.M., Hossain, M.Z., Ahmed, B., Rahim, S., Rahman, M.S., Alam, M.M., Hou, S., Wan, X., Saito, J.A., and Alam, M. 2012. Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13: 493.
  • Jain, S., Srivastava, S., Sarin, N.B., and Kav, N.N. V. 2006. Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol. Bioch. 44: 253–259.
  • Jain, S.M. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118: 153–166.
  • Jaiswal, P., Cheruku, J.R., Kumar, K., Yadav, S., Singh, A., Kumari, P., Dube, S.C., Upadhyaya, K.C., and Verma, P.K. 2012. Differential transcript accumulation in chickpea during early phases of compatible interaction with a necrotrophic fungus Ascochyta rabiei. Mol. Biol. Rep. 39: 4635–4646.
  • Janila, P. and Sharma, B. 2004. RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breeding 123: 271–274.
  • Jiang, H., Liao, B., Ren, X., Lei, Y., Mace, E., Fu, T., and Crouch, J.H. 2007. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J. Genet. Genomics 34: 544–554.
  • Jiang, H., Ren, X., Chen, Y., Huang, L., Zhou, X., Huang, J., Froenicke, L., Yu, J., Guo, B., and Liao, B. 2013. Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet. Res. 11: 77–83.
  • Jin, H., Hartman, G.L., Nickell, D., and Widholm, J.M. 1996. Phytotoxicity of culture filtrate from Fusarium solani, the causal agent of sudden death syndrome of soybean. Plant Dis. 80: 922–927.
  • Johansen, E., Rasmussen, O.F., Heide, M., and Borkhardt, B. 1991. The complete nucleotide sequence of pea seed-borne mosaic virus RNA. J. Gen Virol. 72: 2625–2632.
  • Jones, J.D. G. and Dangl, J.L., 2006. The plant immune system. Nature 444: 323–329.
  • Jorrín, J.V., Maldonado, A.M., and Castillejo, M.A. 2007. Plant proteome analysis: A 2006 update. Proteomics 7: 2947–2962.
  • Jun, T.H, Mian, M.A. R., and Michel, A.P. 2012. Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Theor. Appl. Genet. 124: 13–22.
  • Kachroo, A., Fu, D.Q., Havens, W., Navarre, D., Kachroo, P., and Ghabrial, S.A. 2008. An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol. Plant Microbe Interact. 21: 564–575.
  • Kaimori, N., Senda, M., Ishikawa, R., Akada, S., Harada, T., and Niizeki, M. 1998. Asymmetric somatic cell hybrids between alfalfa and birdsfoot trefoil. Breeding Sci. 48: 29–34.
  • Kakar, K., Wandrey, M., Czechowski, T., Gaertner, T., Scheible, W.R., Stitt, M., Torres-Jerez, I., Xiao, Y., Redman, J., Wu, H., Cheung, F., Town, C., and Udvardi, M. 2008. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4: 18.
  • Kamphuis, L.G., Gao, L.L., and Singh, K.B. 2012a. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Plant Biol. 12: 101.
  • Kamphuis, L.G., Williams, A.H., Küster, H., Trengove, R.D., Singh, K.B., Oliver, R.P., and Ellwood, S.R. 2012b. Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula. Mol. Plant Pathol. 13: 593–603.
  • Kamphuis, L.G., Zulak, K., Gao, L., Anderson, J.P., and Singh, K.B. 2013a. Plant aphid interactions with a focus on legumes. Funct. Plant Biol. 40(12): 1271–1284.
  • Kamphuis L.G., Lichtenzveig J., Peng K., Guo S-M., Klingler J.P., Siddique K.H. M., Gao L.L., and Singh K.B. 2013b. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. J. Exp. Botany 64(16): 5157–5172.
  • Katam, R., Basha, S.M., Suravajhala, P., and Pechan, T. 2010. Analysis of peanut leaf proteome. J. Proteome Res. 9: 2236–2254.
  • Katoch, V., Sharma, S., Pathania, S., Banayal, D.K., Sharma, S.K., and Rathour, R. 2010. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol. Breeding 25: 229–237.
  • Kaur, S. 1995. Phytotoxicity of solanapyrones produced by the fungus Ascochyta rabiei and their possible role in blight of chickpea (Cicer arietinum). Plant Sci. 109: 23–29.
  • Kaur, S., Pembleton, L.W., Cogan, N.O., Savin, K.W., Leonforte, T., Paull, J., Materne, M., and Forster, J.W. 2012. Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13: 104.
  • Kav, N.N. V., Srivastava, S., Goonewardene, L., and Blade, S.F. 2004. Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann. Appl. Biol. 145: 217–230.
  • Keneni, G., Bekele, E., Getu, E., Imtiaz, M., Damte, B.M., and Dagne, K. 2011. Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability 3: 1399–1415.
  • Khan, T.N., Timmerman-Vaughan, G.M., Rubiales, D., Warkentin, T.D., Siddique, K.H. M., Erskine, W., and Barbetti, M.J. 2013. Didymella pinodes and its management in field pea: challenges and opportunities. Field Crops Res. 148: 61–77.
  • Kharkwal, M.C., Cagirgan, M.I., Toker, C., Shah, T., Islam, M.M., Nakagawa, H., Xu, X., and Si P. 2010. Legume mutant varieties for food, feed and environmental benefits. In: 5th International food legumes research conference (IFLRC) and 7th European conference on grain legumes (AEP VII), pp. 196. AEP, Antalya, Turkey.
  • Kharrat, M., Abbes, Z., and Amri, M. 2010. A new faba bean small seeded variety Najeh tolerant to Orobanche registered in the Tunisian catalogue. Tunis. J. Plant Prot. 5: 125–130.
  • Kharrat, M., Le Guen, J., and Tivoli, B. 2006. Genetics of resistance to 3 isolates of Ascochyta fabae on faba bean (Vicia faba L.) in controlled conditions. Euphytica 151: 49–61.
  • Khedikar, Y.P., Gowda, M.V. C., Sarvamangala, C., Patgar, K.V., Upadhyaya, H.D., and Varshney, R.K. 2010. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 121: 971–984.
  • Khetarpal, R.K., Maury, Y., Cousin, R., Burghofer, A., and Varma, A. 1990. Studies on resistance of pea to pea seed borne mosaic virus pathotypes. Ann. Appl. Biol. 116: 297–304.
  • Kim, K.H., Kang, Y.J., Kim, D.H., Yoon, M.Y., Moon, J.K., Kim, M.Y., Van, K., and Lee, S.H. 2011. RNA-seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and –susceptible alleles. DNA Res. 18: 483–497.
  • Kim, M.Y., Lee, S., Van, K., Kim, T.H., Jeong, S.C., Choi, I.Y., Kim, D.S., Lee, Y.S., Park, D., Ma, J., Kim, W.Y., Kim, B.C., Park, S., Lee, K.A., Kim, D.H., Kim, K.H., Shin, J.H., Jang, Y.E., Kim, K.D., Liu, W.X., Chaisan, T., Kang, Y.J., Lee, Y.H., Kim, K.H., Moon, J.K., Schmutz, J., Jackson, S.A., Bhak, J., and Lee, S.H. 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. USA 107: 22032–22037.
  • Kitch, L.W., Shade, R.E., and Murdock, L.L. 1991. Resistance to cowpea weevil (Callosobruchus maculate) larva in pods of cowpea (Vigna Unguiculata). Entomol. Exp. Appl. 60: 183–192.
  • Klingler, J., Creasy, R., Gao, L., Nair, M.R., Suazo Calix, A., Spafford-Jacob, H., Edwards, O.R., and Singh, K.B. 2005. Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol. 137: 1445–1455.
  • Klingler, J.P., Edwards, O.R., and Singh, K.B. 2007. Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytol. 173: 630–640.
  • Klingler, J.P., Nair, R.M., Edwards, O.R., and Singh, K.B. 2009. A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J. Exp. Bot. 60: 4115–4127.
  • Klosterman, S.J., Subbarao, K.V., Kang, S., Veronese, P., Gold, S.E., Thomma, B.P. H. J., Chen, Z., Henrissat, B., Lee, Y.H., Park, J., Garcia-Pedrajas, M.D., Barbara, D.J., Anchieta, A., de Jonge, R., Santhanam, P., Maruthachalam, K., Atallah, Z., Amyotte, S.G., Paz, Z., Inderbitzin, P., Hayes, R.J., Heiman, D.I., Young, S., Zeng, Q., Engels, R., Galagan, J., Cuomo, C.A., Dobinson, K.F., and Ma, L.J. 2011. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 7: e1002137.
  • Knoll, J.E., Ramos, M.L., Zeng, Y., Holbrook, C.C., Chow, M., Chen, S., Maleki, S., Bhattacharya, A., and Ozias-Akins, P. 2011. TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol. 11: 81.
  • Koenning, S.R., Overstreet, C., Noling, J.W., Donald, P.A., Becker, J.O., and Fortnum, B.A. 1999. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J. Nematol. 31: 587–618.
  • Kohpina, S., Knight, R., and Stoddard, F.L. 2000. Evaluating faba beans for resistance to ascochyta blight using detached organs. Aust. J. Exp. Agric. 40: 707–713.
  • Koike, M. and Nanbu, K. 1997. Phenylalanine ammonia-lyase activity in alfalfa suspension cultures treated with conidia and elicitors of Verticillium albo-atrum. Biol. Plantarum 39: 349–353.
  • Kolkman, J.M. and Kelly, J.D. 2003. QTL conferring resistance and avoidance to white mold in common bean. Crop Sci. 43: 539–548.
  • Komatsu, S. and Ahsan, N. 2009. Soybean proteomics and its application to functional analysis. J. Proteomics 72: 325–336.
  • Komatsu, S., Nanjo, Y., and Nishimura, M. 2013. Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J. Proteomics 79: 231–250.
  • Kottapalli, K.R., Rakwal, R., Shibato, J., Burow, G., Tissue, D., Burke, J., and Payton, P. 2009. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant Cell Environ. 32: 380–407.
  • Kraft, J.M. 1974. Influence of seedling exudates on resistance of peas to Fusarium and Pythium root-rot. Phytopathology 64: 190–193.
  • Kraft, J.M. 1994. Fusarium wilt of peas (A review). Agronomie 14: 561–567.
  • Kraft, J.M. 1998. A search for resistance in peas to Mycosphaerella pinodes. Plant Dis. 82: 251–253.
  • Kraft, J.M., Larsen, R.C., and Inglis, D.A. 1998. Diseases of pea. In: The Pathology of Food and Pasture Legumes, pp. 325–370. Allen, D.J., and Lenné, J.M., eds. CAB International,Wallingford, UK.
  • Kraft, J.M. and Pfleger, F.L. 2001. Compendium of pea diseases and pests. APS Press, St Paul, Minnesota, USA.
  • Krishna, G., Reddy, P.S., Ramteke, P.W., and Bhattacharya, P.S. 2010. Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.]. Plant Cell Rep. 29: 1079–1095.
  • Kumari, S.G. and Makkouk, K.M. 2003. Differentiation among Bean leaf roll virus susceptible and resistant lentil and faba bean genotypes on the basis of virus movement and multiplication. J. Phytopathol. 151: 19–25.
  • Kurowska, M., Daszkowska-Golec, A., Gruszka, D., Marzec, M., Szurman, M., Szarejko, I., and Maluszynski, M. 2011. TILLING - a shortcut in functional genomics. J. Appl. Genet. 52: 371–390.
  • Kushwaha, C., Chand, R., and Srivastava, C. 2006. Role of aeciospores in outbreaks of pea (Pisum sativum) rust (Uromyces fabae). Eur. J. Plant. Pathol. 115: 323–330.
  • Küster, H., Becker, A., Firnhaber, C., Hohnjec, N., Manthey, K., Perlick, A.M., Bekel, T., Dondrup, M., Henckel, K., Goesmann, A., Meyer, F., Wipf, D., Requena, N., Hildebrandt, I., Hampp, R., Nehls, U., Krajinski, F., Franken, P., and Pühler, A. 2007. Development of bioinformatic tools to support EST-sequencing, in silicoand microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 68: 19–32.
  • Kushida, A., Tazawa, A., Aoyama, S., and Tomooka, N. 2013. Novel sources of resistance to the soybean cyst nematode (Heterodera glycines) found in wild relatives of azuki bean (Vigna angularis) and their characteristics of resistance. Gen. Res. Crop Evol. 60: 985–994.
  • Lane, J.A., Bailey, J.A., Butler, R.C., and Terry, P.J. 1993. Resistance of cowpea [Vigna unguiculata (L.) Walp.] to Striga gesnerioides (Willd) Vatke, a parasitic angiosperm. New Phytol. 125: 405–412.
  • Larkin, P.J., and Scowcroft, W.R. 1981. Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor. Appl. Gen. 60: 197–214.
  • Latunde-Dada, A.O. and Lucas, J.A. 1988. Somaclonal variation and resistance to verticillium wilt in lucerne, Medicago sativa L., plants regenerated from callus. Plant Sci. 58: 111–119.
  • Lazaridou, T.B. and Roupakias, D.G. 1993. Intraspecific variation in mean endosperm cell cycle time in Vicia faba L. and interspecific hybridization with Vicia narbonensis L. Plant Breeding 110: 9–15.
  • Le, B.H., Wagmaister, J.A., Kawashima, T., Bui, A.Q., Harada, J.J., and Goldberg, R.B. 2007. Using genomics to study legume seed development. Plant Physiol. 144: 562–574.
  • Lee, J., Lei, Z., Watson, B.S., and Sumner, L.W. 2013a. Sub-cellular proteomics of Medicago truncatula. Front. Plant Sc. 4: 112.
  • Lee, R.Y., Reiner, D., Dekan, G., Moore, A.E., Higgins, T.J. V., and Epstein, M.M. 2013b. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice. PLoS ONE 8: e52972.
  • Lee, S., Mian, M.A. R., McHale, L.K., Sneller, C.H., and Dorrance, A.E. 2013c. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A. Crop Sci. 53: 1022–1031.
  • Lei, Z., Dai, X., Watson B.S., Zhao, P.X., and Sumner, L.W. 2011. A legume specific protein database (LegProt) improves the number of identified peptides, confidence scores and overall protein identification success rates for legume proteomics. Phytochemistry 72: 1020–1207.
  • Leitão, S.T., Almeida, N.F., Moral, A., Rubiales, D., and Vaz Patto, M.C. 2013. Identification of resistance to rust (Uromyces appendiculatus) and powdery mildew (Erysiphe difussa) in Portuguese common bean germplasm. Plant Breeding 132: 654–657.
  • Le Signor, C., Savois, V., Aubert, G., Verdier, J., Nicolas, M., Pagny, G., Moussy, F., Sanchez, M., Baker, D., Clarke, J., and Thompson, R. 2009. Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnol. J. 7: 430–441.
  • Levenfors, J.P., Wikstrom, M., Persson, L., and Gerhardson, B. 2003. Pathogenicity of Aphanomyces spp. from different leguminous crops in Sweden. Eur. J. Plant Pathol. 109: 535–543.
  • Li, J.J., Wu, Y.M., Wang, T., and Liu, J.X. 2009. In vitro direct organogenesis and regeneration of Medicago sativa. Biol. Plantarum 53: 325–328.
  • Li, J. and Timko, M.P. 2009. Gene-for-gene resistance in Striga-cowpea associations. Science 325: 1094.
  • Li, J., Lis, K.E., and Timko, M.P. 2009. Molecular genetics of race-specific resistance of cowpea to Striga generioides (Willd.). Pest Manag. Sci. 65: 520–527.
  • Li, X. and Brummer, E.C., 2012. Applied genetics and genomics in alfalfa breeding. Agronomy 2: 40–61.
  • Li, Y.G., Tanner, G.J., Delves, A.C., and Larkin, P.J. 1993. Asymmetric somatic hybrid plants between Medicago sativa L. (alfalfa, lucerne) and Onobrychis viciifolia Scop (sainfoin). Theor. Appl. Genet. 87: 455–463.
  • Libault, M., Farmer, A., Joshi, T., Takahashi, K., Langley, R.J., Franklin, L.D., He, J., Xu, D., May, G., and Stacey, G. 2010. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 63: 86–99.
  • Lithourgidis, A.S., Roupakias, D.G., and Damalas, C.A., 2005. Inheritance of resistance to sclerotinia stem rot (Sclerotinia trifoliorum) in faba beans (Vicia faba L.). Field Crops Res. 91: 125–130.
  • Liu, S., Chougule, N.P., Vijayendran, D., and Bonning, B.C. 2012. Deep sequencing of the transcriptomes of soybean aphid and associated endosymbiots. PLoS ONE 7: e45161.
  • Liu, X., Liu, S., Jamai, A., Bendahmane, A., Lightfoot, D.A., Mitchum, M.G., and Meksem, K. 2011. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Funct. Integr. Genom. 11: 539–549.
  • Loganathan, M., Maruthasalam, S., Shiu, L.Y., Lien, W.C., Hsu, W.H., Lee, P.F., Yu, C.W., and Lin, C.H. 2010. Regeneration of soybean (Glycine max L. Merrill) through direct somatic embryogenesis from the immature embryonic shoot tip. In Vitro Cell. Dev-Pl. 46: 265–273.
  • Loridon, K., McPhee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M.L., Aubert, G., Rameau, C., Baranger, A., Coyne, C., Lejeune-Henaut, I., and Burstin, J. 2005. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet. 111: 1022–1031.
  • Lozano-Baena, M.D., Prats, E., Moreno, M.T., Rubiales, D., and Pérez-de-Luque, A. 2007. Medicago truncatula as a model host for legumes - parasitic plants interactions: Two phenotypes of resistance for one defensive mechanism. Plant Physiol. 145: 437–449.
  • Lozovaya, V.V., Lygin, A.V., Li, S., Hartman, G.L., and Widhohn, J.M. 2004. Biochemical response of soybean roots to Fusarium solani f. sp. glycines infection. Crop Sci. 44: 819–826.
  • Lozovaya, V.V., Lygin, A.V., Zernova, O.V., and Widholm, J.M. 2005. Genetic engineering of plant root disease resistance by modification of the phenylpropanoid pathway. Plant Biosyst. 139: 20–23.
  • Luzzi, B.M., Boerma, H.R., and Hussey, R.S. 1995. Inheritance of resistance to the peanut root-knot nematode in soybean. Crop Sci. 35: 50–53.
  • Lygin, A.V., Li, S., Vittal, R., Widholm, J.M., Hartman, G.L., and Lozovaya, V.V. 2009. The Importance of phenolic metabolism to limit the growth of Phakopsora pachyrhizi. Phytopathology 99: 1412–1420.
  • Ma, L.J., van der Does, H.C., Borkovich, K.A., Coleman, J.J., Daboussi, M.J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P.M., Kang, S., Shim, W.B., Woloshuk, C., Xie, X.H., Xu, J.R., Antoniw, J., Baker, S.E., Bluhm, B.H., Breakspear, A., Brown, D.W., Butchko, R.A. E., Chapman, S., Coulson, R., Coutinho, P.M., Danchin, E.G. J., Diener, A., Gale, L.R., Gardiner, D.M., Goff, S., Hammond-Kosack, K.E., Hilburn, K., Hua-Van, A., Jonkers, W., Kazan, K., Kodira, C.D., Koehrsen, M., Kumar, L., Lee, Y.H., Li, L., Manners, J.M., Miranda-Saavedra, D., Mukherjee, M., Park, G.S., Park, J.S., Park, S.Y., Proctor, R.H., Regev, A., Ruiz-Roldan, M.C., Sain, D., Sakthikumar, S., Sykes, S., Schwartz, D.C., Turgeon, B.G., Wapinski, I., Yoder, O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C.A., Kistler, H.C., and Rep, M. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373.
  • Maalouf, F., Khalil, S., Ahmed, S., Akintunde, A.N., Kharrat, M., El Shama’a, K., Hajjar, S., and Malhotra, R.S. 2011. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res. 124: 288–294.
  • Mackey, D., Holt, B.F., Wiig, A., and Dangl, J.L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in ArabidopsisCell 108: 743–754.
  • Mackie, J.M., Musial, J.M., Armour, D.J., Phan, H.T. T., Ellwood, S.E., Aitken, K.S., and Irwin, J.A. G. 2007Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerneTheor. Appl. Genet. 114: 1417–1426.
  • Madrid, E., Barilli, E., Gil, J., Huguet, T., Gentzbittel, L., and Rubiales, D., 2014. Detection of partial resistance quatitative trait loci against Didymella pinodes in Medicago truncatula. Mol. Breeding 33: 589–599.
  • Madrid, E., Gil, J., Rubiales, D., Krajinski, F., Schlereth, A., and Millán, T. 2010. Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatula–Uromyces striatus interaction. Theor. Appl. Genet. 121: 1311–1321.
  • Madrid, E., Palomino, C., Plötmer, A., Horres, R., Rotter, B., Winter, P., Krezdorn, N., and Torres, A.M. 2013. DeepSuperSage analysis of the Vicia faba transcriptome in response to Ascochyta fabae infection. Phytopathol. Mediterr. 52: 166–182.
  • Madrid, E., Rajesh, P.N., Rubio, J., Gil, J., Millán, T., and Chen, W. 2012. Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Rep. 31: 1033–1042.
  • Madrid, E., Rubiales, D., Moral, A., Moreno, M.T., Millán, T., Gil, J., and Rubio, J. 2008. Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum L. × Cicer reticulatum Lad.). Eur. J. Plant Pathol. 121: 43–53.
  • Mahuku, G.S., Jara, C., Cajiao, C., and Beebe, S. 2002. Sources of resistance to Colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools. Plant Dis. 86: 1383–1387.
  • Mahuku, G.S., Jara, C., Cajiao, C., and Beebe, S. 2003. Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130: 303–313.
  • Maiti, D., Sarkar, T.S., and Ghosh, S. 2012. Detection of S-Nitrosothiol and Nitrosylated proteins in Arachis hypogaea functional nodule: Response of the nitrogen fixing symbiont. PLoS ONE 7: e45526.
  • Mallikarjuna, N. 2003. Wide hybridization in important food legumes. In: Improvement strategies of Leguminosae biotechnology, pp 155–170. Jaiwal, P.K., and Singh, R.P., Eds., Kluwer Acad.
  • Mallikarjuna, N. and Hoisington, D. 2009. Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Sec. 1: 457–462.
  • Mallikarjuna, N., Pande, S., Jadhav, D.R., Sastri, D.C., and Rao, J.N. 2004. Introgression of disease resistance genes from Arachis kempff‐mercadoi into cultivated groundnut. Plant breeding 123: 573–576.
  • Mallikarjuna, N., Senapathy, S., Jadhav, D.R., Saxena, K., Sharma, H.C., Upadhyaya, H.D., Rathore, A., and Varshney, R. 2011. Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breeding 130: 507–514.
  • Marie, C., Deakin, W.J., Viprey, V., Kopciñska, J., Golinowski, W., Krishnan, H.B., Perret, X., and Broughton, W.J. 2003. Characterisation of Nops, Nodulation Outer Proteins, secreted via the type III secretion system of NGR234. Mol. Plant-Microbe Interact. 16: 743–751.
  • Marley, P.S. and Hillocks, R.J. 1996. Effect of root-knot nematodes (Meloidogyne spp.) on fusarium wilt in pigeonpea (Cajanus cajan). Field Crops Res. 46: 15–20.
  • Matheron, M.E. and Porchas, M. 2000. First report of stem and crown rot of garbanzo caused by Sclerotinia minor in the United States and by Sclerotinia sclerotiorum in Arizona. Plant Dis. 84: 1250.
  • Mathesius, U. 2009. Comparative proteomic studies of root-microbe interactions. J. Proteomics 72: 353–366.
  • Matsui, H, Nakamura, G., Ishiga, Y., Toshima, H., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y. 2004. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products. Mol. Genet. Genomics 271: 1–10.
  • McClendon, M.T., Inglis, D.A., McPhee, K.E., and Coyne, C.J. 2002. DNA markers for fusarium wilt race 1 resistance gene in pea. J. Amer. Soc. Hort. Sci. 127: 602–607.
  • McCord, P.H. 2012. Relationship of resistance to Meloidogyne chitwoodi (race 2) and M. hapla in alfalfa. J. Nematol. 44: 387–390.
  • McDonald, G.K. and Peck, D. 2009. Effects of crop rotation, residue retention and sowing time on the incidence and survival of ascochyta blight and its effect on grain yield of field peas (Pisum sativum L.). Field Crop Res. 111: 11–21.
  • McGarvery, G.B. and Pocs, R. 2006. Metabolite profiling as a tool for investigation of the metabolic response of soybean infection by Phytophthora soja. In: Proceedings from the 4th international plant metabolomics conference. (Ward, J. L. and Beale, M. H., eds.). Metabolomics 2: 328.
  • McLean, R.J. and Byth, D.E. 1981. Histological studies of the prepenetration development and penetration of soybeans by rust, Phakopsora pachyrhizi Syd. Aust. J. Agric. Res. 32: 435–443.
  • McPhee, K.E., Tullu, A., Kraft, J.M., and Muehlbauer, F.J. 1999. Resistance to fusarium wilt race 2 in the Pisum core collection. J. Amer. Soc. Hort. Sci. 124: 28–31.
  • Melo, P.M., Silva, L.S., Ribeiro, I., Seabra, A.R., and Carvalho, H.G. 2011. Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol. 157: 1505–1517.
  • Mendgen, K. 1978. Attachment of bean rust cell wall material to host and non-host plant tissue. Arch. Microbiol. 119: 113–117.
  • Mian, M.A. R,, Kang, S.T., Beil, S.E., and Hammond, R.B. 2008. Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theor. Appl. Genet. 117: 955–962.
  • Mian, M.A. R., Wang, T.Y., Phillips, D.V., Alvernaz, J., and Boerman, H.R. 1999. Molecular mapping of the Rcs3 gene for resistance to frogeye leaf spot in soybean. Crop Sci. 39: 1687–1691.
  • Michelmore, R., Paran, I., and Keselli, V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828–9832.
  • Micke, A. 1984. Mutation breeding of grain legumes. Plant Soil 82: 337–357.
  • Miklas, P.N., Kelly, J.D., Beebe, S.E., and Blair, M.W. 2006. Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147: 105–131.
  • Miklos, J.A., Alibhai, M.F., Bledig, S.A., Connor-Ward, D.C., Gao, A.G., Holmes, B.A., Kolacz, K.H., Kabuye, V.T., Macrae, T.C., Paradise, M.S., Toedebusch, A.S., and Harrison, L.A. 2007. Characterization of soybean exhibiting high expression of a synthetic transgene that confers a high degree of resistance to Lepidopteran pests. Crop Sci. 47: 148–157.
  • Millan, T., Clarke, H.J., Siddique, K.H. M., Buhariwalla, H.K., Gaur, P.M., Kumar, J., Gil, J., Kahl, G., and Winter, P. 2006. Chickpea molecular breeding: new tools and concepts. Euphytica 147: 81–103.
  • Millan, T., Winter, P., Jungling, R., Gil, J., Rubio, J., Cho, S., Cobos, M.J., Iruela, M., Rajesh, P.N., Tekeoglu, M., Kahl, G., and Muehlbauer, F.J. 2010. A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175: 175–189.
  • Milton, J.M. and Isaac, I. 1976. Verticillium wilt of clover. Plant Pathol. 25: 119–121.
  • Mizukami, Y., Kato, M., Takamizo, T., Kanbe, M., Inami, S., and Hattori, K. 2006. Interspecific hybrids between Medicago sativa L. and annual Medicago containing alfafa weevil resistance. Plant Cell Tiss. Org. 84: 79–88.
  • Mmbaga, M.T., Steadman, J.R., and Roberts, J.J. 1994. Interaction of bean leaf pubescence with rust urediniospore deposition and subsequent infection density. Ann. Appl. Biol. 125: 243–254.
  • Mohammadi, P.P., Moieni, A., Hiraga, S., and Komatsu, S. 2012. Organ-specific proteomic analysis of drought-stressed soybean seedlings. J. Proteomics 75: 1906–1923.
  • Moons, A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTS). Vitam. Horm. 72: 155–202.
  • Montoya, C.A., Beaver, J.S., Rodriguez, R., Miklas, P.N., and Godoy Lutz, G. 1997. Heritability of resistance to web blight in five common bean populations. Crop Sci. 37: 780–783.
  • Morkunas, I., Stobiecki, M., Marczak, L., Stachowiak, J., Narozna, D., and Remlein-Starosta, D. 2010. Changes in carbohydrate and isoflavonoid metabolism in yellow lupine in response to infection by Fusarium oxysporum during the stages of seed germination and early seedling growth. Physiol. Mol. Plant Pathol. 75: 46–55.
  • Morton, R.L., Schroeder, H.E., Bateman, K.S., Chrispeels, M.J., Armstrong, E., and Higgins, T.J. V. 2000. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc. Natl. Acad. Sci. USA 97: 3820–3825.
  • Moy, P., Qutob, D., Chapman, B.P., Atkinson, I., and Gijzen, M. 2004. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol. Plant Microbe Interact. 17: 1051–1062.
  • Muchero, W., Roberts, P.A., Diop, N.N., Drabo, I., Cisse, N., Close, T.J., Muranaka, S., Boukar, O., and Ehlers, J.D. 2013. Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8: e70041.
  • Muehlbauer, F.J., Cho, S., Sarker, A., McPhee, K.E., Coyne, C.J., Rajesh, P.N., and Ford, R. 2006. Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147: 149–165.
  • Murfet, I.C. 1971. Flowering in Pisum - reciprocal grafts between known genotypes. Aust. J. Biol. Sci. 24: 1089–1102.
  • Mustafa, B.M., Coram, T.E., Pang, E.C. K., Taylor, P.W. J., and Ford, R. 2009. A cDNA microarray approach to decipher lentil (Lens culinaris) responses to Ascochyta lentis. Australas. Plant Pathol. 38: 617–631.
  • Muth, D., Kachlicki, P., Krajewski, P., Przystalski, M., and Stobiecki, M. 2009. Differential metabolic response of narrow leafed lupine (Lupinus angustifolius) leaves to infection with Colletotrichum lupini. Metabolomics 5: 354–362.
  • Mutti, N.S., Park, Y., Reese, J.C., and Reeck, G.R. 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 6: 38.
  • Nakajo, S., Niizeki, M., Harada, T., Ishikawa, R., and Saito, K. 1994. Somatic cell hybridization in rice (Oryza sativa L.) and birdsfoot trefoil (Lotus corniculatus L.). Breeding Sci. 44: 79–81.
  • Nautrup-Pedersen, G., Dam, S., Laursen, B.S., Siegumfeldt, A.L., Nielsen, K., Goffard, N., Staerfeldt, H.H., Friis, C., Sato, S., Tabata, S., Lorentzen, A., Roepstorff, P., and Stougaard J. 2010. Proteome analysis of pod and seed development in the model legume Lotus japonicus. J. Proteome Res. 9: 5715–5726.
  • Navarro, F.M., Sass, M.E., and Nienhuis, J. 2009. Marker-facilitated selection for a major QTL associated with root rot resistance in snap bean (Phaseolus vulgaris L.). Crop Sci. 49: 850–856.
  • Navas-Cortes, J.A., Hau, B., and Jimenez-Diaz, R.M. 2000. Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology 90: 1269–1278.
  • Negahi, A., Ben, C., Gentzbittel, L., Maury, P., Nabipour, A., Ebrahimi, A., Sarrafi A., and Rickauer, M. 2013. Quantitative trait loci associated with resistance to a potato isolate of Verticillium albo-atrum in Medicago truncatula. Plant Pathol. Early view DOI 10.1111/ppa.12100
  • Negussie, T., Pretorius, Z.A., and Bender, C.M. 2005. Components of rust resistance in lentil. Euphytica 142: 55–64.
  • Newell, C., Growns, D., and McComb, J. 2006. Aeration is more important than shoot orientation when rooting lentil (Lens culinaris Medik.) cv. ‘Digger’ microcuttings in vitro. In Vitro Cell. Dev-Pl. 42: 197–200.
  • Nguyen, T.H. N., Brechenmacher, L., Aldrich, J.T., Clauss, T.R., Gritsenko, M.A., Hixson, K.K., Libault, M., Tanaka, K., Yang, F., Yao, Q., Pasa-Tolic, L., Xu, D., Nguyen, H.T., and Stacey G. 2012. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol. Cell. Proteomics 11: 1140–1155.
  • Nicholson, S.J., Hartson, S.D., and Puterka, G.J. 2012. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J. Proteomics 75: 2252–2268.
  • Nieto, C., Piron, F., Dalmais, M., Marco, C.F., Moriones, E., Gomez-Guillamon, M.L., Truniger, V., Gomez, P., Garcia-Mas, J., Aranda, M.A., and Bendahmane, A. 2007. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 7: 34.
  • Nigam, S.N., Prasada Rao, R.D. V. J., Bhatnagar-Mathur, P., and Sharma, K.K. 2012. Genetic management of virus diseases in peanut. Plant Breeding Rev. 36: 293–356.
  • Niks, R.E. and Rubiales, D. 2002. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 124: 201–216.
  • Nimbalkar, S.B., Harsulkar, A.M., Giri, A.P., Sainani, M.N., Franceschi, V., and Gupta, V.S. 2006. Differentially expressed gene transcripts in roots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusarium oxysporum infection. Physiol. Mol. Plant. Pathol. 68: 176–188.
  • Njambere, E.N., Chen, W., Frate, C., Wu, B.M., Temple, S., and Muehlbauer, F.J., 2008. Stem and crown rot of chickpea in California caused by Sclerotinia trifoliorum. Plant Dis. 92: 917–922.
  • Nyamsuren, O., Colditz, F., Rosendahl, S., Tamasloukht, M.B., Bekel, T., Meyer, F., Kuester, H., Franken, P., and Krajinski, F. 2003. Transcriptional profiling of Medicago truncatula roots after infection with Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction. Physiol. Mol. Plant Pathol. 63: 17–26.
  • Ochatt, S.J., Muneaux, E., Machado, C., Jacas, L., and Pontecaille, C. 2002. The hyperhydricity of in vitro regenerants of grass pea (Lathyrus sativus L.) is linked with an abnormal DNA content. J. Plant Physiol. 159: 1021–1028.
  • Okubara, P.A., Inglis, D.A., Muehlbauer, F.J., and Coyne, C.J. 2002. A novel RAPD marker linked to the fusarium wilt race 5 resistance gene (Fwf) in Pisum sativum. Pisum Genet. 34: 6–8.
  • Oliveira-Vidal, R., Nascimento, L.C. D., Mondego, J.M. C., Guimarães Pereira, G.A., and Carazzolle, M.F. 2012. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Gen. Mol. Biol. 35: 331–334.
  • Ondřej, M., Dostálová, R., and Odstrčilová, L. 2005. Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of peas. Plant Prot. Sci. 41: 95–103.
  • O’Neill, N.R. and Saunders, J.A. 1994. Compatible and incompatible responses in alfalfa cotyledons to races 1 and 2 of Colletotrichum trifolii. Phytopathology 84: 283–287.
  • Opperman, C.H., Bird, D.M., Williamson, V.M., Rokhsar, D.S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T.D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B.R., Thomas, V.P., and Windham, E. 2008. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc. Natl. Acad. Sci. U.S.A. 105: 14802–14807.
  • O’Rourke, J.A., Yang, S.S., Miller, S.S., Bucciarelli, B., Liu, J., Rydeen, A., Bozsoki, Z., Uhde-Stone, C., Tu, Z.J., Allan, D., Gronwald, J.W., and Vance, C.P. 2013. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol. 161: 705–724.
  • Ornatowski, W., Jayaraj, J., Todd, T.C., Schapaugh, W.T., Muthukrishnan, S., and Trick, H.N. 2004. Introduction and constitutive expression of a tobacco hornworm (Manduca sexta) chitinase gene in soybean. In Vitro Cell. Dev-Pl. 40: 260–265.
  • Ortega-Galisteo, A.P., Rodriguez-Serrano, M., Pazmino, D.M., Gupta, D.K., Sandalio, L.M., and Romero-Puertas, M.C. 2012. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J. Exp. Bot. 63: 2089–2103.
  • Owen, J., Shintaku, M., Aeschleman, P., Ben Tahar, S., and Palukaitis, P. 1991. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 3. J. Gen Virol. 71: 2243–2249.
  • Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. 2000a. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41: 391–398.
  • Ozawa, R., Shimoda, T., Kawaguchi, M., Arimura, G., Horiuchi, J., Nishioka, T. and, Takabayashi, J. 2000b. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J. Plant Res. 113: 427–433.
  • Pal, A.B., Brahmappa, R.D. R., and Ullasa, B.A. 1980. Field resistance of pea germplasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Dis. 64: 1085–1086.
  • Palomares-Rius, J.E., Castillo, P., Navas-Cortes, J.A., Jimenez-Diaz, R.M., and Tena, M. 2011. A proteomic study of in-root interactions between chickpea pathogens: The root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. J. Proteomics 74: 2034–2051.
  • Pande, S., Stevenson, P.C., Rao, J.N., Neupane, R.K., Grzywacz, D., Bourai, V.A., and Krishna-Kishnore, G. 2005. Riviving chickpea production in Napel through integrated crop management, with emphasis on botrytis gray mold. Plant Dis. 89: 1252–1262.
  • Park, C., Peng, Y., Chen, X., Dardick, C., Ruan, D., Bart, R., Canlas, P.E., and Ronald, P.C. 2008. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol. 6: e231.
  • Park, S.O., Coyne, D.P., Bokosi, J.M., and Steadman, J.R. 1999. Molecular markers linked to genes for specific rust resistance and indeterminate growth habit in common bean. Euphytica 105: 133–141.
  • Parkash, S., Sehgal, A., Singh, R., and Chowdhury, J.B. 1994. Isolation and characterization of cell-lines resistant to crude culture filtrate of Fusarium in chickpea. J. Plant Biochem. Biot. 3: 63–65.
  • Parker, C. 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65: 453–459.
  • Penmetsa, R.V., Uribe, P., Anderson, J., Lichtenzveig, J., Gish, J.C., Nam, Y.W., Engstrom, E., Xu, K., Siskel, G., Pereira, M., Baek, J.M., Lopez-Meyer, M., Long, S.R., Harrison, M., Singh, K.B., Kiss, G.B., and Cook, D.R. 2008. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J. 55: 580–595.
  • Pennypacker, B.W. 2000. Differential impact of carbon assimilation on the expression of quantitative and qualitative resistance in alfalfa (Medicago sativa). Physiol. Mol. Plant Pathol. 57: 87–93.
  • Pereira, G. and Leitao, J. 2010. Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 171: 345–354.
  • Pérez-de-Luque, A., Eizenberg, H., Grenz, J.H., Sillero, J.C., Avila, C.M., Sauerborn, J., and Rubiales, D. 2010. Broomrape management in faba bean. Field Crops Res. 115: 319–328.
  • Pérez-de-Luque, A., Fondevilla, S., Pérez-Vich, B., Aly, R., Thoiron, S., Simier, P., Castillejo, M.A., Fernandez-Martinez, J.M., Jorrín, J., Rubiales, D., and Delavault, P. 2009. Understanding Orobanche and Phelipanche–host plant interactions and developing resistance. Weed Res. 49: 8–22.
  • Pérez-de-Luque, A., González-Verdejo, C.I., Lozano, M.D., Dita, M.A., Cubero, J.I., González-Melendi, P., Risueño M.C., and Rubiales, D. 2006a. Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 57: 1461–1469.
  • Pérez-de-Luque, A., Jorrín, J., Cubero, J.I., and Rubiales, D. 2005. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 45: 379–387.
  • Pérez-de-Luque, A., Lozano, M.D., Cubero, J.I., González-Melendi, P., Risueño, M.C., and Rubiales, D. 2006b. Mucilage production during the incompatible interaction between Orobanche crenata and Vicia sativa. J. Exp. Bot. 57: 931–942.
  • Pérez-de-Luque, A., Lozano, M.D., Moreno, M.T., Testillano, P.S., and Rubiales, D. 2007. Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): cell wall changes associated with pre-haustorial defensive mechanisms. Ann. Appl. Biol. 151: 89–98.
  • Perry, J.A., Wang, T.L., Welham, T.J., Gardner, S., Pike, J.M., Yoshida, S., and Parniske, M. 2003. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131: 866–871.
  • Phan, H.T., Ellwood, S.R., Hane, J.K., Ford, R., Materne, M., and Oliver, R.P. 2007. Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor. Appl. Genet. 114: 549–558.
  • Pilet-Nayel, M.L., Muehlbauer, F.J., McGee, R.J., Kraft, J.M., Baranger, A., and Coyne, C.J. 2002. Quantitative trait loci for partial resistance to aphanomyces root rot in pea. Theor. Appl. Genet. 106: 28–39.
  • Pilet-Nayel, M.L., Muehlbauer, F.J., McGee, R.J., Kraft, J.M., Baranger, A., and Coyne, C.J. 2005. Consistent QTL in pea for partial resistance to Aphanomyces euteiches isolates from United States and France. Phytopathology 95: 1287–1293.
  • Pinheiro, C., Kehr, J., and Ricardo, C.P. 2005. Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta 221: 716–728.
  • Piron, F., Nicolai, M., Minoia, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C., and Bendahmane, A. 2010. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE 5: e11313.
  • Popelka, J.C., Terryn, N., and Higgins, T.J. V. 2004. Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci. 167: 195–206.
  • Porch, T.G., Blair, M.W., Lariguet, P., Galeano, C.H., Pankhurst, C., and Broughton, W. 2009. Mutagenesis of common bean genotype BAT93 for the generation of a mutant population for TILLING. J. Amer. Soc. Hort. Sci. 134: 348–355.
  • Pottorff, M., Wanamaker, S., Ma, Y.Q., Ehlers, J.D., Roberts, P.A., and Close, T.J. 2012. Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp tracheiphilum Race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE 7: e41600.
  • Pozarkova, D., Koblizkova, A., Román, B., Torres, A.M., Lucretti, S., Lysak, M., Dolezel, J., and Macas, J. 2002. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol. Plantarum 45: 337–345.
  • Pratap, A., Choudhary, A.K., and Kumar, J. 2010. In vitro techniques towards genetic enhancement of food legumes – a review. J. Food Legumes 23: 169–185.
  • Prats, E., Llamas, M.J., and Rubiales, D. 2007. Characterisation of resistance mechanisms to Erysiphe pisi in Medicago truncatula. Phytopathology 97: 1049–1053.
  • Prescott, V.E., Campbell, P.M., Moore, A., Mattes, J., Rothenberg, M.E., Foster, P.S., Kiggins, T.J. V., and Hogan, S.P. 2005. Transgenic expression of bean α-amylase inhibitor in peas results in altered structure and immunogenicity. J. Agric. Food Chem. 53: 9023–9030.
  • Prioul, S., Frankewitz, A., Deniot, G., Morin, G., and Baranger, A. 2004. Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor. Appl. Genet. 108: 1322–1334.
  • Prioul, S., Onfroy, C., Tivoli, B., and Baranger, A. 2003. Controlled environment assessment of partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) seedlings. Euphytica 131: 121–130.
  • Prioul-Gervais, S., Deniot, G., Receveur, E.M., Frankewitz, A., Fourmann, M., Rameau, C., Pilet-Nayel, M.L., and Baranger, A. 2007. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor. Appl. Genet. 114: 971–984.
  • Provvidenti, R. and Hampton, R.O. 1993. Inheritance of resistance to white lupin mosaic virus in common pea. HortScience 28: 836–837.
  • Qin, J., Gu, F., Liu, D., Yin, C., Zhao, S., Chen, H., Zhang, J., Yang, C., Zhan, X., and Zhang, M. 2013. Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches. Proteome Sci. 11: 12.
  • Rafalski, J.A. 2010. Association genetics in crop improvement. Curr. Opin. Plant Biol. 13: 174–180.
  • Rakshit, S., Winter, P., Tekeoglu, M., Juarez Muñoz, J., Pfaff, T., BenkoIseppon, A.M., Muehlbauer, F.J., and Kahl, G. 2003. DAFmarker tightly linked to a major locus for ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132: 23–30.
  • Ramu, S.V., Rohini, S., Keshavareddy, G., Neelima, M.G., Shanmugam, N.B., Kumar, A.R. V., Sarangi, S.K., Kumar, P.A., and Udayakumar, M. 2012. Expression of a synthetic cry1AcF gene in transgenic pigeon pea confers resistance to Helicoverpa armigera. J. Appl. Entomol. 136: 675–687.
  • Rashid, K.Y., Bernier, C.C., and Conner, R.L. 1991. Genetics of resistance in faba bean inbred lines to five isolates of Ascochyta fabae. Can. J. Plant Pathol. 13: 218–225.
  • Recorbet, G., Valot, B., Robert, F., Gianinazzi-Pearson, V., and Dumas-Gaudot, E. 2010. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet. Biol. 47: 608–618.
  • Reddy, A.R., Chaitanya, K.V., and Vivekanandan, M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189–1202.
  • Reddy, M.S. S., Ghabrial, S.A., Redmond, C.T., Dinkins, R.D., and Collins, G.B. 2001. Resistance to bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Phytopathology 91: 831–838.
  • Reddy, M.V. and Singh, K.B. 1984. Evaluation of a world collection of chickpea germplasm accessions for resistance to ascochyta blight. Plant Dis. 68: 900–1001.
  • Remenant, B., Coupat-Goutaland, B., Guidot, A., Cellier, G., Wicker, E., Allen, C., Fegan, M., Pruvost, O., Elbaz, M., Calteau, A., Salvignol, G., Mornico, D., Mangenot, S., Barbe, V., Medigue, C., and Prior, P. 2010. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 11: 379.
  • Riches, C.R., Hamilton, K., and Parker C. 1992. Parasitism of grain legumes by Alectra species (Scrophulariaceae). Ann. Appl. Biol. 121: 361–370.
  • Riggs, R.D., Wang, S., Singh, R.J., and Hymowitz, T. 1998. Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max. J. Nematol. 30: 547–552.
  • Rispail, N., and Rubiales, D. 2014. Identification of sources of quantitative resistance to Fusarium oxysporum f. sp. medicaginis in Medicago truncatula. Plant Disease 98: 667–673.
  • Rispail, N., Fondevilla, S., and Rubiales, D. 2013. Application of a cDNA-AFLP approach to study pea resistance to Didymella pinodes in Pisum fulvum at molecular level. In: Book of abstracts of the First Legume Society Conference, p. 171.
  • Rispail, N., Kalo, P., Kiss, G.B., Ellis, T.H. N., Gallardo, K., Thompson, R.D., Prats, E., Larrainzar, E., Ladrera, R., Gonzalez, E.M., Arrese-Igor, C., Ferguson, B.J., Gresshoff, P.M., and Rubiales, D. 2010. Model legumes contribute to faba bean breeding. Field Crops Res. 115: 253–269.
  • Rogers, C., Wen, J., Chen, R., and Oldroyd, G., 2009. Deletion-based reverse genetics in Medicago truncatula. Plant Physiol. 151: 1077–1086.
  • Rodrigues, F.A., Marcolino-Gomes, J., Carvalho, J.D. F. C., Nascimento, L.C. D., Neumaier, N., Farias, J.R. B., Carazzolle, M.F., Marcelino, F.C., and Nepomuceno, A.L. 2012. Subtractive libraries for prospecting differentially expressed genes in the soybean under water deficit. Gen. Mol. Biol. 35: 304–314.
  • Rohini, V.K. and Rao, K.S. 2000. Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci. 150: 41–49.
  • Román, B., Satovic, Z., Avila, C.M., Rubiales, D., Moreno, M.T., and Torres, A.M. 2003. Locating genes associated with Ascochyta fabae resistance in Vicia faba L. Aust. J. Agric. Res. 54: 85–90.
  • Román, B., Torres, A.M., Rubiales, D., Cubero, J.I., and Satovic, Z. 2002. Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45: 1057–1063.
  • Roman-Aviles, B. and Kelly, J.D. 2005. Identification of quantitative trait loci conditioning resistance to fusarium root rot in common bean. Crop Sci. 45: 1881–1890.
  • Roush, R.T. 1998. Two–toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not?. Philos. T. Roy. Soc. B 353: 1777–1786.
  • Rubeena, T., Taylor, P.W. J., Ades, P.K., and Ford, R. 2006. QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight (Ascochyta lentis). Plant Breeding 125: 506–512.
  • Rubiales, D. 2003. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 160: 459–461.
  • Rubiales, D., Alcántara, C., and Sillero, J.C. 2004. Variation in resistance to crenate broomrape (Orobanche crenata) in species of Cicer. Weed Res. 44: 27–32.
  • Rubiales, D., Avila, C.M., Sillero, J.C., Hybl, M., Narits, L., Sass, O., and Flores, F. 2012. Identification and multi-environment validation of resistance to Ascochyta fabae in faba bean (Vicia faba). Field Crops Res. 126: 165–170.
  • Rubiales, D., Castillejo, M.A., Madrid, E., Barilli, E., and Rispail, N. 2011. Legume breeding for rust resistance: lessons to learn from the model Medicago truncatula. Euphytica 180: 89–98.
  • Rubiales, D. and Fernández-Aparicio, M., 2012. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Devel. 32: 433–449.
  • Rubiales, D., Fernández-Aparicio, M., Pérez-de-Luque, A., Prats, E., Castillejo, M.A., Sillero, J., Rispail, N., and Fondevilla, S. 2009. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag. Sci. 65: 553–559.
  • Rubiales, D., Flores, F., Emeran, A.S., Kharrat, M., Amri, M., Rojas-Molina, M.M., and Sillero, J.C. 2014. Identification and multi-environment validation of resistance against broomrapes (Orobanche crenata and O. foetida) in faba bean (Vicia faba). Field Crops Research 166: 5865.
  • Rubiales, D. and Fondevilla, S. 2012. Future prospects for ascochyta blight resistance breeding in cool seasons food legumes. Front. Plant Sci. 3: 27.
  • Rubiales, D. and Moral, A. 2004. Prehaustorial resistance against alfalfa rust (Uromyces striatus) in Medicago truncatula. Eur. J. Plant Pathol. 110: 239–243.
  • Rubiales, D., Moreno, M.T., and Sillero, J.C. 2005. Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Gen. Resour. Crop Evol. 52: 853–861.
  • Rubiales, D., Pérez-de-Luque, A., Cubero, J.I., and Sillero, J.C. 2003a. Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot. 22: 865–872.
  • Rubiales, D., Pérez-de-Luque, A., Joel, D.M., Alcántara, C., and Sillero, J.C. 2003b. Characterization of resistance in chickpea to broomrape (Orobanche crenata). Weed Sci. 51: 702–707.
  • Rubiales, D., Pérez-de-Luque, A., Sillero, J.C., Román, B., Kharrat, M., Khalil, S., Joel, D.M., and Riches, C.R. 2006. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147: 187–199.
  • Rubiales, D., Rojas-Molina, M.M., and Sillero, J.C. 2013a. Identification of pre and posthaustorial resistance to rust (Uromyces viciae-fabae) in lentil (Lens culinaris) germplasm. Plant Breeding 132: 676–680.
  • Rubiales, D. and Sillero, J.C. 2003. Uromyces viciae-fabae haustorium formation in susceptible and resistant faba bean lines. Eur. J. Plant Pathol. 109: 71–73.
  • Rubiales, D., Sillero, J.C., and Emeran, A.A. 2013b. Response of vetches (Vicia spp.) to specialized forms of Uromyces vicia-fabae and to Uromyces pisi. Crop Prot. 46: 38–43.
  • Sagan, M., Huguet, T., and Duc, G. 1994. Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci. 100: 59–70.
  • Salavati, A., Taleei, A., Bushehri, A.A. S., and Komatsu, S. 2012. Analysis of the proteome of common bean (Phaseolus vulgaris L.) roots after inoculation with Rhizobium etli. Protein Peptide Lett. 19: 880–889.
  • Salgado, M.O., Schwartz, H.F., and Brick, M.A. 1995. Inheritance of resistance to a Colorado race of Fusarium oxysporum f.sp. phaseoli in common beans. Plant Dis. 79: 279–281.
  • Salimath, P.M., Dharwad, N., Gaur, P.M., Sridevi, O., Suma, B., Reddy, K.S., and Laxuman, T. 2011. Impact of hybridization and induced mutagenesis on variability of traits and resistance to fusarium wilt in chickpea (Cicer arietnum L.). Indian J. Genet. Plant Breed. 71: 329–332.
  • Samac, D.A., Nix, R.J., and Oleson, A.E. 1998. Transmission frequency of Clavibacter michiganensis subsp. insidiosus to alfalfa seed and identification of the bacterium by PCR. Plant Dis. 82: 1362–1367.
  • Samac, D.A., Peñuela, S., Schnurr, J.A., Hunt, E.N., Foster-Hartnett, D., Vandenbosch, K.A., and Gantt, J.S. 2011. Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol. Plant Pathol. 12: 786–798.
  • Samac, D.A., Tesfaye, M., Dornbusch, M., Saruul, P., and Temple, S.J. 2004. A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res. 13: 349–361.
  • Sanchez, D.H., Pieckenstain, F.L., Escaray, F., Erban, A., Kraemer, U., Udvardi, M.K., and Kopka, J. 2011a. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ. 34: 605–617.
  • Sanchez, D.H., Pieckenstain, F.L., Szymanski, J., Erban, A., Bromke, M., Hannah, M.A., Kraemer, U., Kopka, J., and Udvardi, M.K. 2011b. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PloS ONE 6: e17094.
  • Sanchez, D.H., Schwabe, F., Erban, A., Udvardi, M.K., and Kopka, J. 2012. Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ. 35: 136–149.
  • Santra, D.K., Tekeoglu, M., Rat-Naparkhe, M., Kaiser, W.J., and Muehlbauer, F.J. 2000. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci. 40: 1606–1612.
  • Sanyal, I., Singh, A.K., Kaushik, M., and Amla, D.V. 2005. Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci. 168: 1135–1146.
  • Sardans, J., Penuelas, J., and Rivas-Ubach, A. 2011. Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21: 191–225.
  • Sarker, R.H., Das, S.K., and Hoque, M.I. 2012. In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cell. Dev–Pl. 48: 446–452.
  • Sarmah, B.K., Moore, A., Tate, W., Molvig, L., Morton, R.L., Rees, D.P., Chiaiese, P., Chrispeels, M.J., Tabe, L.M., and Higgins, T.J. V. 2004. Transgenic chickpea seeds expressing high levels of a bean alpha-amylase inhibitor. Mol. Breeding 14: 73–82.
  • Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., Kato, T., Nakao, M., Sasamoto, S., Watanabe, A., Ono, A., Kawashima, K., Fujishiro, T., Katoh, M., Kohara, M., Kishida, Y., Minami, C., Nakayama, S., Nakazaki, N., Shimizu, Y., Shinpo, S., Takahashi, C., Wada, T., Yamada, M., Ohmido, N., Hayashi, M., Fukui, K., Baba, T., Nakamichi, T., Mori, H., and Tabata, S., 2008. Genome structure of the legume, Lotus japonicus. DNA Res 15: 227–239.
  • Saunders, J. and O’neill, N. 2004. The characterization of defense responses to fungal infection in alfalfa. BioControl 49: 715–728.
  • Saxena, K.B. 2008. Genetic improvement of pigeon pea - a review. Trop. Plant Biol. 1: 159–178.
  • Schenkluhn, L., Hohnjec, N., Niehaus, K., Schmitz, U., and Colditz, F. 2010. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. J. Proteomics 73: 753–768.
  • Schmidt, M.A., Barbazuk, W.B., Sandford, M., May, G., Song, Z., Zhou, W., Nikolau, B.J., and Herman, E.M. 2011. Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiol. 156: 330–345.
  • Schnabl, H., Mahaworasilpa, T.L., Coster, H.G. L., and von Keller, A. 1999. Production of hybrid cells from single protoplasts of sunflower hypocotyl and broad bean guard cells by electrical fusion. Plant Cell Tiss. Org. 55: 59–62.
  • Schneider, K.A., Grafton, K.F., and Kelly, J.D. 2001. QTL analysis of resistance to fusarium root rot in bean. Crop Sci. 41: 535–542.
  • Schneider, R.W., Hollier, C.A., Whitam, H.K., Palm, M.E., McKemy, J.M., Hernández, J.R., Levy, L., and DeVries-Paterson, R. 2005. First report of soybean rust caused by Phakopsora pachyrhizi in the Continental United States. Plant Dis. 89: 774.
  • Schroeder, H.E., Gollasch, S., Moore, A., Tabe, L.M., Craig, S., Hardie, D.C., Chrispeels, M.J., Spencer, D., and Higgins, T.J. V., 1995. Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107: 1233–1239.
  • Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., and Jackson, S.A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.
  • Serna-Sanz, A., Parniske, M., and Peck, S.C. 2012. Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense. Mol. Plant Microbe Int. 24: 932–937.
  • Severin, A.J., Woody, J.L., Bolon, Y.T., Joseph, B., Diers, B.W., Farmer, A.D., Muehlbauer, G.J., Nelson, R.T., Grant, D., Specht, J.E., Graham, M.A., Cannon, S.B., May, G.D., Vance, C.P., and Shoemaker R.C. 2010. RNA-seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 10: 160.
  • Shade, R.E., Doskocil, M.J., and Maxon, N.P. 1979. Potato leafhopper resistance in glandular –haired alfalfa species. Crop Sci. 19: 287–289.
  • Sharma, A., Rathour, R., Plaha, P., Katoch, V., Khalsa, G.S., Patial, V., Singh, Y., and Pathania, N.K. 2010. Induction of Fusarium wilt (Fusarium oxysporum f.sp. pisi) resistance in garden pea using induced mutagenesis and in vitro selection techniques. Euphytica 173: 345–356.
  • Sharma, H.C, Pampapathy, G., and Reddy, L.J. 2003. Wild relatives of pigeonpea as a source of resistance to the pod fly (Melanagromyza obtuse Malloch) and pod wasp (Tanaostigmodes cajaninae La Salle). Genet. Res. Crop. Evol. 50: 817–824.
  • Sharma, N. 1992. Evaluation of varietal susceptibility in pea to Erysiphe polygoni. Ann. Appl. Biol. 120: 110–111.
  • Sharma, K.D. and Muehlbauer, F.J. 2007. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157: 1–14.
  • Sharpe, A.G., Ramsay, L., Sanderson, L.A., Fedoruk, M.J., Clarke, W.E., Li, R., Kagale, S., Vijayan, P., Vandenberg, A., and Bett, K.E. 2013. Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14: 192.
  • Shehata, M.A., Davis, D.W., and Pfleger, F.L. 1983. Breeding for resistance to Aphanomyces euteiches root rot and Rhizoctonia solani stem rot in peas. J. Am. Soc. Hort. Sci. 108: 1080–1085.
  • Shi, A., Chen, P., Li, D., Zheng, C., Zhang, B., and Hou, A. 2009. Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol. Breeding 23: 113–124.
  • Shi, C., Chaudhary, S., Yu, K., Park, S.J., Navabi, A., and McClean, P.E. 2011. Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Mol. Biol. Rep. 38: 75–81.
  • Shimada, N., Akashi, T., Aoki, T., and Ayabe, S. 2000. Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci. 160: 37–47.
  • Signorelli, S., Corpas, F.J., Borsani, O., Barroso, J.B., and Monza, J. 2013. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci. 201: 137–146.
  • Sillero, J.C., Ávila, C.M., Moreno, M.T., and Rubiales, D. 2001. Identification of resistance to Ascochyta fabae in Vicia faba germplasm. Plant Breeding 120: 529–531.
  • Sillero, J.C., Fondevilla, S., Davidson, J., Vaz Patto, M.C., Warkentin, T.D., Thomas, J., and Rubiales, D. 2006. Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147: 255–272.
  • Sillero, J.C., Moreno, M.T., and Rubiales, D. 2000. Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathol. 49: 389–395.
  • Sillero, J.C., Moreno-Alías, I., and Rubiales, D. 2012. Identification and characterization of resistance to rust (Uromyces ciceris-arietini (Grognot) Jacz. & Boyd) in a germplasm collection of Cicer spp. Euphytica 188: 229–238.
  • Sillero, J.C. and Rubiales, D. 2002. Histological characterization of the resistance of faba bean to faba bean rust. Phytopathology 92: 294–299.
  • Sillero, J.C., Villegas-Fernández, A.M., Thomas, J., Rojas-Molina, M.M., Emeran, A.A., Fernández-Aparicio, M., and Rubiales, D. 2010. Faba bean breeding for disease resistance. Field Crop Res. 115: 297–307.
  • Simon, C.J. and Muehlbauer, F.J. 1997. Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J. Hered. 88: 115–119.
  • Singh, S.P. and Schwartz, H.F. 2010. Breeding common bean for resistance to diseases: A review. Crop Sci. 50: 2199–2223.
  • Singh, A., Singh, N.P., Gurha, S.N., and Asthana, A.N. 1999. In vitro selection against ascochyta blight of chickpea (Cicer arietinum L). J. Plant Biochem. Biot. 8: 117–119.
  • Singh, A., Singh, I.K., and Verma, P.K. 2008. Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J. Exp. Bot. 59: 2379–2392.
  • Singh, B.B. and Emechebe, A.M., 1990. Inheritance of Striga gesnerioides resistance in cowpea genotype B301. Crop Sci. 33: 879–881.
  • Singh, B.B., Emechebe, A.M. and Atokple, I.D. K., 1993. Inheritance of Alectra voge/zz.resistance in cowpea genotype B301. Crop Sci. 33: 70–72.
  • Singh, K.B. and Reddy, M.V. 1993. Resistance to 6 races of Ascochyta rabiei in the world germplasm collection of chickpea. Crop Sci. 33: 186–189.
  • Singh, K.B. and Reddy, M.V. 1994. Registration of 8 Ascochyta blight-resistant, early-maturing, large-seeded chickpea germplasms. Crop Sci. 34: 1416–1417.
  • Singh, S., Gumber, R.K., Joshi, N. and Singh, K. 2005. Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breeding 124: 477–480.
  • Singh, S.P., Teran, H., Schwartz, H.F., Otto, K., and Lema, M. 2009. Introgressing white mold resistance from Phaseolus species of the secondary gene pool into common bean. Crop Sci. 49: 1629–1637.
  • Singh, V.K., Garg, R., and Jain, M. 2013. A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotech. Journal 11: 691–701.
  • Singsit, C., Adang, M., Lynch, R., Anderson, W., Wang, A., Cardineau, G., and Ozias-Akins, P. 1997. Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res. 6: 169–176.
  • Sivakumar, P., Gnanam, R., Ramakrishnan, K., and Manickam, A. 2010. Somatic embryogenesis and regeneration of Vigna radiata. Biol. Plantarum 54: 245–251.
  • Smith, J.R. and Young, L.D. 2003. Host suitability of diverse lines of Phaseolus vulgaris to multiple populations of Heterodera glycines. J. Nematol. 35: 23–28.
  • Solleti, S.K., Bakshi, S., Purkayastha, J., Panda, S.K., and Sahoo, L. 2008. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep. 27: 1841–1850.
  • Somers, D.A., Samac, D.A., and Olhoft, P.M. 2003. Recent advances in legume transformation. Plant Physiol. 131: 892–899.
  • Sonntag, K., Ruge-Wehling, B., and Wehling, P. 2009. Protoplast isolation and culture for somatic hybridization of Lupinus angustifolius and L. subcarnosus. Plant Cell Tiss. Org. 96: 297–305.
  • Soria-Guerra, R.E., Rosales-Mendoza, S., Chang, S., Haudenshield, J.S., Zheng, D., Rao, S.S., Hartman, G.L., Ghabrial, S.A., and Korban, S.S. 2010. Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi. Planta 232: 1181–1189.
  • Staats, C. and van Kan, J.A. 2012. Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot. Cell 11: 1413–1414.
  • Statler, G.D. and McVey, M.A. 1987. Partial resistance to Uromyces appendiculatus in dry edible beans. Phytopathology 77: 1101–1103.
  • Staudinger, C., Mehmeti, V., Turetschek, R., Lyon, D., Egelhofer, V., and Wienkoop, S. 2012. Possible role of nutritional priming for early salt and drought stress responses in Medicago truncatula. Front. Plant Sci. 3: 285.
  • Stavely, J.R. 2000. Pyramiding rust and viral resistance genes using traditional and marker techniques in common bean. Annu. Rev. Rep. Bean Improv. Coop. 43: 1–3.
  • Stegmark, R. 1992. Diallel analysis of the inheritance of partial resistance to downy mildew in peas. Plant Breeding 108: 111–117.
  • Stegmark, R. 1994. Downy mildew on peas (Peronospora viciae f.sp. pisi). Agronomie 14: 641–647.
  • Stergiopoulos, I., Collemare, J., Mehrabi, R., and De Wit, P.J. G. M., 2013. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol. Rev. 37: 67–93.
  • Stevenson, P.C., Padgham, D.E., and Haware, M.P. 1995. Root exudates associated with the resistance of 4 chickpea cultivars (Cicer arietinum) to 2 races of Fusarium oxysporum f.sp. ciceri. Plant Pathol. 44: 686–694.
  • Stewart, S.A., Hodge, S., Ismail, N., Mansfield, J.W., Feys, B.J., Prosperi, J.M., Huguet, T., Ben, C., Gentzbittel, L., and Powell, G. 2009. The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol. Plant-Microbe Interact. 22: 1645–1655.
  • Stoddard, F.L., Nicholas, A.H., Rubiales, D., Thomas, J., and Villegas, A.M. 2010. Integrated pest management in faba bean. Field Crops Res. 115: 308–318.
  • Strack, D. and Fester, T. 2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol. 172: 22–34.
  • Studham, M.E. and MacIntosh, G.C. 2013. Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. Mol. Plant-Microbe Interact. 26: 116–129.
  • Subba, P., Kumar, R., Gayali, S., Shekhar, S., Parveen, S., Pandey, A., Datta, A., Chakraborty, S., and Chakraborty, N. 2013. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 13: 1973–1992.
  • Subrahmanyam, P. and McDonald, D. 1983. Rust diseases of groundnut. ICRISAT Information Bulletin No. 13, 20 pp.
  • Subramanian, S., Cho, U.H., Keyes, C., and Yu, O. 2009. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC Plant Biol. 9: 119.
  • Sumner, L.W., Mendes, P., and Dixon, R.A. 2003. Plant metabolomics: large-scale phytochemistry in the functional genomics Era. Phytochemistry 62: 817–836.
  • Surekha, C., Beena, M.R., Arundhati, A., Singh, P.K., Tuli, R., Dutta-Gupta, A, and Kirti, P.B. 2005. Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci. 169: 1074–1080.
  • Svabova, L. and Lebeda, A. 2005. In vitro selection for improved plant resistance to toxin-producing pathogens. J. Phytopathol. 153: 52–64.
  • Svetleva, D., Velcheva, M., and Bhowmik, G. 2003. Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement. Euphytica 131: 189–200.
  • Sweetingham, M.W., Jones R.A. C., and Brown, A.G. P. 1998. Diseases and pests. In: Lupins as Crop Plants: Biology, Production and Utilization, pp. 263–290. Gladstones, J.S., Atkins, C., and Hamblin, J., Eds., CAB International, Wallingford, UK.
  • Tachibana, H. 1971. Virulence of Cephalosporium gregatum and Verticillium dahliae in soybeans. Phytopathology 61: 565–568.
  • Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., Cayrel, A., Endre, G., Zhao, P.X., Chabaud, M., Ratet, P., and Mysore, K.S. 2008. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 54: 335–347.
  • Tadege, M., Wang, T.L., Wen, J., Ratet, P., and Mysore, K.S. 2009. Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiol. 151: 978–984.
  • Taylor, J.D., Teverson, D.M., Allen, D.J., and Pastor-Corrales, M.A. 1996Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areasPlant Pathol. 45: 469–478.
  • Tar’an, B., Warkentin, T., Somers, D.J., Miranda, D., Vandenburg, A., Blade, S., Woods, S., Bing, D., Xue, A., De Koeyer, D., and Penner, G. 2003. Quantitative trait loci for lodging resistance, plant height and partial resistance to Mycosphaerella blight in field pea (Pisum sativum L.). Theor. Appl. Genet. 107: 1482–1491.
  • Tedford, E.C. and Inglis, D.A. 1999. Evaluation of legumes common to the Pacific northwest as hosts for the pea cyst nematode, Heterodera goettingiana. J. Nematol. 31: 155–163.
  • Tegli, S., Sereni, A., and Surico, G. 2002. PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Lett. Appl. Microbiol. 35: 331–337.
  • Tekeoglu, M., Rajesh, P.N., and Muehlbauer, F.J. 2002. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor. Appl. Genet. 105: 847–854.
  • Tesfaye, M., Silverstein, K.A. T., Bucciarelli, B., Samac, D.A., and Vance, C.P. 2006. The Affymetrix Medicago GeneChip®array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct. Plant Biol. 33: 783–788.
  • Tessier, B.J., Mueller, W.C., and Morgham, A.T. 1990. Histopathology and ultrastructure of vascular responses in peas resistant or susceptible to Fusarium oxysporum f.sp. pisi. Phytopathology 80: 756–764.
  • Terán, H., Jara, C., Mahuku, G., Beebe, S., and Singh, S. 2013. Simultaneous selection for resistance to five bacterial, fungal, and viral diseases in three Andean × Middle American inter-gene pool common bean populations. Euphytica 189: 283–292.
  • Thakur, B.R., Kapoor, A.S., and Jamwal, R.S. 1996. Varietal resistance of pea to powdery mildew in dry temperature zone of Himachal Pradesh. Indian Phytopathol. 49: 92–93.
  • Thomas, J. and Kenyon, D., 2004. Evaluating resistance to downy mildew (P. viciae) in field peas (Pisum sativum L.) and field beans (Vicia fabae L.). In: Proceeding of the 5th European Conference on Grain Legumes. pp. 81–82. European Association for Grain Legume Research, INRA, Dijon, France.
  • Thomas, J.E., Kenyon, D.M., and Kightley, S.P. J. 1999. Progress in the exploitation of disease resistance in oilseed rape, field peas and field beans. Asp. Appl. Biol. 56: 67–74.
  • Thompson, R., Burstin, J., and Gallardo, K. 2009. Post-genomics studies of developmental processes in legume seeds. Plant Physiol. 151: 1023–1029.
  • Tian, D., Peiffer, M., Shoemaker, E., Tooker, J., Haubruge, E., Francis, F., Luthe, D.S., and Felton, G.W. 2012. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS ONE 7: e36168.
  • Tian, D. and Rose, R.J. 1999. Asymmetric somatic hybridisation between the annual legumes Medicago truncatula and Medicago scutellata. Plant Cell Rep. 18: 989–996.
  • Timmerman-Vaughan, G.M., Frew, T.J., Russell, A.C., Khan, T., Butler, R., Gilpin, M., Murray, S., and Falloon, K. 2002. QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci. 42: 2100–2111.
  • Timmerman-Vaughan, G.M., Frew, T.J., and Weeden, N.F. 1994. Linkage analysis of er1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C). Theor. Appl. Genet. 88: 1050–1055.
  • Timmerman-Vaughan, G.M., Pither-Joyce, M.D., Cooper, P.A., Russell, A.C., Goulden, D.S., Butler, R., Grant, J.E. 2001. Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci. 41: 846–853.
  • Tivoli, B. and Banniza, S. 2007. Comparison of the epidemiology of ascochyta blights on grain legumes. Eur. J. Plant Pathol. 119: 59–76.
  • Tivoli, B., Baranger, A., Avila, C.M., Banniza, S., Barbetti, M., Chen, W., Davidson, J., Lindeck, K., Kharrat, M., Rubiales, D., Sadiki, M., Sillero, J.C., Sweetingham, M., and Muehlbauer, F.J. 2006. Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147: 223–253.
  • Tiwari, K.R., Penner, G.A., and Warkentin, T.D. 1998. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er1 in pea. Genome 41: 440–444.
  • Tohidfar, M., Zare, N., Jouzani, G.S., and Eftekhari, S.M. 2013. Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tiss. Org. 113: 227–235.
  • Torregrosa, C., Cluzet, S., Fournier, J., Huguet, T., Gamas, P., Prosperi, J.M., Esquerre-Tugaye, M.T., Dumas, B., and Jacquet, C. 2004. Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Mol. Plant Microbe Interact. 17: 909–920.
  • Torres, A.M., Román, B., Avila, C., Satovic, Z., Rubiales, D., Sillero, J.C., Cubero, J.I., and Moreno, M.T. 2006. Faba bean breeding for resistance against biotic stresses: towards application of marker technology. Euphytica 147: 67–80.
  • Torres, A.M., Weeden, N.F., and Martín, A. 1993. Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor. Appl. Genet. 85: 937–945.
  • Toyoda, K., Kawanishi, Y., Kawamoto, Y., Kurihara, C., Yamagishi, N., Tamura, A., Yoshikawa, N., Inagaki, Y., Ichinose, Y., and Shiraishi, T. 2013. Suppression of mRNAs for lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC) and 12-oxo-phytodienoic acid reductase (OPR) in pea reduces sensitivity to the phytotoxin coronatine and disease development by Mycosphaerella pinodes. J. Gen. Plant Pathol. 79: 321–334.
  • Trabanco, N., Pérez-Vega, E., Campa, A., Rubiales, D., and Ferreira, J.J. 2012. Genetic resistance to powdery mildew in common bean. Euphytica 186: 875–882.
  • Tran, H.S., You, M.P., Lanoiselet, V., Khan, T.N., and Barbetti, M.J. 2013. First report of Phoma glomerata associated with the ascochyta blight complex on field pea (Pisum sativum) in Australia. Plant Dis. online first DOI 10.1094/PDIS-08-13-0809-PDN.
  • Trapphoff, T., Beutner, C., Niehaus, K., and Colditz, F. 2009. Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota) elicited and inoculated Medicago truncatula cell suspension cultures: a proteome and phosphoproteome approach. Mol. Plant-Microbe Interact. 22: 421–436.
  • Trieu, A.T., Burleigh, S.H., Kardailsky, I.V., Maldonado-Mendoza, I.E., Versaw, W.K., Blaylock, L.A., Shin, H.S., Chiou, T.J., Katagi, H., Dewbre, G.R., Weigel, D., and Harrison, M.J. 2000. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22: 531–541.
  • Tripathi, L., Singh, A.K., Singh, S., Singh, R., Chaudhary, S., Sanyal, I., Amla, D.V. 2013. Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tiss. Org. 113: 513–527.
  • Tullu, A., Diederichsen, A., Suvorova, G., and Vandenberg, A. 2010. Genetic and genomic resources of lentil: status, use and prospects. Plant Genet. Res.C. 9: 19–29.
  • Turner, M., Jauneau, A., Genin, S., Tavella, M.J., Vailleau, F., Gentzbittel, L., and Jardinaud, M.F. 2009. Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiol. 150: 1713–1722.
  • Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L., Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313: 1261–1266.
  • Udupa, S.M. and Baum, M. 2003. Genetic dissection of pathotype specific resistance to ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. Theor. Appl. Genet. 106: 1196–1202.
  • Upadhyaya, H.D., Dwivedi, S.L., Ambrose, M., Ellis, N., Berger, J., Smykal, P., Debouck, D., Duc, G., Dumet, D., Flavell, A., Sharma, S.K., Mallikarjuna, N., and Gowda, C.L. L. 2011. Legume genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180: 27–47.
  • Uppalapati, S.R., Marek, S.M., Lee, H.K., Nakashima, J., Tang, Y., Sledge, M.K., Dixon, R.A., and Mysore, K.S. 2009. Global gene expression profiling during Medicago truncatula–Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development. Mol. Plant Microbe Interact. 22: 7–17.
  • Vailleau, F., Sartorel, E., Jardinaud, M.F., Chardon, F., Genin, S., Huguet, T., Gentzbittel, L., and Petitprez, M., 2007. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Mol. Plant-Microbe Interact. 20: 159–167.
  • Valderrama, M.R., Román, B., Satovic, Z., Rubiales, D., Cubero, J.I., and Torres, A.M. 2004. Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res. 44: 323–328.
  • Vandemark, G.J., Larsen, R.C., and Hughes, T.J. 2006. Heritability of resistance to Verticillium wilt in alfalfa. Plant Dis. 90: 314–318.
  • Van Schoonhoven, A., Cardona, C., and Valor, J. 1983. Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: Bruchidae) in noncultivated common bean accessions. J. Econ. Entomol. 76: 1255–1259.
  • Varshney, R.K., Chen, W., Li, Y., Bharti, A.K., Saxena, R.K., Schlueter, J.A., Donoghue, M.T. A., Azam, S., Fan, G., Whaley, A.M., Farmer, A.D., Sheridan, J., Iwata, A., Tuteja, R., Penmetsa, R.V., Wu, W., Upadhyaya, H.D., Yang, S.P., Shah, T., Saxena, K.B., Michael, T., McCombie, W.R., Yang, B., Zhang, G., Yang, H., Wang, J., Spillane, C., Cook, D.R., May, G.D., Xu, X., and Jackson, S.A. 2011. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotech. 30: 83–89.
  • Varshney, R.K., Song, C., Saxena, R.K., Azam, S., Yu, S., Sharpe, A.G., Cannon, S., Baek, J., Rosen, B.D., Tar’an, B., Millan, T., Zhang, X., Ramsay, L.D., Iwata, A., Wang, Y., Nelson, W., Farmer, A.D., Gaur, P.M., Soderlund, C., Penmetsa, R.V., Xu, C., Bharti, A.K., He, W., Winter, P., Zhao, S., Hane, J.K., Carrasquilla-Garcia, N., Condie, J.A., Upadhyaya, H.D., Luo, M.C., Thudi, M., Gowda, C.L. L., Singh, N.P., Lichtenzveig, J., Gali, K.K., Rubio, J., Nadarajan, N., Dolezel, J., Bansal, K.C., Xu, X., Edwards, D., Zhang, G., Kahl, G., Gil, J., Singh, K.B., Datta, S.K., Jackson, S.A., Wang, J., and Cook, D.R. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotech. 31: 240–246.
  • Vaz Patto, M.C., Fernández-Aparicio, M., Moral, A., and Rubiales, D., 2009. Pre and posthaustorial resistance to rusts in Lathyrus cicera. Euphytica 165: 27–34.
  • Vaz Patto, M.C., and Rubiales, D., 2009. Identification and characterization of partial resistance to rust in a germplasm collection of Lathyrus sativus. Plant Breeding 128: 495–500.
  • Vaz Patto, M.C., Skiba, B., Pang, E.C. K., Ochatt, S.J., Lambein, F., and Rubiales, D., 2006. Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147: 133–147.
  • Veltcheva, M., Svetleva, D., Petkova, S., and Perl, A. 2005. In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) - Problems and progress. Sci. Hortic. 107: 2–10.
  • Verma, P., Shah, N., and Bhatia, S. 2013. Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotech. J. 11: 894–905.
  • Venuto, B.C., Smith, R.R., and Grau, C.R. 1995. Virulence, legume host-specificity, and genetic relatedness of isolates of Fusarium oxysporum from red clover. Plant Dis. 79: 406–410.
  • Veronico, P., Melillo, M.T., Saponaro1, C., Leonetti, P., Picardi, E., and Jones, J.T. 2011. A polygalacturonase-inhibiting protein with a role in pea defence against the cyst nematode Heterodera goettingiana. Mol. Plant Pathol. 12: 275–287.
  • Vijayalakshmi, S., Yadav, K., Kushwaha, C., Sarode, S.B., Srivastava, C.P., Chand, R., and Singh, B.D. 2005. Identification of RAPD markers linked to the rust (Uromyces fabae) resistance gene in pea (Pisum sativum). Euphytica 144: 265–274.
  • Villegas-Fernández, A.M., Krajinski, F., Schlereth, A., Madrid, E., and Rubiales, D. 2014. Characterisation by transcription factor expression profiling of the interaction Medicago truncatula – Botrytis spp. Plant Mol. Biol. Rep. 32: 10301040.
  • Villegas-Fernández, A.M., Sillero, J.C., Emeran, A.A., Flores, F., and Rubiales, D. 2011. Multiple-disease resistance in Vicia faba: Multi-environment field testing for identification of combined resistance to rust and chocolate spot. Field Crops Res. 124: 59–65.
  • Villegas-Fernández, A.M., Sillero, J.C., Emeran, A.A., Winkler, J., Raffiot, B., Tay, J., Flores, F., and Rubiales, D. 2009. Identification and multi-environment validation of resistance to Botrytis fabae in Vicia faba. Field Crops Res. 114: 84–90.
  • Villegas-Fernández, A.M., Sillero, J.C., and Rubiales, D. 2012. Screening faba bean for chocolate spot resistance: evaluation methods and effects of age of host tissue and temperature. Eur. J. Plant Pathol. 132: 443–453.
  • Vleugels, T., Baert, J., and van Bockstaele, E. 2013. Morphological and pathogenic characterization of genetically diverse Sclerotinia isolates from European red clover crops (Trifolium pratense L.). J. Phytopathol. 161: 254–262.
  • Walker, D.R., All, J.N., McPherson, R.M., Boerma, H.R., and Parrott, W.A. 2000. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 93: 613–622.
  • Walker, D.R., Boerma, H.R., All, J.N., and Parrott, W. 2002. Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Mol. Breeding 9: 43–51.
  • Walker, D.R., Narvel, J.M., Boerma, H.R., All, J.N., and Parrott, W.A., 2004. A QTL that enhances and broadens Bt insect resistance in soybean. Theor. Appl. Genet. 109: 1051–1957.
  • Wang, T.L., Uauy, C., Robson, F., and Till, B. 2012. TILLING in extremis. Plant Biotechnol. J. 10: 761–772.
  • Wang, X.Y., Eggenberger, A.L., Nutter, F.W., and Hill, J.H. 2001. Pathogen-derived transgenic resistance to soybean mosaic virus in soybean. Mol. Breeding 8: 119–127.
  • Wang, Z., Zhang, J.B., Jia, C.H., Liu, J.H., Li, Y.Q., Yin, X.M., Xu, B.Y., and Jin, Z.Q., 2012. De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. cubense tropical race 4 infection. BMC Genomics 13: 650.
  • War, A.R., Paulraj, M.G., Hussain, B., Buhroo, A.A., Ignacimuthu, S., and Sharma, H.C. 2013. Effect of plant secondary metabolites on legume pod borer, Helicoperpa armigera. J. Pest Sci 86: 399–408.
  • Watson, B.S., Asirvatham, V.S., Wang, L.J., and Sumner, L.W. 2003. Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol. 131: 1104–1123.
  • Weeden, N.F., Ellis, T.H. N., Timmerman-Vaughan, G.M., Swiecicki, W.K., Rozov, S.M., and Berdnikov, V.A. 1998. A consensus linkage map for Pisum sativum. Pisum Genet. 30: 1–4.
  • Welham, T., Pike, J., Horst, I., Flemetakis, E., Katinakis, P., Kaneko, T., Sato, S., Tabata, S., Perry, J., Parniske, M., and Wang, T.L. 2009. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J. Exp. Bot. 60: 3353–3365.
  • Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., and Waterhouse, P.M. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581–590.
  • Wibberg, D.W., Jelonek, L.J., Rupp, O.R., Hennig, M.H., Eikmeyer, F.E., Goesmann, A.G., Hartmann, A., Borriss, R.B., Grosch, R.G., Pühler, A.P., and Schlüter, A.S. 2013. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J. Biotechnol. 167: 142–155.
  • Wijayanto, T., Barker, S.J., Wylie, S.J., Gilchrist, D.G., and Cowling, W.A. 2009. Significant reduction of fungal disease symptoms in transgenic lupin (Lupinus angustifolius) expressing the anti-apoptotic baculovirus gene p35. Plant Biotechnol. J. 7: 778–790.
  • Wiles, A.B. 1968. Cowpeas and soybeans as hosts of Verticillium albo-atrum. Phytopathology 58: 1072.
  • Wojakowska, A., Muth, D., Narozna, D., Madrzak, C., Stobiecki, M., and Kachlicki, P. 2013. Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 9: 575–589.
  • Wrather, J.A. and Koenning, S.R. 2009. Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Progress doi:10.1094/PHP-2009-0401-01-RS.
  • Wroth, J.M. 1998. Possible role for wild genotypes of Pisum spp. to enhance ascochyta bligt resistance in pea. Aust. J. Exp. Agric. 38: 469–479.
  • Wu, Q.D. and VanEtten, H.D. 2004. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol. Plant Microbe Interact. 17: 798–804.
  • Wunsch, M.J., Baker, A.H., Kalb, D.W., and Bergstrom, G.C. 2009. Characterization of Fusarium oxysporum f. sp. loti forma specialis nov., a monophyletic pathogen causing vascular wilt of birdsfoot trefoil. Plant Dis. 93: 58–66.
  • Wunsch, M.J. and Bergstrom, G.C. 2011. Genetic and morphological evidence that Phoma sclerotioides, causal agent of brown root rot of alfalfa, is composed of a species complex. Phytopathology 101: 594–610.
  • Wynn, W.K., 1976. Appressorium formation over stomates by the bean rust fungus: Response to a surface contact stimulus. Phytopathology 66: 136–146.
  • Xie, X., Yoneyama, K., and Yoneyama, K. 2010. The strigolactone story. Annu. Rev. Phytopathol. 48: 93–117.
  • Xing, G.N., Zhou, B., Wang, Y.F., Zhao, T.J., Yu, D.Y., Chen, S.Y., and Gai, J.Y. 2012. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicate Fabricius) under multiple environments in four RIL populations of soybean. Theor. Appl. Genet. 125: 859–875.
  • Xu, P.F., Wu, J.J., Allen, X., Li, W.B., Chen, W.Y., Wei L., LV, H.Y., Lin, S., Fan, S.J., Li, N.H., Wang, X., Jiang, L.Y., and Zhang, S.Z. 2012. Differentially expressed genes of soybean during infection by Phytophthora sojae. J. Int. Agric. 11: 368–377.
  • Yang, T., Bao, S.Y., Ford, R., Jia, T.J., Guan, J.P., He, J.H., Sun, S.L., Jiang, J.Y., Hao, J.J., Zhang, X.Y., and Zong, X.X. 2012. High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics 13: 602.
  • Ye, H., Gemperline, E., Venkateshwaran, M., Chen, R., Delaux, P.M., Howes-Podoll, M., Ane, J.M., and Li, L. 2013. MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis. Plant J. 75: 130–145.
  • Yesudas, C.R., Sharma, H., and Lightfoot, D.A. 2010. Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia japonica, Newman). Theor. Appl. Genet. 121: 353–362.
  • Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., Hayashi, H., and Yoneyama, K. 2008. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 179: 484–494.
  • Young, N.D., Debelle, F., Oldroyd, G.E. D., Geurts, R., Cannon, S.B., Udvardi, M.K., Benedito, V.A., Mayer, K.F. X., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D.R., Meyers, B.C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., Zhou, S.G., Mudge, J., Bharti, A.K., Murray, J.D., Naoumkina, M.A., Rosen, B., Silverstein, K.A. T., Tang, H.B., Rombauts, S., Zhao, P.X., Zhou, P., Barbe, V., Bardou, P., Bechner, M., Bellec, A., Berger, A., Berges, H., Bidwell, S., Bisseling, T., Choisne, N., Couloux, A., Denny, R., Deshpande, S., Dai, X.B., Doyle, J.J., Dudez, A.M., Farmer, A.D., Fouteau, S., Franken, C., Gibelin, C., Gish, J., Goldstein, S., Gonzalez, A.J., Green, P.J., Hallab, A., Hartog, M., Hua, A., Humphray, S.J., Jeong, D.H., Jing, Y., Jocker, A., Kenton, S.M., Kim, D.J., Klee, K., Lai, H.S., Lang, C.T., Lin, S.P., Macmil, S.L., Magdelenat, G., Matthews, L., McCorrison, J., Monaghan, E.L., Mun, J.H., Najar, F.Z., Nicholson, C., Noirot, C., O’Bleness, M., Paule, C.R., Poulain, J., Prion, F., Qin, B.F., Qu, C.M., Retzel, E.F., Riddle, C., Sallet, E., Samain, S., Samson, N., Sanders, I., Saurat, O., Scarpelli, C., Schiex, T., Segurens, B., Severin, A.J.J. Sherrier, D.J., Shi, R.H., Sims, S., Singer, S.R., Sinharoy, S., Sterck, L., Viollet, A., Wang, B.B., Wang, K.Q., Wang, M.Y., Wang, X.H., Warfsmann, J., Weissenbach, J., White, D.D., White, J.D., Wiley, G.B., Wincker, P., Xing, Y.B., Yang, L.M., Yao, Z.Y., Ying, F., Zhai, J.X., Zhou, L.P., Zuber, A., Denarie, J., Dixon, R.A., May, G.D., Schwartz, D.C., Rogers, J., Quetier, F., Town, C.D., and Roe, B.A. 2011. The Medicago genome provides insight into the evolution of Rhizobial symbioses. Nature 480: 520–524.
  • Young, R. and Kelly, J.D. 1997. RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci. 37: 940–946.
  • Yu, J., Gu, W.K., Provvidenti, R., and Weeden, N.F. 1995. Identifying and mapping two DNA markers linked to the gene conferring resistance to pea enation mosaic virus. J. Amer. Soc. Hort. Sci. 120: 730–733.
  • Yu, J., Gu, W.K., Weeden, N.F., and Provvidenti, R. 1996. Developement ASAP marker for resistance to bean yellow mosaic virus in Pisum sativum. Pisum Genet. 28: 31–32.
  • Yu, K., Park, S.J., and Poysa, V. 2000. Marker-assisted selection of common beans for resistance to common bacterial blight: efficiency and economics. Plant Breeding 119: 411–415.
  • Zadraznik, T., Hollung, K., Egge-Jacobsen, W., Meglic, V., and Sustar-Vozlic, J. 2013. Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J. Proteomics 78: 254–272.
  • Zerroug, M.M., Mezaache, S., Strange, R.N., and Nicklin, J. 2010. Production of Ascochyta rabiei lacking solanapyrone A toxin production. Commun. Agric. Appl. Biol. Sci. 75: 601–605.
  • Zhang, G., Gu, C., and Wang, D. 2009. Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor. Appl. Genet. 118: 473–82.
  • Zhang, N., Venkateshwaran, M., Boersma, M., Harms, A., Howes-Podoll, M., den Os, D., Ane, J.M., and Sussman, M.R. 2012. Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume-rhizobia symbiosis. Febs Lett. 586: 3150–3158.
  • Zhang, J., Xia, C., Wang, X., Duan, C., Sun, S., Wu, X., and Zhu, Z. 2013. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor. Appl. Genet. 126: 1555–1561.
  • Zhang, J.X., Xue, A.G., and Tambong, J.T. 2009. Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis. 93: 1317–1323.
  • Zhang, Y., Zhao, J., Xiang, Y., Bian, X., Zuo, Q., Shen, Q., Gai, J., and Xing, H. 2011. Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae. Proteome Sci. 9: 52.
  • Zhao, G., Ablett, G.R., Anderson, T.R., Rajcan, I., and Schaafsma, A.W. 2005. Inheritance and genetic mapping of resistance to rhizoctonia root and hypocotyl rot in soybean. Crop Sci. 45: 1441–1447.
  • Zhao, K., Tung, C., Eizenga, G.C., Wright, M.H., Ali, M.L., Price, A.H., Norton, G.J., Islam, M.R., Reynolds, A., Mezey, J., McClung, A.M., Bustamante, C.D., and McCouch, S.R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Comunications 2: 467.
  • Zhihui, S., Tzitzikas, M., Raemakers, K., Zhengqiang, M., and Visser, R. 2009. Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell. Dev-Pl. 45: 776–782.
  • Zhu, Q.H., Stephen, S., Kazan, K., Jin, G., Fan, L., Taylor, J., Dennis, E.S., Helliwell, C.A., and Wang, M.B. 2013. Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 512: 259–266.
  • Zou, J., Rodriguez-Zas, S., Aldea, M., Li, M., Zhu, J., Gonzalez, D.O., Vodkin, L.O., DeLucia, E., and Clough, S.J. 2005. Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol. Plant Microbe Interact. 18: 1161–1174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.