4,177
Views
179
CrossRef citations to date
0
Altmetric
Original Articles

Abiotic Stress Responses in Legumes: Strategies Used to Cope with Environmental Challenges

, , , , , , , , , , , & show all

REFERENCES

  • Abdelmula, A.A., Link, W., von Kittlitz, E., and Stelling, D. 1999. Heterosis and inheritance of drought tolerance in faba bean (Vicia faba L.). Plant Breeding 118: 485–490.
  • Adamska, I. 1997. ELIPs - Light-induced stress proteins. Physiol. Plant. 100: 794–805.
  • Agarwal, M., and Zhu, J.K. 2005. Integration of abiotic stress signaling pathways. In: Plant Abiotic Stress. p. 270. Jenks, M.A., and Hasegawa, P.M., Eds., Blackwell Publishing, Oxford, UK.
  • Aghaei, K., Ehsanpour, A.A., Shah, A.H., and Komatsu, S. 2008. Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36: 91–98.
  • Alamillo, J.M., Diaz-Leal, J.L., Sanchez-Moran, M.V., and Pineda, M. 2010. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant Cell Environ. 33: 1828–1837.
  • Alexieva, V., Sergiev, I., Mapelli, S., and Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337–1344.
  • Ali, Z., Zhang, D.Y., Xu, Z.L., Xu, L., Yi, J.X., He, X.L., Huang, Y.H., Liu, X.Q., Khan, A.A., Trethowan, R.M., and Ma, H.X. 2012. Uncovering the salt response of soybean by unravelling its wild and cultivated functional genomes using Tag sequencing. PLoS ONE 7: e48819.
  • Ali, S.M., Sharma, B., and Ambrose, M.J. 1994. Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica 73: 115–126.
  • Almeida, N.F., Leitão, S.T., Caminero, C., Torres, A.M., Rubiales, D., and Vaz Patto, M.C. 2014. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Mol. Biol. Rep. 41: 269–283.
  • Amede, T., von Kittlitz, E., and Schubert, S. 1999. Differential drought responses of faba beans (Vicia faba L.) inbred lines. J. Agron. Crop Sci. 183: 35–45.
  • Amsalu Fenta, B. 2012. Investigation of the Physiological Responses in Soybean and Common Bean to Water Deficit. PhD thesis, University of Pretoria, Pretoria. http://upetd.up.ac.za/thesis/available/etd-05042013-151442/
  • An, P., Inanaga, S., Cohen, Y., Kafkafi, U., and Sugimoto, Y. 2002. Salt tolerance in two soybean cultivars. J. Plant Nutr. 25: 407–423.
  • Andersen, M.N., and Aremu, J.A. 1991. Drought sensitivity, root development and osmotic adjustment in field-grown peas. Irrigation Sci. 12: 45–51.
  • Annicchiarico, P., Barrett, B., Brummer, E.C., Julier, B, and Marshall, A.H. 2014. Achievements and challenges in improving temperate perennial forage legumes. 34(1–3): 325–378.
  • Antolin, M.C., Hekneby, M., and Sanchez-Diaz, M. 2005. Contrasting responses of photosynthesis at low temperatures in different annual legume species. Photosynthetica 43: 65–74.
  • Aoki, T., Kamizawa, A., and Ayabe S. 2002. Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection. Plant Cell Rep. 21: 238–243.
  • Araújo, S.D. S., Duque, A.S. R. L. A., Santos, D.M. M. F., and Fevereiro, M.P. S. 2004. An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tiss. Organ Cult. 78: 123–131.
  • Arbaoui, M., Balko, C., and Link, W. 2008a. Study of faba bean (Vicia faba L.) winter-hardiness and development of screening methods. Field Crops Res. 106: 60–67.
  • Arbaoui, M., Link, W., Satovic, Z., and Torres, A.M. 2008b. Quantitative trait loci of frost tolerance and physiologically related traits in faba bean (Vicia faba L.). Euphytica 164: 93–104.
  • Arbaoui, M., and Link, W. 2008c. Effect of hardening on frost tolerance and fatty acid composition of leaves and stems of a set of faba bean (Vicia faba L.) genotypes. Euphytica 162: 211–219.
  • Ariel, F., Diet, A., Verdenaud, M., Gruber, V., Frugier, F., Chan, R., and Crespi, M. 2010. Environmental regumation of lateral root emergence in Medicago truncatula requires the HD-ZipI transcription factor HB1. Plant Cell 22: 2171–2183.
  • Armengaud, P., Thiery, L., Buhot, N., Grenier-De March, G., and Savouré, A. 2004. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol. Plant. 120: 442–450.
  • Arraouadi, S., Badri, M., Abdelly, C., Huguet, T., and Aouani, M.E. 2012. QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula Recombinant Inbred Lines. Genomics 99: 118–125.
  • Asada, K. 2000. The water-water cycle as alternative photon and electron sinks. Philos. T. Roy. Soc. B. 355: 1419–1430.
  • Assefa, T., Beebe, S.E., Rao, I.M., Cuasquer, J.B., Duque, M.C., Rivera, M., Battisti, A., and Lucchin, M. 2013. Pod harvest index as a selection criterion to improve drought resistance in white pea bean. Field Crops Res. 148: 24–33.
  • Asfaw, A., Almekinders, C.J. M., Blair, M.W., and Struik, P.C. 2012. Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breeding 131: 125–134.
  • Asfaw, A., and Blair, M.W. 2012. Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Mol. Breeding 30: 681–695.
  • Asraf, M., and Harris, P.J. C. 2004. Potential indicators of salinity tolerance in plants. Plant Sci. 166: 3–16.
  • Atkinson, N.J., and Urwin, P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63: 3523–3544.
  • Avia, K., Pilet-Nayel, M.L., Bahrman, N., Baranger, A., Delbreil, B., Fontaine, V., Hamon, C., Hanocq E., Niarquin, M., Sellier H., Vuylsteker, C., Prosperi, J.M., and Lejeune-Henaut, I. 2013. Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. Theor. Appl. Genet. 126: 2353–2366.
  • Badri, M., Chardon, F., Huguet, T., and Aouani, M.E. 2011. Quantitative trait loci associated with drought tolerance in the model legume Medicago truncatula. Euphytica 181: 415–428.
  • Balko, C. 2005. Physiological parameters of drought tolerance in relation to yield and yield stability in faba beans. In: InterDrought-II. The 2nd Conf. on Integrated Approaches to Sustain and Improve Plant Production under Drought Stress. p. 5.08. Rome, Italy.
  • Balko, C., Giesemann, A., and Link, W. 2013. Delta 13C in faba beans and its implication in drought stress response. In: Conference on Isotopes of Carbon, Water, and Geotracers in Paleoclimatic Research. University of Bern, German Association for Stable Isotope Research.
  • Baron, V.S., and Belanger, G. 2007. Climate and forage adaptation. In: Forages: The Science of Grassland Agriculture. pp. 83–104. Vol. 34. Barnes R.F., et al., Eds., Blackwell publishing, Ames, Iowa.
  • Barrera-Figueroa, B., Gao, L., Diop, N.N., Wu, Z., Ehlers, J.D., Roberts, P.A., Close, T.J., Zhu, J.K., and Liu, E. 2011. Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol. 11: 127.
  • Barreto Dias, P.M., Brunel-Muguet, S., Durr, C., Huguet, T., Demilly, D., Wagner, M.-H., and Teulat-Merah, B. 2011. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula. Theor. Appl. Genet. 1222: 429–444.
  • Bartels, D., and Sunkar, R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23–58.
  • Basu, U. 2012. Identification of molecular processes underlying abiotic stress plants adaptation using “omics” technologies. In: Sustainable Agriculture and New Technologies. pp.149–172. Benkeblia, N., Ed., CRC Press, Boca Raton, FL.
  • Beebe, S.E. 2012. Common bean breeding in the tropics. Plant Breeding Rev. 36: 357–426.
  • Beebe, S., Ramirez, J., Jarvis, A., Rao, I.M., Mosquera, G., Bueno, G., and Blair, M. 2011. Genetic improvement of common beans and the challenges of climate change. In: Crop Adaptation to Climate Change. pp. 356–369. 1st ed. Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Wiley, New York.
  • Beebe, S.E., Rao, I.M., Cajiao, C., and Grajales, M. 2008. Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop. Sci. 48: 582–592.
  • Beebe, S., Rao, I.M., Mukankusi, C., and Buruchara, R. 2013a. Improving resource use efficiency and reducing risk of common bean production in Africa, Latin America and the Caribbean. In: Eco-Efficiency: From Vision to Reality. pp. 117–134. Hershey, C., and Neate, P., Eds., CIAT, Cali, Colombia.
  • Beebe, S., Rao, I.M., Blair, M., and Acosta, J. 2013b. Phenotyping common beans for adaptation to drought. Front. Plant Physiol. 4: 35.
  • Beebe, S., Rao, I., Devi Mura, J., and Polania, J. 2013c. Common beans, biodiversity, and multiple stress:  Challenges of drought resistance in tropical soils. In: InterDrought, . 2–6 September 2013. Perth, Australia.
  • Beebe, S., Rojas-Pierce, M., Yan, X., Blair, M.W., Pedraza, F., Muñoz, F., Tohme, J., and Lynch, J.P. 2006. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci. 46: 413–423.
  • Belko, N., Zaman-Allah, M., Diop, N.N., Cisse, N., Ehlers, J.D., Ndoye, O., Zombre, G., and Vadez, V. 2012. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought tolerant cowpea. Funct. Plant Biol. 39: 306–322.
  • Bell, L.W., Williams, A.H., Ryan, M.H., and Ewing, M.A. 2007. Water relations and adaptations to increasing water deficit in three perennial legumes, Medicago sativa, Dorycnium hirsutum and Dorycnium rectum. Plant Soil 290: 231–243.
  • Benjamin, J.G., and Nielsen, D.C. 2006. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res. 97: 248–253.
  • Berger, J.D., Ali, M., Basu, P.S., Chaudhary, B.D., Chaturvedi, S.K., Deshmukh, P.S., Dharmaraj, P.S., Dwivedi, S.K., Gangadhar, G.C., Gaur, P.M., Kumar, J., Pannu, R.K., Siddique, K.H. M., Singh, D.N., Singh, D.P., Singh, S.J., Turner, N.C., Yadava, H.S., and Yadav, S.S. 2006. Genotype by environment studies demonstrates the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crop Res. 98: 230–244.
  • Benedito, V.A., Torres-Jerez, I., Murray, J.D., Andriankaja, A., Allen, S., Kakar, K., Wandrey, M., Verdier, J., Zuber, H., Ott, T., Moreau, S., Niebel, A., Frickey, T., Weiller, G., He, J., Dai, X., Zhao, P.X., Tang, Y., and Udvardi, M.K. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant J. 55: 504–513.
  • Benedito, V.A., Li, H., Dai, X., Wandrey, M., He, J., Kaundal, R., Torres-Jerez, I., Gomez, S.K., Harrison, M.J., Tang, Y., Zhao, P.X., and Udvardi, M.K. 2010. Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol. 152: 1716–1730.
  • Berger, J.D., Milroy, S.P., Turner, N.C., Siddique, K.H. M., Imtiaz, M., and Malhotra, R. 2011. Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180: 1–15.
  • Berry, J., and Bjorkman, O. 1980. Photosynthetic response and adaptation to temperature in higher-plants. Ann. Rev.Plant Physiol. Plant Mol. Biol. 31: 491–543.
  • Betti, M., Pérez-Delgado, C., García-Calderón, M., Díaz, P., Monza, J., and Márquez, A. 2012. Cellular stress following water deprivation in the model legume Lotus japonicus. Cells. 1: 1089–1106.
  • Beuselinck, P.R., Bouton, J.H., Lamp, W.O., Matches, A.G., McCaslin, M.H., Nelson, C.J., Rhodes, L.H., Sheaffer, C.C., and Volenec, J.J. 1994. Improving legume persistence in forage crop systems. J. Prod. Agric. 7: 311–322.
  • Bianco, C., and Defez, R. 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J. Exp. Bot. 60: 3097–3107.
  • Birch, A.N. E., Tithecott, M.T., and Bisby, F.A., 1985. Vicia johannis and wild relatives of the faba bean (Vicia faba), a taxonomic study. Econ. Bot. 39: 177–190.
  • Blevins, D.G., and Barker, D.J. 2007. Nutrients and water in forage crops. In: Forages: The Science of Grassland Agriculture. pp. 67–80. Vol. 34. Barnes, R.F., Nelson, C.J., Moore K.J., and Collins M., Eds., Blackwell Publishing, Ames, Iowa.
  • Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112: 119–123.
  • Blum, A. 2010. Plant Breeding for Water-Limited Environments. p. 272. Springer, New York.
  • Bounejmate, M.S. P., Loss,S. P., and Robson, A.D. 1994. Effects of temperature and frost on genotypes of Medicago truncatula L. and Medicago aculeata L. from contrasting climatic origins. J. Agron. Crop Sci.172: 236–227.
  • Bourion, V., Lejeune-Hénaut, I., Munier-Jolain, N., and Salon, C. 2003. Cold acclimation of winter and spring peas: carbon partitioning as affected by light intensity. Eur. J. Agron. 19: 535–548.
  • Boyer, J.S. 1982. Plant Productivity and Environment. Science 218: 443–448.
  • Boyer, J.S., and Meyer, R.F. 1979. Osmoregulation in plants during drought. Basic Life Sci. 14: 199–202.
  • Brandsæter, L.O., Smebya, T., Tronsmob, A., and Netlanda, J. 2000. Winter annual legumes for use as cover crops in row crops in northern regions: II. Frost resistance study. Crop Sci. 40: 248–254.
  • Brunet, J., Repellin, A., Varrault, G., Terryn, N., and Zuily-Fodil, Y. 2008. Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems? Com. Rend. Biol. 331: 859–864.
  • Bustos-Sanmamed, P., Bazin, J., Hartmann, C., Crespi, M., and Lelandais-Brière, C. 2013. Small RNA pathways and diversity in model legumes: lessons from genomics. Front. Plant Sci. 4: 236.
  • Butare L., Rao, I.M., Lepoivre, P., Cajiao, C., Polania, J., Cuasquer, J., and Beebe, S. 2012. Phenotypic evaluation of interspecific recombinant inbred lines (RILs) of Phaseolus species for aluminum resistance and shoot and root growth response to aluminum-toxic acid soil. Euphytica 186: 715–730.
  • Butare, L., Rao, I.M., Lepoivre, P., Polania, J., Cajiao, C., Cuasquer, J.B., and Beebe, S. 2011. New sources of resistance in Phaseolus species to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 181: 385–404.
  • Buxton, D.R. 1996. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Tech. 59: 37–49.
  • Campbell, C.G., Mehra, R.B., Agrawal, S.K., Chen, Y.Z., Abd El Moneim, A.M., Khawaja, H.I. T., Yadov, C.R., Tay, J.U., and Araya, W.A. 1994. Current status and future strategy in breeding grass pea (Lathyrus sativus). Euphytica 73: 167–175.
  • Campbell, C.G. 1997. Grass Pea-Lathyrus sativus L. In: Promoting the Conservation and Use of Underutilized and Neglected Crops. pp. 8–20. Campbell, C.G. Ed., Institute of Plant Genetics and Crop Plant Research Gatersleben/International Plant Genetic Resources Institute, Rome.
  • Cannon, S.B. 2013. The model legume genomes. Methods Mol. Biol. 1069: 1–14.
  • Capitão, C., Paiva, J.P., Santos, D.M., and Fevereiro, P. 2011. In Medicago truncatula, water deficit modulates the transcript accumulation of components of small RNA pathways. BMC Plant Biol. 11: 79.
  • Castellanos, J.Z., Pena-Cabriales, J.J., and Acosta-Gallegos, J.A. 1996. 15N-determined dinitrogen fixation capacity of common bean (Phaseolus vulgaris) cultivars under water stress. J. Agr. Sci. Camb. 126: 327–333.
  • Castonguay, Y., Michaud, R., Nadeau, P., and Bertrand, A. 2009. An indoor screening method for improvement of freezing tolerance in alfalfa. Crop Sci. 49: 809–818.
  • Castonguay, Y., Dube, M.P., Cloutier, J., Michaud, R., Bertrand, A., and Laberge, S. 2012. Intron-length polymorphism identifies a Y2K4 dehydrin variant linked to superior freezing tolerance in alfalfa. Theor. Appl. Genet. 124: 809–819.
  • Claeys, H., and Inzé, D. 2013. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 162: 1768–1779.
  • Condon, A.G., Richards, R.A., Rebetzke, G.J., and Farquhar, G.D. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55: 2447–2460.
  • Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M., and Shinozaki, K. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11: 163.
  • Cunningham, S.M., Volenec, J.J., and Teuber, L.R. 1998. Plant survival and root and bud composition of alfalfa populations selected for contrasting fall dormancy. Crop Sci. 38: 962–969.
  • Chandra, S., Buhariwalla, H.K., Kashiwagi, J., Harikrishna, S., Sridevi, K.R., Krishnamurthy, L., Serraj, R., and Crouch, J.H. 2004. Identifying QTL-linked markers in marker-deficient crops. In: Proceedings of the 4th International Crop Science Congress. Fisher, T., Ed., Brisbane, Australia, 26 September–1 October 2004. The Regional Institute Ltd., Gosford, New South Wales, Australia.
  • Chandran, D., Sharopova, N., Ivashuta, S., Gantt, J., VandenBosch, K., and Samac, D. 2008. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228: 151–166.
  • Charlson, D.V, Bhatnagar, S., King, C.A., Ray, J.D., Sneller, C.H., Carter, T.E., and Purcell, L.C. 2009. Polygenic inheritance of canopy wilting in soybean [Glycine max L. Merr.]. Theor. Appl. Genet. 119: 587–594.
  • Charlton, A.J., Donarski, J.A., Harrison, M., Jones, S.A., Godward, J., Oehlschlager, S., Arques, J.L., Ambrose, M., Chinoy, C., Mullineaux, P.M., and Domoney, C. 2008. Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4: 312–327.
  • Charrier, A., Lelievre, E., Limami, A.M., and Planchet, E. 2013. Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco. J. Plant Physiol. 170: 874–877.
  • Chaves, M.M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot.42: 1–16.
  • Chaves, M.M., Flexas, J., and Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551–560.
  • Chaves, M.M., Maroco, J.P., and Pereira, J.S. 2003. Understanding plant responses to drought- from genes to the whole plant. Funct. Plant Biol. 30: 239–264.
  • Chen, C., Tao, C., Peng, H., and Ding, Y. 2007. Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata (L.) ssp. sesquipedalis Verdc.). J. Hered. 98: 655–665.
  • Chen, J.R., Lu, J.J., Liu, R., Xiong, X.Y., Wang, T.X., Chen, S.Y., Guo, L.B., and Wang, H.F. 2010. DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul. 60: 199–211.
  • Chen, L.M., Zhou, X.A., Li, W.B., Chang, W., Zhou, R., Wang, C., and Chen, S.L. 2013. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genomics. 14: 687.
  • Chen, L.Q., Qu, X.Q., Hou, B.H., Sosso, D., Osorio, S., Fernie, A.R., and Frommer, W.B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207–211.
  • Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., and Ma, Y.Z. 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 353: 299–305.
  • Cheng, L., Li, S., Hussain, J., Xu, X., Yin, J., Zhang, Y., Chen, X., and Li, L. 2013. Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Mol. Biol. Rep. 40: 4033–4045.
  • Choudhary, A.K., Singh, D., and Iquebal, M.A. 2011. Selection of pigeonpea genotypes for tolerance to aluminium toxicity. Plant Breeding 130: 492–495.
  • CIALCA. 2007. The Consortium for Improving Agriculture-based Livelihoods in Central Africa (CIALCA). Progress Report, November 2006–December 2007.
  • Collins, R.P., Marshall, A.H., and Abberton M.T. 2002. Strategies for Improving Stress Tolerance in White Clover. pp. 24–27. IGER Innovations 2002.
  • Conde, A., Chaves, M.M., and Geros, H. 2011. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol. 52: 1583–1602.
  • Condon, A.G., Richards, R.A., Rebetzhke, G.J., and Farhquhar, G.D. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55: 2447–2460.
  • Corpas, F.J., Chaki, M., Fernandez-Ocana, A., Valderrama, R., Palma, J.M., Carreras, A., Begara-Morales, J.C., Airaki, M., del Rio, L.A., and Barroso, J.B. 2008. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 49: 1711–1722.
  • Costa, J.M., Grant, O.M., and Chaves M.M. 2013. Thermography to explore plant–environment interactions. J. Exp. Bot. 64: 3937–3949.
  • Craig, G.F., Atkins, C.A., and Bell, D.T. 1991. Effect of salinity on growth of Rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133: 253–262.
  • Dabuxilatu, M.I. and Ikeda, M. 2005. Distribution of K, Na and Cl in root and leaf cells of soybean and cucumber plants grown under salinity conditions. Soil Sci. Plant Nutr. 51: 1053–1057.
  • Dam, S., Laursen, B.S., Ornfelt, J.H., Jochimsen, B., Staerfeldt, H.H., Friis, C., and Stougaard, J. 2009. The proteome of seed development in the model legume Lotus japonicus. Plant Physiol. 149: 1325–1340.
  • Davies, W.J. 1978. Some effects of abscisic acid and water stress on stomata of Vicia faba l. J. Exp. Bot. 29: 175–182.
  • Deikman, J., Petracek, M., and Heard, J.E. 2012. Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr. Opin. Biotechnol. 23: 243–250.
  • Delaney, R.H., Dobrenz, A.K., and Poole, H.T. 1974. Seasonal variation in photosynthesis, respiration and growth components of non-dormant alfalfa. Crop Sci. 14: 58–61.
  • Dhont, C., Castonguay, Y., Avice, J.C., and Chalifour, F.P. 2006. VSP accumulation and cold-inducible gene expression during autumn hardening and overwintering of alfalfa. J. Exp. Bot. 57: 2325–2337.
  • Dita, M.A., Rispail, N., Prats, E., Rubiales, D., and Singh, K.B. 2006. Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147: 1–24.
  • De Lorenzo, L., Merchan, F., Blanchet, S., Megias, M., Frugier, F., Crespi, M., and Sousa, C. 2007. Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiol. 145: 1521–1532.
  • De Lorenzo, L., Merchan, F., Laporte, P., Thompson, R., Clarke, J., Sousa, C., and Crespi, M. 2009. A novel plant Leucine-Rich Repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21: 668–680.
  • De Ronde, J.A., Cress, W.A., Krüger, G.H. J., Strasser, R.J., and Van Staden, J. 2004. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 161: 1211–1224.
  • De Zélicourt, A., Diet, A., Marion, J., Laffont, C., Ariel, F., Moison, M., Zahaf, O., Crespi, M., Gruber, V., and Frugier, F. 2012. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule. Plant J. 70: 220–230.
  • Del Castillo, L.D., and Layzell, D.B. 1995. Drought stress, permeability to O2 diffusion, and the respiratory kinetics of soybean root-nodules. Plant Physiol. 107: 1187–1194.
  • Del Castillo, L.D., Hunt, S., and Layzell, D.B. 1994. The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol. 106: 949–955.
  • Desclaux, D., Huynh, T.T., and Roumet, P. 2000. Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci. 40: 716.
  • Desclaux, D., and Roumet, P. 1996. Impact of drought stress on the phenology of two soybean Glycine max L. Merr cultivars. Field Crop Res. 46: 61–70.
  • Devasirvatham, V., Gaur, P.M., Mallikarjuna, N., Tokashishu, R.N., Trethowan, R.M., and Tan, D.K. Y. 2012. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct. Plant Biol. 39: 1009–1018.
  • Devi, J.M., Sinclair, T.R., Beebe, S.E., and Rao, I.M. 2013. Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 364: 29–37.
  • Domínguez-Ferreras, A., Munoz, S., Olivares, J., Soto, M.J., and Sanjuan, J. 2009. Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance. J. Bacteriol. 191: 2133–2143.
  • Domínguez-Ferreras, A., Soto, M.J., Perez-Arnedo, R., Olivares, J., and Sanjuan, J. 2009. Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J. Bacteriol. 191: 7490–7499.
  • Du, W., Wang, M., Fu, S., and Yu, D. 2009. Mapping QTLs for seed yield and drought susceptibility index in soybean Glycine max L. across different environments. J. Genet. Genomics 36: 721–31.
  • Duc, G., and Petitjean, F. 1995. Study on the inheritance of freezing tolerance in Vicia faba L. In: AEP Conference 1995. pp. 130–131. AEP, Ed., Copenhagen, AEP, Paris, France.
  • Dumont, E., Bahrman, N., Goulas, E., Valot, B., Sellier, H., Hilbert, J.L., Vuylsteker, C., Lejeune-Henaut, I., and Delbreil, B. 2011. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci. 180: 86–98.
  • Dumont, E., Fontaine, V., Vuylsteker, C., Sellier, H., Bodele, S., Voedts, N., Devaux, R., Frise, M., Avia, K., Hilbert, J.L., Bahrman, N., Hanocq, E., Lejeune-Henaut, I., and Delbreil, B. 2009. Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor. Appl. Genet. 118: 1561–1571.
  • Duque, A.S., Almeida, A., Silva, A.B., Silva, J.M., Farinha, A.P., Santos, D., Fevereiro, P., and Araujo, S.S. 2013. Abiotic stress responses in plants: Unraveling the complexity of genes and networks to survive. In: Abiotic Stress: Plant Responses and Applications in Agriculture. Vahdati, K., and Leslie, C., Eds., InTech.
  • Durand, J.L., Sheehy, J.E., and Minchin, F.R. 1987. Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water-deprivation. J. Exp. Bot. 38: 311–321.
  • Duthion, C., and Pigeaire, A. 1991. Seed lengths corresponding to the final stage in seed abortion of three grain legumes. Crop Sci. 31: 1579–1583.
  • Eddy, S.R. 2001. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2: 919–929.
  • Ehlers, J.D., and Hall, A.E. 1997. Cowpea (Vigna unguiculata L. Walp.). Field Crop Res. 53: 187–204.
  • Ellis, R.H., Roberts, E.H., and Summerfield, R.J. 1988a. Effects of temperature, photoperiod and seed vernalization on flowering in faba bean Vicia faba. Ann. Bot. 61: 17–27.
  • Ellis, R.H., Roberts, E.H., and Summerfield, R.J. 1988b. Variation in the optimum temperature for rates of seedling emergence and progress towards flowering amongst six genotypes of faba bean (Vicia faba). Ann. Bot. 62: 119–126.
  • Elmaghrabi, A.M., Ochatt, S., Rogers, H.J., and Francis, D. 2013. Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tiss. Organ Cult. 114: 61–70.
  • El-Tayeb, M.A. 2006a. Differential responses of pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity in the leaves of two Vicia faba L. cultivars to drought. Int. J. Agr. Biol. 8: 116–122.
  • El-Tayeb, M.A. 2006b. Differential response of two Vicia faba cultivars to drought: growth, pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity. Acta Agron. Hung. 54: 25–37.
  • Erigayama, N., Smakhtin, V., and Gamage, N. 2009. Mapping drought patterns and impacts: a global perspective. In: Research Report - International Water Management Institute. Vii: pp. 23.
  • Erskine, W., Tufail, M., Russell, A., Tyagi, M.C., Rahman, M.M., and Saxena, M.C. 1994. Current and future strategies in breeding lentil for resistance to abiotic and biotic stresses. Euphytica 73: 127–135.
  • Erskine, W., Sarker, A., and Kumar, S. 2011. Crops that feed the world 3. Investing in lentil improvement towards a food secure world. Food Sec. 3: 127–139.
  • Eujayl, I., Erskine, W., Baum, M., and Pehu, E. 1999. Inheritance and linkage analysis of frost injury in lentil. Crop Sci. 39: 639–642.
  • FAO. 2011. http://faostat.fao.org.
  • FAO. 2013. Climate-Smart Agriculture Sourcebook.
  • Fallen, F.D., Hatcher, C.N., Allen, F.L., Kopsell, D.A., Saxton, A.M., Chen, P., Kantartzi, S.K., Cregan, P.B., Hyten, D.L., and Pantalone, R.R. 2013. Mapping QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. J. Plant Genom. Sci. 1: 68–79.
  • Fan, X.D., Wang, J.Q., Yang, N., Dong, Y.Y., Liu, L., Wang, F.W., Wang, N., Chen, H., Liu, W.C., Sun, Y.P., Wu, J.Y., and Li, H.Y. 2013. Gene expression profiling of soybean leaves and roots under salt, saline–alkali and drought stress by high-throughput Illumina sequencing. Gene 512: 392–402.
  • Fedina, I.S., Tsonev, T., and Guleva, E.I. 1993. The effect of pretreatment with proline on the responses of Pisum sativum to salt stress. Photosynthetica 29: 521–527.
  • Fedina, I.S., Tsonev, T.D., and Guleva, E.I. 1994. ABA as a modulator of the response of Pisum sativum to salt stress. J. Plant Physiol. 143: 245–249.
  • Flexas, J., and Medrano, H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89: 183–189.
  • Flores, F., Nadal, S., Solis, I., Winkler, J., Sass, O., Stoddard, F.L., Link, W., Raffiot, B., Muel, F., Rubiales, D. 2012. Faba bean adaptation to autumn sowing under European climates. Agron. Sustain. Dev. 32: 727–734.
  • Flores, F., Hybl, M., Knudsen, J.C., Marget, P., Muel, F., Nadal, S., Narits, L., Raffiot, B., Sass, O., Solis, I., Winkler, J., Stoddard, F.L., Rubiales, D. 2013. Adaptation of spring faba bean types across European climates. Field Crops Res. 145: 1–9.
  • Flower, T.J., Gaur, P.M., Gowda, C.L. L., Krishnamurthy, L., Samineni, S., Vadez, V., Varshney, R., Siddique, K.M. H., Turner, N.C., and Colmer, T.C. 2009. A review of salt sensitivity in chickpea. Plant Cell Environ. 33: 490–509.
  • Filippou, P., Antoniou, C., and Fotopoulos, V. 2011. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants. Plant Signal. Behav. 6: 270–277.
  • Fougere, F., Lerudulier, D., and Streeter, J.G. 1991. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol. 96: 1228–1236.
  • Foy, C.D. 1998. Plant adaptation to acid, aluminium toxic soils. Comm. Soil Sci. Plant Anal. 19: 959–987.
  • Frauen, M., and Sass, O. 1989. Inheritance and performance of the stiff-strawed mutant in Vicia faba L. In: Science for Plant Breeding - XII. EUCARPIA Congress, Göttingen (Germany), . 27 Feb. – 4 March 1989, Vol 15: 13–18.
  • Fujime, Y., Mesuda, Y., Okuda, N., and Varanyanond, W. 2000. Promotive effects of seed vernalization on flowering and pod setting of some broad bean cultivars. Acta Hortic. 533: 75–82.
  • Gajewska, E., and Sklodowska, M. 2005. Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiol. Plant. 27: 329–339.
  • Gallardo, K., Firnhaber, C., Zuber, H., Hericher, D., Belghazi, M., Henry, C., Küster, H. and Thompson, R. 2007. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol. Cell Proteomics 6: 2165–2179.
  • Gallegos, J.A. A., and Shibata, J.K. 1989. Effect of water-stress on growth and yield of indeterminate dry-bean (Phaseolus vulgaris) cultivars. Field Crops Res. 20: 81–93.
  • Gates, P., Smith, M.L., White, G., and Boulter, D. 1983. Reproductive physiology and yield stability in Vicia faba L. In: Temperate Legumes: Physiology, Genetics, Nodulation. pp. 43–54. Davies, D.R., and Jones, D.G., Eds., Pitman Books Ltd., London, UK.
  • Gaur, P.M., Krishnamurphy, L., and Kashiwagi, J. 2008. Improving drought-avoidance root traits in chickpea (Cicer arietinum L.) – current status of research at ICRISAT. Plant Prod. Sci. 11: 3–11.
  • Gaur, P.M., Chaturvedi, S.K., Tripathi, S., Gowda, C.L. L., Krishnamurthy, L., Vadez, V., Mallikarjuna, N., and Varshney, R.K. 2010. Improving heat tolerance in chickpea to increase its resilience to climate change. In: Proceeding of the 5th International Food Legumes Research Conference and 7th European Conference on Grain Legume. pp. 26–30. European Association for the Grain Legume Research. Antalya, Turkey.
  • Georgieva, K., and Lichtenthaler, H.K. 1999. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J. Plant Physiol. 155: 416–423.
  • Georgieva, K., and Lichtenthaler, H.K. 2006. Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica 44: 569–578.
  • Ghittoni, N.E., and Bueno, M.A. 1996. Changes in the cellular content of trehalose in four peanut Rhizobia strains cultured under hypersalinity. Symbiosis 20: 117–127.
  • Gil-Quintana, E., Larrainzar, E., Arrese-Igor, C., and González, E.M. 2013a. Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula? J. Exp. Bot. 64: 281–292.
  • Gil-Quintana, E., Larrainzar, E., Seminario, A., Díaz-Leal, J.L., Alamillo, J.M., Pineda, M., Arrese-Igor, C., Wienkoop, S., and González, E.M. 2013b. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J. Exp. Bot. 64: 2171–2182.
  • Gimeno-Gilles, C., Gervais, M.-L., Planchet, E., Satour, P., Limami, A., and Lelievre, E. 2011. A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds. Plant Physiol. Biochem. 49: 303–310.
  • González, E.M., Aparicio-Tejo, P.M., Gordon, A.J., Minchin, F.R., Royuela, M., and Arrese-Igor, C. 1998. Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J. Exp. Bot. 49: 1705–1714.
  • Gonzalez, E.M., Arrese-Igor, C., Aparicio-Tejo, P.M., Royuela, M., and Koyro, H.W. 2002. Solute heterogeneity and osmotic adjustment in different leaf structures of semi-leafless pea (Pisum sativum L.) subjected to water stress. Plant Biol. 4: 558–566.
  • González, E.M., Gordon, A.J., James, C.L., and Arrese-Igor, C. 1995. The role of sucrose synthase in the response of soybean nodules to drought. J. Exp. Bot. 46: 1515–1523.
  • Gonzales, M.D., Archuleta, E., Farmer, A., Gajendran, K., Grant, D., Shoemaker, R., Beavis, W.D., and Waugh, M.E. 2005. The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res. 33: D660–D665.
  • Good, A.G., and Zaplachinski, S.T. 1994. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol. Plant. 90: 9–14.
  • Gordon, A.J., Minchin, F.R., Skot, L., and James, C.L. 1997. Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity. Plant Physiol. 114: 937–946.
  • Graham, P.H., Draeger, K.J., Ferrey, M.L., Conroy, M.J., Hammer, B.E., Martinez, E., Aarons, S.R., and Quinto, C. 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40: 198–207.
  • Graham, P.H., and Rosas, J.C. 1977. Growth and development of indeterminate bush and climbing cultivars of Phaseolus vulgaris L. inoculated with Rhizobium. J. Agr. Sci. Camb. 88: 503–508.
  • Grant, J.E., and Cooper, P.A. 2003. Genetic transformation in pea. In: Applied Genetics of Leguminosae Biotechnology. pp. 23–34. Jaiwal, P.K., and Singh, R.P., Eds., Kluwer Academic Publishers, Dordrecht.
  • Grashoff, C. 1990. Effect of pattern of water supply on Vicia faba L. 1. Dry matter partitioning and yield variability. Ned. J. Agric. Sci. 38: 21–44.
  • Grimaud, F., Renaut, J., Dumont, E., Sergeant, K., Lucau-Danila, A., Blervacq, A.–S., Sellier, H., Bahrman, N., Lejeune-Hénaut, I., Delbreil, B., and Goulas, E. 2013. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J. Proteomics 80: 145–159.
  • Gross, Y., and Kigel, J. 1994. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res. 36: 201–212.
  • Grover, A., Kapoor, A., Laksmi, O.S., Agarwal, S., Sahi, C., Katiyar-Agarwal, S., Agarwal, M., and Dubey, H. 2001. Understanding molecular alphabets of the plant abiotic stress responses. Curr. Sci. 80: 206–216.
  • Gruber, V., Blanchet, S., Diet, A., Zahaf, O., Boualem, A., Kakar, K., Alunni, B., Udvardi, M., Frugier, F., and Crespi, M. 2009. Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol. Genet. Genomics 281: 55–66.
  • Grzesiak, S., Iijima, M., Kono, Y., and Yamauchi, A. 1997. Differences in drought tolerance between cultivars of field bean and field pea. Morphological characteristics, germination and seedling growth. Acta Physiol. Plant. 19: 339–348.
  • Gwathmey, C.O., and Hall, A.E. 1992. Adaptation to midseason drought of cowpea genotypes with contrasting senescence traits. Crop Sci. 32: 773–778.
  • Habibi, G. 2011. Influence of drought on yield and yield components in white bean. World Acad. Sci. Engin. Technol. 55: 244–253.
  • Hahn, A., Kilian, J., Mohrholz, A., Ladwig, F., Peschke, F., Dautel, R. and Wanke, D. 2013. Plant core environmental stress response genes are systemically coordinated during abiotic stresses. Int. J. Mol. Sci. 14: 7617–7641.
  • Hakeem, K.R., Khan, F., Chandna, R., Siddiqui, T.O., and Iqbal, M. 2012. Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype. Appl. Biochem. Biotechnol. 168: 2309–2329.
  • Haldimann, P., and Feller, U. 2005. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ. 28: 302–317.
  • Hall, A.E. 2004. Breeding for adaptation to drought and heat in cowpea. Eur. J. Agron. 21: 447–454.
  • Hamwieh, A. and Xu, D.H. 2008. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breeding Sci. 58: 355–359.
  • Han, Y., Khu, D.M., and Monteros, M.J. 2012. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol. Breeding 29: 489–501.
  • Han, Y., Monteros, M.J., Sledge, M.K., Ray, I., and Bouton, J. 2007. Physiological characterization and QTL analysis of drought tolerance in alfalfa. In: 5th International Symposium on the Molecular Breeding of Forage and Turf. Sapporo, Japan.
  • Han, Y., Ray, I.M., Sledge, M.K., Bouton, J.H., and Monteros, M.J. 2008. Drought tolerance in tetraploid alfalfa. In: XXI International Grassland Congress and VII International Rangeland Congress. pp. 419. Hohhot, China.
  • Han, Y., Kang, Y., Torres-Jerez, I., Cheung, F., Town, C.D., Zhao, P.X., Udvardi, M.K., and Monteros M.J. 2011. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics 12: 1–11.
  • Hanafy, M.S., El-Banna, A., Schumacher, H.M., Jacobsen, H.J., and Hassan, F.S. 2013. Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Rep. 32: 663–674.
  • Handberg, K., and Stougaard, J. 1992. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2: 487–496.
  • Hanson, J., and Smeekens, S. 2009. Sugar perception and signaling - an update. Curr. Opin. Plant Biol. 12: 562–567.
  • Hardarson G., Bliss, F.A., Cigales Rivero, M.R., Henson, R.A., Kipe-Nolt, J.A., Longeri, L., Manrique, A., Penacabriales, J.J., Pereira, P.A. A., Sanabria, C.A., and Tsai, S.M. 1993. Genotypic variation in biological nitrogen fixation by common bean. Plant Soil 152: 59–70.
  • Hasegawa, P.M., Bressa, R.A., Zhu, J.K., and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–99.
  • Hekneby, M., Antolin, M.C., and Sanchez-Diaz, M. 2006. Frost resistance and biochemical changes during cold acclimation in different annual légumes. Environ. Exp. Bot. 55: 305–314.
  • Henry, A., Rosas, J.C., Beaver, J.S., and Lynch, J.P. 2010. Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L.). Field Crops Res. 117: 209–218.
  • Hernandez, J.A., and Almansa, M.S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant. 115: 251–257.
  • Hernandez, J.A., Jimenez, A., Mullineaux, P., and Sevilla, F. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 23: 853–862.
  • Herzog, H. 1989. Influence of pre-hardening duration and dehardening temperatures on varietal freezing resistance in faba beans (Vicia faba L.). Agronomie 9: 55–61.
  • Hirayama, T., and Shinozaki, K. 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61: 1041–1052.
  • Ho, M., Rosas, J., Brown, K., and Lynch, J. 2005. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 32: 737–748.
  • Hossain, Z., Khatoon, A., and Komatsu, S. 2013. Soybean proteomics for unraveling abiotic stress response mechanism. J. Proteome Res. 12: 4670–4684.
  • Hsiao, T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 24: 519–570.
  • Hu, J., Mwengi, J.E., Coyne, C.J., and Pan, W.L. 2010. Evaluating winter-hardiness of faba bean (Vicia faba L.) accessions from the USDA NPGS collection. In: IFLRC V & AEP VII. . April 26–30, 2010, Antalya, Turkey.
  • Hu, J., Zhang, H., and Ding, Y. 2013. Identification of conserved microRNAs and their targets in the model legume Lotus japonicus. J. Biotechnol. 164: 520–524.
  • Hughes, M.A., and Dunn, M.A. 1996. Review Article. The molecular biology of plant acclimation to low temperature. J. Exp. Bot. 47: 291–305.
  • Humphries, A.W., and Auricht, G.C. 2001. Breeding lucerne for Australia's southern dryland cropping environments. Aus. J. Agric. Res. 52: 153–169.
  • Hussain, K., Majeed, A., Nawaz, K., Khizar H.B., and Nisar, M.F. 2009. Effect of different levels of salinity on growth and ion contents of black seeds (Nigella sativa L.). Curr. Res. J. Biol. Sci. 1: 135–138.
  • IPCC. 2012. Intergovernmental Panel on Climate Change - Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge.
  • Ismail, A.M., Hall, A.E., and Ehlers, J.D. 2000. Delayed-leaf-senescence and heat-tolerance traits mainly are independently expressed in cowpea. Crop Sci. 40: 1049–1055.
  • Iturbe-Ormaetxe, I., Escuredo, P.R., Arrese-Igor, C., and Becana, M. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116: 173–181.
  • Jannink, J.-L., Lorenz, A.J., and Iwata, H. 2010. Genomic selection in plant breeding: from theory to practice. Briefings Funct Genomic. 9: 166–177.
  • Jenks, M.A., and Hasegawa, P.M. 2005. Plant Abiotic Stress. Blackwell Publishing, Oxford, UK.
  • Jewell, M.C., Campbell, B.C., and Godwin, I.D. (2010) Transgenic plants for abiotic stress resistance. In: Transgenic Crop Plants. pp 67–131. Kole, C., Michler, C.H., Abbott, A.G., and Hall, T.C., Eds., Springer-Verlag, Berlin.
  • Jiao, C.J., Jiang, J.L., Ke, L.M., Cheng, W., Li, F.M., Li, Z.X., and Wang, C.Y. 2011. Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem. Toxicol. 49: 543–549.
  • Jiang, Q., Zhang, J.Y., Guo, X., Monteros, M.J., and Wang, Z.Y. 2009. Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int. J. Plant Sci. 170: 969–978.
  • Jiang, Q., Zhang, J.Y., Guo, X., Bedair, M., Sumner, L., Bouton, J., and Wang, Z.Y. 2010. Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Funct. Plant Biol. 37: 157–165.
  • Jiang, J., Su, M., Chen, Y., Gao, N., Jiao, C., Sun, Z., Li, F., and Wang, C. 2013. Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia 68: 231–240.
  • Jogaiah, S., Govind, S.R., and Tran, L.S. P. 2013. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit. Rev. Biotechnol. 33: 3–39.
  • Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. 2006. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57: 19–53.
  • Justes, E., Thiebau, P., Avice, J.C., Ourry, A., Lemaire, G., and Volenec, J.J. 2002. Influence of summer sowing dates, N fertilization and irrigation on autumn VSP accumulation and dynamics of spring regrowth in alfalfa (Medicago sativa L.). J. Exp. Bot. 53: 111–121.
  • Kahraman, A., Kusmenoglu, I., Aydin, N., Aydogan, A., Erskine, W., and Muehlbauer, F.J. 2004a. Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci. 44: 5–12.
  • Kahraman, A., Kusmenoglu, I., Aydin, N., Aydogan, A., Erskine, W., and Muehlbauer, F.J. 2004b. QTL mapping of winter hardiness genes in lentil. Crop Sci. 44:13–22.
  • Kang, J., Xie, W., Sun, Y., Yang, Q., and Wu, M. 2010. Identification of genes induced by salt stress from Medicago truncatula L. seedlings. Afric. J. Biotechnol. 9: 7589–7594.
  • Kang, Y., Han, Y., Torres Jerez, I., Wang, M., Tang, Y., Monteros, M., and Udvardi, M. 2011. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J. 68: 871–889.
  • Kao, W.Y., Tsai, T.T., Tsai, H.C., and Shih, C.N. 2006. Response of three Glycine species to salt stress. Environ. Exp. Bot. 56: 120–125.
  • Karamanos, A.J. 1978. Water stress and leaf growth of field beans (Vicia faba L.) in the field: Leaf number and total leaf area. Ann. Bot. 42: 1393–1402.
  • Kashiwagi, J., Krishnamurthy, L., Crouch, J.H., and Serraj, R. 2006. Variability of root characteristics and their contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res. 95: 171–181.
  • Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H.D., Krishna, H., Chandra, S., Vadez, V., and Serraj, R. 2005. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146: 213–222.
  • Katerji, N., Mastrorilli, M., Lahmer, F.Z., Maalouf, F., and Oweis, T. 2011. Faba bean productivity in saline-drought conditions. Eur. J. Agron. 35: 2–12.
  • Khan, T.N., French, R.J., and Hardie, D.C. 1996. Breeding field peas for Western Australia: progress and problems. Pisum Genet. 28: 5–12.
  • Khan, H., Link, W., Hocking, T.J., and Stoddard, F.L. 2007. Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292: 205–217.
  • Khan, H.R., Paull, J.G., Siddique, K.H. M., and Stoddard, F.L. 2010. Faba bean breeding for drought-affected environments: A physiological and agronomic perspective. Field Crops Res. 115: 279–286.
  • Khazaei, H., Santanen, A., Stoddard, F., and Street, K. 2011. Variation in leaf morpho-physiological traits in a world collection of faba bean germplasm. In: 24th NJF Congress and 2nd NFS Conference 2011. . Abstract n° C136. http://orgprints.org.
  • Khazaei, H., Street, K., Bari, A., Mackay, M., and Stoddard, F.L. 2013a. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8: e63107.
  • Khazaei, H., Street, K., Santanen, A., Barik, A., and Stoddard, F.L. 2013b. Do faba bean (Vicia faba L.) accessions from environments with contrasting seasonal moisture availabilities differ in stomatal characteristics and related traits? Genet. Resour. Crop Evol. (DOI 10.1007/s10722-013-0002-4).
  • Khu, D.M., Reyno, R., Brummer, E.C., and Monteros, M.J. 2012. Screening methods for aluminum tolerance in alfalfa. Crop Sci. 52: 161–167.
  • Khu, D.M., Reyno, R., Han, Y., Zhao, P.X., Bouton, J.H., Brummer, E.C., and Monteros, M.J. 2013. Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. Crop Sci. 53: 148–163.
  • Kim, G.B., and Nam, Y.W. 2013. A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J. Plant Physiol. 170: 291–302.
  • Klaedke, S.M., Cajiao, C., Grajales, M., Polania, J., Borrero, G., Guerrero, A., Rivera, M., Rao, I., Beebe, S.E., and Léon, J. 2012. Photosynthate remobilization capacity from drought-adapted common bean (Phaseolus vulgaris L.) lines can improve yield potential of interspecific populations within the secondary gene pool. J. Plant Breeding Crop Sci. 4: 49–61.
  • Knight, H., and Knight, M.R. 2001. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6: 262–267.
  • Kochian, L.V., Hoekenga, O.A., and Pineros, M.A. 2004. How do crop plants tolerate acid soils? – Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55: 459–493.
  • Kolbert, Z., Bartha, B., and Erdei, L. 2008. Osmotic stress- and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum. Physiol. Plant. 133: 406–416.
  • Konsens, I., Ofir, M., and Kigel, J., 1991. The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Ann. Bot. 67: 391–399.
  • Konstantinova, T., Parvanova, D., Atanassov, A., and Djilianov, D. 2002. Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci. 163: 157–164.
  • Kozomara, A., and Griffiths-Jones, S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39: D152–157.
  • Krishnamurthy, L., Gaur, P.M., Basu, P.S., Chaturvedi, S.K., Tripathi, S., Vadez, V., Rathore, A., Varshney, R.K., and Gowda, C.L. L. 2011. Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet. Resour. 9: 59–69.
  • Krishnamurthy, L., Kashiwagi, J., Gaur, P.M., Upadhyaya, H.D., and Vadez, V. 2010. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Res. 119: 322–330.
  • Krishnamurthy, L., Gaur, P.M., Upadhyaya, H.D., Turner, N.C., Colmer, T.C., Siddique, K.H. M., and Vadez, V. 2011 Consistent variation across years in salinity resistance in a diverse range of chickpea (Cicer arietinum L.) genotypes. J. Agron. Crop Sci. 197: 214–227.
  • Kulkarni, M.J., Prasad, T.G., and Sashidhar, V.R. 2000. Genotypic variation in early warning signals from roots in drying soil: intrinsic differences in ABA synthesizing capacity rather than root density determines total ABA message in cowpea (Vigna unguiculata L.). Ann. Appl. Biol. 136: 267–272.
  • Kumar, J., and Abbo, S. 2001. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agron. 72: 107–138.
  • Kumar, J., and van Rheenen, H.A. 2000. A major gene for time of flowering in chickpea. J. Hered. 91: 67–68.
  • Larrainzar, E., Wienkoop, S., Scherling, C., Kempa, S., Ladrera, R., Arrese-Igor, C., Weckwerth, W., and Gonzalez, E.M. 2009. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Mol. Plant Microbe Interact. 22: 1565–1576.
  • Larrainzar, E., Wienkoop, S., Weckwerth, W., Ladrera, R., Arrese-Igor, C., and Gonzalez, E.M. 2007. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol. 144: 1495–1507.
  • Lazrek, F., Roussel, V., Ronfort, J., Cardinet, G., Chardon, F., Aouani, M.E., and Huguet, T. 2009. The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135: 391–402.
  • Le, B.H., Wagmaister, J.A., Kawashima, T., Bui, A.Q., Harada, J.J., and Goldberg, R.B. 2007. Using genomics to study legume seed development. Plant Physiol. 144: 564–572.
  • Lee, G.J., Boerma, H.R., Villagarcia, M.R., Zhou, X., Carter, T.E. Jr, Li, Z. and Gibbs, M.O. 2004. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor. Appl. Genet. 109: 1610–1619.
  • Lee, H.J., Xiong, L.M, Gong, Z.Z, Ishitani, M., Stevenson, B., and Zhu, J.K. 2001. The arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15: 912–924.
  • Legrand, S., Marque, G., Blassiau, C., Bluteau, A., Canoy, A. –S., Fontaine, V., Jaminon, O., Bahrman, N., Mautord, J., Morin, J., Petit, A., Baranger, A., Rivière, N., Wilmer, J., Delbreil, B., and Lejeune-Hénaut, I. 2013. Combining gene expression and genetic analyses to identify candidate genes involved in cold responses in pea. J. Plant Physiol. 170: 1148–1157.
  • Lejeune-Henaut, I., Morin, J., Fontaine, V., Etévé, G., Devaus, R., Thomas, M., Boilleau, M., Stampniak, J.J., Petit, A., Rameau, C., and Baranger, A. 2004. Towards genes to breed for freezing resistance in pea. In: AEP Conference 2004. p. 127. AEP, Ed., Dijon. AEP, Paris, France.
  • Lejeune-Hénaut, I., Hanocq, E., Béthencourt, L., Fontaine, V., Delbreil, B., Morin J., Petit, A., Devaux, R., Boilleau, M., Stempniak, J.J., Thomas, M., Lainé, A.L., Foucher, F., Baranger, A., Burstin, J., Rameau, C., and Giauffret, C. 2008. The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor. Appl. Genet. 116: 1105–1116.
  • Li, D., Su, Z., Dong, J., and Wang, T. 2009. An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10: 517.
  • Li, D., Zhang, Y., Hu, X. Shen, X., Ma, L., Su, Z., Wang, T., and Dong, J. 2011. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol. 11: 109.
  • Li, G.D., Nie, Z.N., Boschma, S.P., Dear, B.S., Lodge, G.M., Hayes, R.C., Clark B., Hughes, S.J., and Humphries, A.W. 2010. Persistence and productivity of Medicago sativa subspecies sativa, caerulea, falcata and varia accessions at three intermittently dry sites in south-eastern Australia. Crop Pasture Sci. 61: 645–658.
  • Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., Liu, X., and Li, X. 2011. Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol. 11: 170.
  • Li, J., Dai, X., Liu, T., and Zhao, P.X. 2012. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res. 40: D1221–D1229.
  • Li, W.Y. F., Wong, F.L., Tsai, S.N., Phang, T.H., Shao, G., and Lam, H.M. 2006. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ. 29: 1122–1137.
  • Li, X., Acharya, A., Farmer, A.D., Crow, J.A., Bharti, A.K., Kramer, R.S., Wei, Y., Han, Y., Gou, J., May, G.D., Monteros, M.J., and Brummer, E.C. 2012. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genomics 13: 568.
  • Liao, H., Rubio, G., Yan, X.L., Cao, A.Q., Brown, K.M., and Lynch, J.P. 2001. Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232: 69–79.
  • Liao, H, Yan, X., Rubio, G., Beebe, S.E., Blair, M.W., and Lynch, J.P. 2004. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct. Plant Biol. 31: 959–970.
  • Liao, Y., Zou, H.F., Wei, W., Hao, Y.J., Tian, A.G., Huang, J., Liu, Y.F., Zhang, J.S., and Chen, S.Y. 2008. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228: 225–240.
  • Link, W., Abdelmula, A.A., von Kittlitz, E., Bruns, S., Riemer, H., and Stelling, D. 1999. Genotypic variation for drought tolerance in Vicia faba. Plant Breeding 118: 477–483.
  • Link, W. 2009. Züchtungsforschung bei der Ackerbohne: Fakten und Potentiale. J. Kulturpflanzen 61: 341–347.
  • Link, W., Balko, C., and Stoddard, F.L. 2010. Winter hardiness in faba bean: Physiology and breeding. Field Crops Res. 115: 287–296.
  • Liu, F., Andersen, M.N., and Jensen, C.R. 2003. Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct. Plant Biol. 30: 271–280.
  • Liu, F., Jensen, C.R., and Andersen, M.N. 2004. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crop Res. 86: 1–13.
  • Liu, Y.H., Offler, C.E., and Ruan, Y.L. 2013. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front. Plant Sci. 4
  • López-Gómez, M., Tejera, N.A., Iribarne, C., Herrera-Cervera, J.A., and Lluch, C. 2012. Different strategies for salt tolerance in determined and indeterminate nodules of Lotus japonicus and Medicago truncatula. Arch. Agron. Soil Sci. 58: 1061–1073.
  • Lopez, M., Tejera, N.A., Iribarne, C., Lluch, C., and Herrera-Cervera, J.A. 2008. Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol. Plant. 134: 575–582.
  • Lucau-Danila, A., Toitot, C., Goulas, E., Blervacq, A.S., Hot, D., Bahrman, N., Sellier, H., Lejeune-Hénaut, I., and Delbreil, B. 2012. Transcriptome analysis in pea allows to distinguish chilling and acclimation mechanisms. Plant Physiol. Biochem. 58: 236–244.
  • Luo, Q., Yua, B., and Liua, Y. 2005. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J. Plant Physiol. 162: 1003–1012.
  • Lynch, J.P. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol. 156: 1041–1049.
  • Lynch, J.P., and Beebe, S.E. 1995. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hort Sci. 30: 1165–1171.
  • Lynch, J.P., and St. Clair, S.B. 2004. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res. 90: 101–115.
  • Ma, M., Ma, K., Qa, K., Mm, H., Mak, M., and Ju, A. 2010. Assessment of genetic divergence in salt tolerance of soybean (Glycine max L.) genotypes. J. Crop Sci. Biotech. 13: 33–38.
  • Maas, E.V., and Hoffman, G.J. 1977. Crop salt tolerance, current assessment. J. Irrig. Drain. 103: 115–134.
  • MacCracken, M.C. 2008. Prospects for future climate change and the reasons for early action. J. Air Waste Manag. Ass. 58: 1920.
  • McAusland, L., Davey, P.A., Kanwal, N., Baker, N.R., and Lawson, T. 2013. A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. J. Exp. Bot. 64: 4993–5007.
  • McDonald, G.K., and Paulsen, G.M. 1997. High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196: 47–58.
  • McKenzie, J.S., Paquin, R., and Duke, S.H. 1988. Cold and heat tolerance. In: Alfalfa and Alfalfa Improvement. Hanson, A.A. et al., Eds., ASA-CSSA-SSSA, Madison, WI.
  • McKersie, B.D., Bowley, S.R., Harjanto, E., and Leprince, O. 1996. Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111: 1177–1181.
  • Mc Phee, K.E. 2007. Pea. In: Genome Mapping and Molecular Breeding in Plants: Pulses, Sugar and Tuber Crops. pp. 32–47. Kole, C., Ed., Springer, Berlin.
  • Mc Phee, K.E. 2008. Pea. In: Compendium of Transgenic Plants: Transgenic Legumes, Grains and Forages. pp. 57–70. Kole, C.T. C. H., Eds., Blackwell, Oxford.
  • Magyar-Tabori, K., Mendler-Drienyovszki, N., and Dobranszki, J. 2011. Models and tools for studying drought stress responses in peas. Omics 15: 829–838.
  • Mahieu, S., Germon, F., Aveline, A., Hauggaard-Nielsen, H., Ambus, P., and Jensen, E.S. 2009. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.). Soil Biol. Biochem. 41: 380–387.
  • Manavalan, L.P., Guttikonda, S.K., Tran, L.-S., and Nguyen, H.T. 2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 50: 1260–1276.
  • Manrique, A., Manrique, K., and Nakahodo, J. 1993. Yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.) in Peru. Plant Soil 152: 87–91.
  • Maun, M.A. 1994. Adaptations enhancing survival and establishment of seedlings on coastal dune systems. Vegetation. 111: 59–70.
  • Medina, J., Catala, R., and Salinas J. 2011. The CBFs: Three arabidopsis transcription factors to cold acclimate. Plant Sci. 180: 3–11.
  • Mejía-Jiménez, A., Muñoz, C., Jacobsen, H.J., Roca, W.M., and Singh, S.P. 1994. Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor. Appl. Genet. 88: 324–331.
  • Merchan, F., Breda, C., Hormaeche, J.P., Sousa, C., Kondorosi, A., Aguilar, O.M., Megias, M., and Crespi, M. 2003. A kruppel-like transcription factor gene involved in salt responses in Medicago spp. Plant Soil 257: 1–9.
  • Merchan, F., de Lorenzo, L., Rizzo, S.G., Niebel, A., Manyani, H., Frugier, F., Sousa, C., and Crespi, M. 2007. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J. 51: 11–17.
  • Mhadhbi, H., Fotopolos, V., Mylona, P.V., Jebara, M., Aouani, M.E., and Polidoros, A.N. 2011. Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol. Plant. 141: 201–214.
  • Miguel, M. 2004. Genotypic variation in root hairs and phosphorus efficiency in common bean (Phaseolus vulgaris L.). In: Horticulture. Penn State: University Park, PA.
  • Mikic, A., Mihailovic, V., Cupina, B., Dordevic, V., Milic, D., Duc, G., Stoddard, F.L., Lejeune-Hénaut, I., Marget, P., and Hanocq, E. 2011. Achievements in breeding autumn-sown annual legumes for temperate regions with emphasis on the continental Balkans. Euphytica 180: 57–67.
  • Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., and Varshney, R.K. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 125: 625–645.
  • Mittler, R., and Zilinskas, B.A. 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 5: 397–405.
  • Mohamed, M.F., Schmitz-Eiberger, N., Keutgen, N., and Noga, G. 2005. Comparative drought postponing and tolerance potentials of two tepary bean lines in relation to seed yield. Afr. Crop Sci. J. 13: 49–60.
  • Mohapatra, S.S., Poole, R.J., and Dhindsa, R.S. 1988. Abscisic acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol. 87: 468–473.
  • Molina, C., Rotter, B., Horres, R., Udupa, S.M., Besser, B., Bellarmino, L., Baum, M., Matsumura, H., Terauch, I.R., Kahl, G., and Winter, P. 2008. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9
  • Molnár, Z. 2008. Genetic transformation of pea by microprojectile bombardement. In: Handbook of New Technologies for Genetic Improvement of Legumes. pp. 203–215. Kirti, P.B., Ed., Taylor and Francis Group, London.
  • Moneim, A., Cocks, P.S., and Mawlawy, B. 1990. Genotype-environment interactions and stability analysis for herbage and seed yields of forage peas under rain-fed conditions. Plant Breeding 104: 231–240.
  • Monroy, A.F., and Dhindsa, R.S. 1995. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell Online 7: 321–331.
  • Monterroso, V.A., and Wien, H.C. 1990. Flower and pod abscission due to heat stress in beans. J. Am. Soc. Hortic. Sci. 115: 631–634.
  • Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., and Aparicio-Tejo, P. 1994. Drought induces oxidative stress in pea plants. Planta 194: 346–352.
  • Muchero, W., Ehlers, J.D., Close, T.J., and Roberts, P.A. 2009. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea (Vigna unguiculata (L.) Walp.). Theor. Appl. Genet. 118: 849–863.
  • Muchero, W., Ehlers, J.D., and Roberts, P.A. 2010. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea (Vigna unguiculata (L.) Walp.). Theor. Appl. Genet. 120: 509–518.
  • Muehlbauer, F.J., Cho, S., Sarker, A., Mc Phee, K.E., Coyne, C.J., Rajesh, P.N., and Ford R. 2006. Applications of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147: 149–165.
  • Müller, U., and Wilfried, W. 1986. Untersuchungen zum Wasserhaushalt der Ackerbohne I. Wurzelwachstum, Wasseraufnahme und Wasserverbrauch. KALI-BRIEFE (Büntehof) 18: 167–187.
  • Muñoz, L.C., Blair, M.W., Duque, M.C., Tohme, J., and Roca, W. 2004. Introgression in common bean x tepary bean interspecific congruity-backcross lines as measured by AFLP markers. Crop Sci. 44: 637–645.
  • Munns, R. 2005. Response of crops to salinity. In: International Salinity Forum. . 339. pp. 25–27 . April. Riverside, CA.
  • Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167: 645–633.
  • Munns, R., James, R.A., Sirault, X.R. R., Furbank, R.T., and Jones, H.G. 2010. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 61: 3499–3507.
  • Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.
  • Naya, L., Ladrera, R., Ramos, J., González, E.M., Arrese-Igor, C., Minchin, F.R., and Becana, M. 2007. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol. 144: 1104–1114.
  • Nayyar, H., Bains, T., and Kumar, S. 2005. Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ. Exp. Bot. 53: 39–47.
  • Nerkar, Y.S., Wilson, D., and Lawes, D.A. 1981. Genetic variation in stomatal characteristics and behaviour, water use and growth of five Vicia faba L. Genotypes under contrasting soil moisture regimes. Euphytica 30: 335–345.
  • Ni, Y., Guo, Y.J., Han, L., Tang, H., and Conyers, M. 2012. Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drought. Photosynthetica 50: 458–466.
  • Nilsen, E.T., and Orcutt, D.M. 1996. The Physiology of Plants Under Stress. Abiotic Factors. John Wiley and Sons, New York.
  • Ney, B., Duthion, C., and Turc, O. 1994. Phenological response of pea to water-stress during reproductive development. Crop Sci. 34: 141–146.
  • Nord, E.A., Shea, K., and Lynch, J.P. 2011. Optimizing reproductive phenology in a two-resource world: A dynamic allocation model of plant growth predicts later reproduction in phosphorus limited plants. Ann. Bot. 108: 391–404.
  • Noreen, Z., and Ashraf, M. 2009. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166: 1764–1774.
  • Odeny, D.A. 2007. The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Nat. Resour. Forum 31: 297–305.
  • Ortega-Galisteo, A.P., Rodriguez-Serrano, M., Pazmino, D.M., Gupta, D.K., Sandalio, L.M., and Romero-Puertas, M.C. 2012. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J. Exp. Bot. 63: 2089–2103.
  • Padulosi, S., Heywood, V., Hunter, D., and Jarvis, A. 2011. Underutilized species and climate change: Current status and outlook. In: Crop Adaptation to Climate Change. pp. 507–521. Yadav, S.S., Redden, R.J., and Hatfield, J.L., Eds., John Wiley & Sons, Ltd., Blackwell Publishing Ltd.
  • Palma, F., Tejera, N.A., and Lluch, C. 2013. Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environ. Exp. Bot. 85: 43–49.
  • Palmer, R., Perez, P., Perez, C., Maalouf, F., and Suso, M. 2009. The role of crop pollinator relationships in breeding for pollinator-friendly legumes: from a breeding prospective. Euphytica 170: 35–52.
  • Panda, S.K., and Matsumoto, H. 2010. Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals 23: 753–762.
  • Pate, J.S., Gunning, B.E. S., and Briarty, L.G. 1969. Ultrastructure and functioning of transport system of leguminous root nodule. Planta 85: 11–34.
  • Patrick, J.W., and Stoddard, F.L. 2010. Physiology of flowering and grain filling in faba bean. Field Crops Res. 115: 234–242.
  • Paul, S., Kundu, A., and Pal, A. 2011. Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss. Org. Cult. 105: 233–242.
  • Pennycooke, J.C., Cheng, H., and Stockinger, E.J. 2008. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 146: 1242–1254.
  • Phang, T.H., Shao, G., and Lam, H.M. 2008. Salt tolerance in soybean. J. Integrat. Plant Biol. 50: 1196–1212.
  • Pineda, P., Kipe-Nolt, J.A., and Rojas, E. 1994. Rhizobium inoculation increases of bean and maize yields in intercrops on farms in the Peruvian sierra. Exp. Agric. 30: 311–318.
  • Pinheiro, G.L., Marques, C.S., Costa, M.D. B. L., Reis, P.A. B., Alves, M.S., Carvalho, C.M., Fietto, L.G., and Fontes, E.P. B. 2009. Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444: 10–23.
  • Poljakoff-Mayber, A. 1975. Morphological and anatomical changes in plants as a response to salinity stress. In: Plants in Saline Environments. Ecological Studies. pp. 97–117. vol 34. Poljakoff-Mayber, A., Ed., Springer-Verlag, Berlin.
  • Plies-Balzer, E., Kong, T., Schuber, S. and Mengel, K. 1995. Effect of water stress on plant growth, nitrogenase activity and notrogen economy of four different cultivars of Vicia faba L. Eur. J. Agron. 4: 167–173.
  • Porch, T.G., and Jahn, M. 2001. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24: 723–731.
  • Prasad, P.V. V., Boote, K.J., Allen, L.H., and Thomas, J.M. G. 2002. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biol. 8: 710–721.
  • Priefer, U.B., Aurag, J., Boesten, B., Bouhmouch, I., Defez, R., Filali-Maltouf, A., Miklis, M., Moawad, H., Mouhsine, B., Prell, J., Schluter, A., and Senatore, B. 2001. Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J. Biotech. 91: 223–236.
  • Ramírez, M., Flores-Pacheco, G., Reyes, J.L., Alvarez, A.L., Drevon, J.J., Girard, L., and Hernández, G. 2013. Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway. Int. J. Mol. Sci. 14: 8328–8344.
  • Ramirez-Vallejo, P., and Kelly, J.D. 1998. Traits related to drought resistance in common bean. Euphytica 99: 127–136.
  • Ramos, M.L. G., Gordon, A.J., Minchin, F.R., Sprent, J.I., and Parsons, R. 1999. Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann. Bot. 83: 57–63.
  • Rao, I.M. 2014. Advances in improving adaptation of common bean and Brachiaria forage grasses to abiotic stress in the tropics. In: Handbook of Plant and Crop Physiology. pp. 847–889. Pessarakli M., Eds. NY: CRC Press, Taylor and Francis.
  • Rao, I.M., Beebe, S.E., Polanía, J., Grajales, M., Cajiao, C., García, R., Ricaurte, J., and Rivera, M. 2009. Physiological basis of improved drought resistance in common bean: the contribution of photosynthate mobilization to grain. In: Interdrought III: The 3rd Intl. Conf. on Integrated Approaches to Improve Crop Production under Drought-Prone Environments, . Oct. 11–16, 2009, Shanghai, China.
  • Rao, I.M., Beebe, S.E., Polania, J., Ricaurte, J., Cajiao, C., García, R., and Rivera, M. 2013. Can tepary bean be a model for improvement of drought resistance in common bean? Afr. Crop Sci. J. 21: 265–281.
  • Ray, I., Townsend, M.S., and Henning, J.A. 1998. Variation for yield, water-use efficiency and canopy morphology among nine alfalfa germplasms. Crop Sci. 38: 1386–1390.
  • Ray, I., Segovia-Lerma, A., and Murray, L.W. 2004. Diallel analysis of carbon isotope discrimination and its association with forage yield among nine historically recognized alfalfa germplasms. Crop Sci. 44: 1970–1975.
  • Remus-Borel, W., Castonguay, Y., Cloutier, J., Michaud, R., Bertrand, A., Desgagnes, R., and Laberge, S. 2010. Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 120: 1163–1174.
  • Reyes-Díaz, M., Ulloa, N., Zúñiga-Feest, A., Gutiérrez, A., Gidekel, M., Alberdi, M., Corcuera, L.J., and Bravo, L.A. 2006. Arabidopsis thaliana avoids freezing by supercooling. J. Exp. Bot. 57: 3687–3696.
  • Reyno, R., Khu, D.M., Monteros, M.J., Bouton, J.H., Parrott, W., and Brummer E.C. 2013. Evaluation of two transgenes for aluminum tolerance in alfalfa. Crop Sci. 53: 1581–1588.
  • Rhoades, J.D., and Loveday, H. 1990. Salinity in irrigated agriculture. In: Irrigation of agricultural crops. pp. 1089–1142. Steward, B.A. and Nielsen, D.R., Eds. WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America Publishers.
  • Rodriguez-Serrano, M., Romero-Puertas, M.C., Pazmino, D.M., Testillano, P.S., Risueno, M.C., del Rio, L.A., and Sandalio, L.M. 2009. Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150: 229–243.
  • Rose, R.J. 2008. Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct. Plant Biol. 35: 253.
  • Rubio, M.C., Bustos-Sanmamed, P., Clemente, M.R., and Becana, M. 2009. Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol. 181: 851–859.
  • Sass, O., and Stelling, D. 1989. Influence of different plant types on harvestability and yield of faba beans, Vicia faba L. In: XII Eucarpia Congress Vortr. Pflanzenzuchtg, . 15. paper 13–10.
  • Sanchez, D.H., Lippold, F., Redestig, H., Hannah, M.A., Erban, A., Krämer, U., Kopka, J., and Udvardi, M.K. 2008. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 53: 973–987.
  • Sanchez, D.H., Pieckenstain, F.L., Escaray, F., Erban, A., Kraemer, U., Udvardi, M.K., and Kopka, J. 2011. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ. 34: 605–617.
  • Sanchez, D.H., Pieckenstain, F.L., Szymanski, J., Erban, A., Bromke, M., Hannah, M.A., Kraemer, U., Kopka, J., and Udvardi, M.K. 2011. Comparative Functional Genomics of Salt Stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS ONE 6: e17094.
  • Sanchez, D.H., Schwake, F., Erban, A., Udvardi, M.K., and Kopka, J. 2012. Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ. 35: 136–149.
  • Sanchez, D.H., Szymanski, J., Erban, A., Udvardi, M.K., and Kopka, J. 2010. Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell Environ. 33: 468–480.
  • Sanchez, F.J., Manzanares, M., de Andres, E.F., Tenorio, J.L., and Ayerbe, L. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res. 59: 225–235.
  • Sanchez, F.J., Manzanares, M., de Andres, E.F., Tenorio, J.L., and Ayerbe, L, 2001. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur. J. Agron. 15: 57–70.
  • Saxena, N.P. 1984. Chickpea. In: The Physiology of Tropical Field Crops. pp. 207–232. Goldsworthy, P.R., and Fisher, N.M., Eds., Wiley, New York.
  • Scabo, A.M., Pantalone, V.R., Walker, D.R., Boerma, H.R., West, D.R., Walker, F.R., and Sams, C.E. 2009. Confirmation of molecular markers and agronomic traits associated with seed phytate content in two soybean RIL populations. Crop Sci. 49:426–432.
  • Scasta, J.D., Trostle, C.L., and Foster, M.A. 2012. Evaluating alfalfa (Medicago sativa L.) cultivars for salt tolerance using laboratory, greenhouse and field methods. J. Agric. Sci. 4: 90–103.
  • Schmidtke, K. 2012. Pflanzenbauliche Strategien zur Steigerung der Wertschöpfung im Körnerleguminosenanbau. In: 2. Körnerleguminosentag der LWK NRW und ABL, 28. 11. 2012 (Landwirtschaftszentrum Haus Düsse). . http://www.vom-acker-in-den-futtertrog.de.
  • Serraj, R., Krishnamurthy, L., Kashiwagi, K., Kumar, J., Chandra, S., and Crouch, J.H., 2004. Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crop Res. 88: 115–127.
  • Serraj, R., Sinclair, T.R., and Purcell, L.C. 1999. Symbiotic nitrogen fixation response to drought. J. Exp. Bot. 50: 143–155.
  • Serraj, R., Vadez, V., and Sinclair, T.R. 2001. Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21: 621–626.
  • Serraj, R., and Sinclair, T.R. 2002. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 25: 333–341.
  • Shahid, M.A., Balal, R.M., Pervez, M.A., Abbas, T., Ashfaq, M., Ghazanfar, U., Afzal, M., Rashid, A., García-Sánchez, F., and Mattson, N.S. 2012. Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Aust. J. Crop Sci. 6: 828–838.
  • Shao, H.B., Chu, L.Y., Lu, Z.H., and Kang, C.M. 2008. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci. 4: 8–14.
  • Shao, G. H., Song, J.Z., and Liu, HL..L. 1986. Preliminary studies on the evaluation of salt tolerance in soybean varieties. Acta Agren. Sin. 6: 30–35.
  • Sharkey, T.D., and Seemann, J.R. 1989. Mild water-stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol. 89: 1060–1065.
  • Sharpe, A.G., Ramsay, L., Sanderson, L.A., Fedoruk, M.J., Clarke, W.E., Li, R., Kagale, S., Vijayan, P., Vandenberg, A., and Bett, K.E. 2013. Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14: 192.
  • Shimoda, Y., Nagata, M., Suzuki, A., Abe, M., Sato, S., Kato, T., Tabata, S. Higashi, S. and Uchiumi, T. 2005. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol. 46: 99–107.
  • Signorelli, S., Corpas, F.J., Borsani, O., Barroso, J.B., and Monza, J. 2013. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci. 201: 137–146.
  • Silvestre, S., Araújo, S.S., Vaz Patto, M.C., and Marques da Silva, J. 2014. Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. J. Integr. Plant Biol. (In press).
  • Simon-Sarkadi, L., Kocsy, G., Várhegyi, A., Galiba, G., and de Ronde, J.A. 2005. Genetic manipulation of proline accumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress. J. Agric. Food Chem. 53: 7512–7517.
  • Sinclair, T.R. 2012. Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct. Plant Biol. 39: 359–365.
  • Sinclair, T.R., Messina, C.D., Beatty, A., and Samples, M. 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agron. J. 102: 475–482.
  • Sinclair, T.R., and Vadez, V. 2002. Physiological traits for crop yield improvement in low N and P environments. Plant Soil 245: 1–15.
  • Sinclair, T.R., Purcell, L.C., Vadez, V., Serraj, R., King, C.A., and Nelson, R. 2000. Identification of soybean genotypes with N2 fixation tolerance to water deficits. Crop Sci. 40: 1803–1809.
  • Singh, B.B., Ajeigbe, H.A., Tarawali, S.A., Fernandez-Rivera, S., and Abubakar, M. 2003. Improving the production and utilization of cowpea as food and fodder. Field Crop Res. 84: 169–177.
  • Smith, J.R. 2004. Selection protocols for increased yield and stress tolerance in common bean. J. Agr. U. Puerto Rico. 88: 27–43.
  • Smýkal, P., Aubert, G., Burstin, J., Coyne, C.J., Ellis, N.T. H., Flavell, A.J., Ford, R., Hýbl, M., Macas, J., Neumann, P., Mc Phee, K.E., Redden, R.J., Rubiales, D., Weller, J.L., Warkentin, T.D., 2012. Pea (Pisum sativum L.) in the genomic era. Agronomy 2: 74–115.
  • Soares-Cavalcanti, N.M., Belarmino, L.C., Kido, E.A., Wanderley-Nogueira, A.C., Bezerra-Neto, J.P., Cavalcanti-Lira, R., Pandolfi, V., Nepomuceno, A.L., Abdelnoor, R.V., Nascimento, L.C., and Benko-Iseppon, A.M. 2012. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago. Genet. Mol. Biol. 35: 315–321.
  • Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpour, A.A., Rastgar Jazii, F., Motamed, N., and Komatsu, S. 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 8: 1–15.
  • Sobhanian, H., Aghaeib, K., and Komatsuc, S. 2011. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteomics 74: 1323–1337.
  • Soliman, M.M., Nagat, G.A., Bakheit, M.A., Raslan, M.A., and Fergany, M.A. 2011. The genetic system and type of gene effects controlling resistance of faba bean (Vicia faba L.) to Orobance crenata. Res. J. Agr. Biol. Sci.7: 251–259.
  • Soja A.M., and Steineck, O. 1986. Experimentalergebnisse über die Prüfung des Vernalisationsbedarfes von Winterformen der Ackerbohne (Vicia faba L.). Bodenkultur 37: 109–120.
  • Solomon, M., Gedalovich, E., Mayer, A.M., and Poljakoffmayber, A. 1986. Changes induced by salinity to the anatomy and morphology of excised pea roots in culture. Ann. Bot. 57: 811–818.
  • Song, S., Chen, Y. Zhao, M., and Zhang, W.H. 2012. A novel Medicago truncatula HD-Zip gene, MtHB2, is involved in abiotic stress responses. Environ. Exp. Bot. 80: 1–9.
  • Song, Y., Ji, D., Li, S., Wang, P., Li, Q., and Xiang, F. 2012. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS ONE 7: e41274.
  • Sponchiado, B.N., White, J.W., Castillo, J.A., and Jones, P.G. 1989. Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp. Agr. 25: 249–257.
  • Sprent, J.I. 2001. Nodulation in Legumes. Royal Botanic Gardens. Kew.
  • Stewart, C. 1996. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112: 121–129.
  • Stoddard, F.L. 1986. Effects of drought on autofertility in faba beans. Fabis Newsl. 15: 22–26.
  • Stoddard, F.L. 1986. Autofertility and bee visitation in winter and spring genotypes of faba beans (Vicia faba L.). Plant Breeding 97: 171–182.
  • Stoddard, F.L., Balko, C., Erskine, W., Khan, H.R., Link, W., and Sarker A. 2006. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147: 167–186.
  • Stützel, H. and Link, W. 1995. Faba bean. Physiology. In: Physiological Potentials for Yield Improvement of Annual Oil and Protein Crops. Advances in Plant Breeding, Vol. 34, pp. 219–238. Diepenbrock, W. and Becker, H.C., Eds., Blackwell, Berlin.
  • Suarez, R., Calderon, C., and Iturriaga, G. 2009. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci. 49: 1791–1799.
  • Summerfield, R.J., Virmani, S.M., Roberts, E.H., and Ellis, R.H. 1990. Adaptation of chickpea to agroclimatic constraints. In: Chickpea in the Nineties: Proceedings of the 2nd International Workshop on Chickpea Improvement. pp. 61–72. Walby, B.J., and Hall, S.D., Eds., Patancheru, India: ICRISAT.
  • Sunkar, R., Chinnusamy, V., Zhu, J.K., and Zhu, J.K. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12: 301–309.
  • Szittya, G., Moxon, S., Santos, D.M., Jing, R., Fevereiro, M.P. S., Moulton, V., and Dalmay, T. 2008. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics. 9: 593.
  • Tadege, M., Trevor, W.L., Wen, J., Ratet, P., and Mysore, K.S. 2009. Mutagenesis and Beyond! Tools for Understanding Legume Biology Plant Physiol. 151: 978–984.
  • Talukdar, D. 2011. Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Res. 34: 232–241.
  • Tate, R.L. 2000. Soil Microbiology. 2nd ed. John Wiley & Sons, Inc. New York.
  • Tayeh, N., Bahrman, N., Devaux, R., Bluteau, A., Prosperi, J.M., Delbreil, B., and Lejeune-Henaut, I. 2013. A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol. Breeding 32: 279–289.
  • Tayeh, N., Bahrman N., Sellier, H., Bluteau, Blassiau, C., Fourment, J., Bellec, A., Debellé, F., Lejeune-Hénaut, I. and Delbreil, B. 2013. Identification and description of a tandem array of CBF/DREB1 genes that co-localizes with a major freezing tolerance QTL on Medicago truncatula. BMC Genomics 14: 814.
  • Taylor, N.L., Heazlewood, J.L., Day, D.A., and Millar, A.H. 2005. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol.Cell. Proteom. 4: 1122–1133.
  • Teakle, N.L., Amtmann, A., Real, D., and Colmer, T.D. 2010. Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. Physiol. Plant. 139: 358–374.
  • Thapa, B., Arora, R., Knapp, A.D., and Brummer, E.C. 2008. Applying freezing test to quantify cold acclimation in Medicago truncatula. J. Amer. Soc. Hort. Sci. 133: 684–691.
  • Thomashow, M.F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 118: 1–7.
  • Thomashow, M.F. 2001. So what's new in the field of plant cold acclimation? Lots! Plant Physiol. 125: 89–93.
  • Thung, M., and Rao, I.M. 1999. Integrated management of abiotic stresses. In: Common Bean Improvement in the Twenty-First Century. pp. 331–370. Singh, S.P., Ed., Kluwer Academic Publ., Dordrecht. The Netherlands.
  • Trindade, I., Capitão, C., Dalmay, T., Fevereiro, M.P., and Santos, D.M. 2010. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231: 705–716.
  • Tuberosa, R. 2012. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3
  • Turner, N.C., Colmer, T.D., Quealy, J., Pushpavalli, R., Krishnamurthy, L., Kaur, J., Singh, G., Siddique, K.H. M., and Vadez, V. 2013. Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil 365: 347–361.
  • Udvardi, M.K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja, A., Zhang, J.Y., Benedito, V., Hofer, J.M. I., Chueng, F., and Town, C.D. 2007. Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol. 144: 538–549.
  • Uemura, M., Tominaga, Y., Nakagawara, C., Shigematsu, S., Minami, A., and Kawamura, Y. 2006. Responses of the plasma membrane to low temperatures. Physiol. Plant. 126: 81–89.
  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Plant Biotechnol. 17: 113–122.
  • Upadhyaya, H.D., Reddy, K.N., Singh, S., and Gowda, C.L. L. 2013. Phenotypic diversity in Cajanus species and identification of promising sources for agronomic traits and seed protein content. Genet. Resour. Crop Evol. 60: 639–659.
  • Vadez, V., Krishnamurthy, L., Gaur, P.M., Upadhyaya, H.D., Hoisington, D.A., Varshney, R.K., Turner, N.C., and Siddique, K.H. M. 2007. Large variation in salinity tolerance is explained by differences in the sensitivity of reproductive stages in chickpea. Field Crop Res. 104: 123–129.
  • Vadez, V., Sinclair, T.R., and Serraj, R. 2000. Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol. Plant 110: 215–223.
  • Vadez, V., Soltani, A., Krishnamurthy, L., and Sinclair, T.R. 2012a. Modelling possible benefit of root related traits to enhance terminal drought adaption of chickpea. Field Crops Res. 137: 108–115.
  • Vadez, V., Krishnamurthy, L., Mahender, T., Varshney, R.K., Colmer, T.D., Turner, N.C., Siddique, K.M. H., and Gaur, P.M. 2012b. Assessment of ICCV2 x JG62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTLs for seed yield. Mol. Breeding 30: 9–21.
  • Vadez, V., Krishnamurthy, L., Colmer, T.D., and Turner, N.C. 2012c. Large number of flowers and tertiary branches increase yields under salt stress in chickpea. Eur. J. Agron. 41: 42–51.
  • Vadez, V., Soltani, A., and Sinclair, T.R. 2013a. Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Res. 146: 1–9.
  • Vadez, V., Kholova, J., Yadav, R.S., and Hash, C.T. 2013b. Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil 371: 447–462.
  • Vandecasteele, C., Teulat-Merah, B., Morère-Le Paven, M.C., Leprince, O., Ly Vu, B., Viau, L., and Buitink, J. 2011. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. Plant. Cell Environ. 34: 1473–1487.
  • Varshney, R.K., Ribaut, J.M., Buckler, E.S., Tuberoso, R., Rafalski, J.A., and Langridge, P. 2012b. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 30: 1172–1176.
  • Varshney, R.K., Chen, W., Li, Y., Bharti, A.K., Saxena, R.K., Schlueter, J.A., Donoghue, M.T. A., Azam, S., Fan, G., Whaley, A.M., Farmer, A.D., Sheridan, J., Iwata, A., Tuteja, E., Penmetsa, R.V., Wu, W., Upadhyaya, H.D., Yang, S.P., Shah, T., Saxena, K.B., Michael, T., McCombie, W.R., Yang, B., Zhang, G., Yang, H., Wang, J., Spillane, C., Cook, D.R., May, G.D., Xu, X., and Jackson, S.A. 2012a. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30: 83–89.
  • Varshney, R.K., Close, T.J., Singh, N.K., Hoisington, D.A., and Cook, D.R. 2009. Orphan legume crops enter the genomics era. Curr. Opin. Plant Biol. 12: 202–210.
  • Vasconcelos, E.S. D., Barioni Junior, W., Cruz, C.D., Ferreira, R.D. P., Rassini, J.B., and Vilela, D. 2008. Alfalfa genotype selection for adaptability and stability of dry matter production. Acta Sci. Agron. 30: 339–343.
  • Vaughan, L., MacAdam, S., Smith, S.E., and Dudley, L.M. 2002. Root growth and yield of differing alfalfa rooting populations under increasing salinity and zero leaching. Crop Sci. 42: 2064–2071.
  • Vaz Patto, M.C., Skiba, B., Pang, E.C. K., Ochatt, S.J., Lambein, F., and Rubiales, D. 2006. Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147: 133–147.
  • Vaz Patto, M.C., Hanbury, C., Van Moorhem, M., Lambein, F., Ochatt, S., and Rubiales, D. 2011. Grass Pea (Lathyrus sativus L.). In: Genetics, Genomics and Breeding of Cool Season Grain Legumes. pp. 151–204. Perez de la Vega, M., Torres, A.M., Cubero, J.I., and Kole C., Eds., Science Publishers Inc., Plymouth, UK.
  • Verbruggen, N., and Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753–759.
  • Verdier, J., Kakar, K., Gallardo, K., Le Signor, C., Aubert, G., Schlereth, A., Town, C.D., Udvardi, M.K. and Thompson, R.D. 2008. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol. Biol. 67: 567–580.
  • Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., Leprince, O., Chatelain, E., Vu, B.L., Gouzy, J., Gamas, P., Udvardi, M.K., and Buitink, J. 2013a. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 163: 757–774.
  • Verdier, J., Torres-Jerez, I., Wang, M., Andriankaja, A., Allen, S.N., He, J., Tang, Y., Murray, J.D. and Udvardi, M.K. 2013. Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation. Plant J. 74: 351–362.
  • Volenec, J.J., Cunningham, S.M., Haagenson, D.M., Berg, W.K., Joern, B.C., and Wiersma, D.W. 2002. Physiological genetics of alfalfa improvement: past failures, future prospects. Field Crop Res. 75: 97–110.
  • Vriezen, J.A., De Bruijn, F.J., and Nüsslein, K. 2007. Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73: 3451–3459.
  • Wang, T., Chen, L., Zhao, M., Tian, Q., and Zhang, W.H. 2011. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 12: 367.
  • Wang, M., Verdier, J., Benedito, V.A., Tang, Y., Murray, J.D., Ge, Y., and He, J. 2013. LegumeGRN: a gene regulatory network prediction server for functional and comparative studies. PLoS ONE. 8: e67434.
  • Wang, J., Gan, Y.T., Clarke, F., and McDonald, C.L. 2006 Response of chickpea yield to high temperature stress during reproductive development. Crop Sci. 46: 2171–2178.
  • Wei, W., Huang, J., Hao, Y.J., Zou, H.F., Wang, H.W., Zhao, J.Y., Liu, X.Y., Zhang, W.K., Ma, B., Zhang, J.S., and Chen, S.Y. 2009. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE 4
  • Weller, J.L., Liew, L.C., Hecht, V.F. G., Rajandran, V., Laurie, R.E., Ridge, S., Wenden, B., Vander Schoor, J.K., Jaminon, O., Blassiau, C., Dalmais, M., Rameau, C., Bendahmane, A., Macknight, R.C., and Lejeune-Hénaut, I. 2012. A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc. Natl. Acad. Sci. U S A 109: 21158–21163.
  • White, J.W., and Singh S.P. 1991. Sources and inheritance of earliness in tropically adapted indeterminate common bean. Euphytica 55: 15–19.
  • White, J.W., and Castillo, J.A. 1992. Evaluation of diverse shoot genotypes on selected root genotypes of common bean under soil water deficits. Crop Sci. 32: 762–765.
  • Wortmann, C.S., Kirkby, R.A., Eledu, C.A., and Allen, D.J. 1998. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa. p. 133 Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).
  • Xie, C., Zhang, R., Qu, Y., Miao, Z., Zhang, Y. Shen, X., Wang, T., and Dong, J. 2012. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol. 195: 124–135.
  • Xing, G.S., Cui, K.R., Li, J., Wang, Y., and Li, Z.X. 2001. Water stress and the accumulation of β-N-oxalyl-L-α,β-diaminopropionic acid in grass pea (Lathyrus sativus). J. Agri. Food Chem. 49: 216–220.
  • Xiong, L.M., Schumaker, K.S., and Zhu, J.K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–S183.
  • Xu, J., Xiao-Lin, L., and Luo, L. 2012. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl. Environ. Microbiol. 78: 8056–8061.
  • Xu, X.Y., Fan, R., Zheng, R., Li, C.M., and Yu, D.Y. 2011. Proteomic analysis of seed germination under salt stress in soybeans. J. Zhejiang Univ. Sci B. 12: 507–517.
  • Yan, X., Liao, H., Beebe, S.E., Blair, M.W., and Lynch, J.P. 2004. QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil. 265: 17–29.
  • Yang, Z., Rao, I.M. and Horst, W.J. 2013. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372: 3–25.
  • Yang, Z.B., Eticha, D., Rao, I.M., and Horst, W.J. 2010. Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). J. Exp. Bot. 61: 3245–3258.
  • Yang, Z.B., Eticha, D., Rotter, B., Rao, I.M., and Horst, W.J. 2011. Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol. 192: 99–113.
  • Yang, Z.B., Eticha, D., Albacete, A., Rao, I.M., Roitsch, T., and Horst, W.J. 2012. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). J. Exp. Bot. 63: 3109–3125.
  • Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095–1102.
  • Young, N.D., and Bharti, A.K. 2012 Genome-enabled insights into legume biology. Annu. Rev. Plant Biol. 63: 283–305.
  • Zahaf, O., Blanchet, S., de Zélicourt, A., Alunni, B., Plet, J., Laffont, C., de Lorenzo, L., Imbeaud, S., Ichanté, J.L., Diet, A., Badri, M., Zabalza, A., Gonzalez, E.M., Delacroix, H., Gruber, V., Frugier, F., and Crespi, M. 2012. Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol. Plant 5: 1068–1081.
  • Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968–989.
  • Zahran, H.H., and Sprent, J.I. 1986. Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167: 303–309.
  • Zahran, H.H., Manzano, M.C. M., Sanchez-Raya, A.J., Bedmar, E.J., Venema, K., and Rodriguez-Rosales, M.P. 2007. Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiol. Plant. 131: 122–130.
  • Zaman-Allah, M., Jenkinson, D., and Vadez, V. 2011a. Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct. Plant Biol. 38: 270–281.
  • Zaman-Allah, M., Jenkinson, D., and Vadez, V. 2011b. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J. Exp. Bot. 62: 4239–4252.
  • Zhai, Y., Wang, Y., Li, Y., Lei, T., Yan, F., Su, L., Li, X., Zhao, Y., Sun, X., Li, J., and Wang, Q. 2013. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513: 174–183.
  • Zhao, S., Lin, Z., Ma, W., Luo, D., and Cheng, Q. 2008. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Progr. 24: 773–779.
  • Zhang, G., Chen, M., Chen, X., Xu, Z., Li, L., Guo, J., and Ma, Y. 2010. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol. Biol. Rep. 37: 809–818.
  • Zhang, J.Y., Broecking, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W., and Wang, Z.Y. 2005. Overexpression of WXP1, a putative Medicago trucatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42: 689–707.
  • Zhang, L.L., Zhao, M.G., Tian, Q.Y., and Zhang, W.H. 2011. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta 234: 445–457.
  • Zhang, S., Yue, Y., Sheng, L., Wu, Y., Fan, G., Li, A., and Wei, C. 2013. PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol. 13
  • Zhou, Q.Y., Tian, A.G., Zou, H.F., Xie, Z.M., Lei, G., Huang, J., Wang, C.M., Wang, H.W., Zhang, J.S., and Chen, S.Y. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J. 6: 486–503.
  • Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.