16,200
Views
116
CrossRef citations to date
0
Altmetric
Original Articles

Plant Innate Immune Response: Qualitative and Quantitative Resistance

, &

References

  • Aghnoum, R., Marcel, T.C., Johrde, A., Pecchioni, N., Schweizer, P., and Niks, R.E. 2010. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol. Plant Microbe Interact. 23: 91–102.
  • Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y., Martin, J., and Smart, L. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 157: 317–327.
  • Ahuja, I., Kissen, R., and Bones, A.M. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17:73–90.
  • Al-Attala, M. N., Wang, X., Abou-Attia, M., Duan, X., and Kang, Z. 2014. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Mol. Biol. 84: 589–603.
  • Alves, M.S., Dadalto, S.P., Gonçalves, A.B., de Souza, G.B., Barros, V.A., and Fietto, L.G. 2014. Transcription factor functional protein-protein interactions in plant defense responses. Proteomes. 2: 85–106.
  • Anand, A., Zhou, T., Trick, H. N., Gill, B. S., Bockus, W. W., and Muthukrishnan, S. 2003. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin‐like protein, chitinase and glucanase against Fusarium graminearum. J. Exp. Bot. 54: 1101–1111.
  • Andersen, T.G., Barberon, M., and Geldner, N. 2015. Suberization—the second life of an endodermal cell. Curr. Opin. Plant Biol. 28: 9–15.
  • Ashkani, S., Rafii, M., Shabanimofrad, M., Ghasemzadeh, A., Ravanfar, S., and Latif, M. 2014. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit. Rev. Biotechnol. 8: 1–15.
  • Baetz, U., and Martinoia, E. 2014. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19: 90–98.
  • Bashline, L., Lei, L., Li, S., and Gu, Y. 2014. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant. 7: 586–600.
  • Baxter, A., Mittler, R., and Suzuki, N. 2014. ROS as key players in plant stress signalling. J Exp. Bot. 65: 1229–1240.
  • Bednarek, P. 2012. Sulfur‐Containing Secondary Metabolites from Arabidopsis thaliana and other Brassicaceae with Function in Plant Immunity. ChemBioChem. 13: 1846–1859.
  • Bellés, J.M., López-Gresa, M.P., Fayos, J., Pallás, V., Rodrigo, I., and Conejero, V. 2008. Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Sci. 174: 524–533.
  • Blümke, A., Somerville, S. C., and Voigt, C. A. 2013. Transient expression of the Arabidopsis thaliana callose synthase PMR4 increases penetration resistance to powdery mildew in barley. Adv. Biosci. Biotechnol. 4: 810–813.
  • Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60: 379–406.
  • Bollina, V., Kumaraswamy, G.K., Kushalappa, A.C., Choo, T.M., Dion, Y., Rioux, S., Faubert, D., and Hamzehzarghani, H. 2010. Mass spectrometry‐based metabolomics application to identify quantitative resistance‐related metabolites in barley against Fusarium head blight. Mol. Plant Pathol. 11: 769–782.
  • Boyd, L.A., Ridout, C., O'Sullivan, D.M., Leach, J.E., and Leung, H. 2013. Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29: 233–240.
  • Brosché, M., Blomster, T., Salojärvi, J., Cui, F., Sipari, N., Leppälä, J., Lamminmäki, A., Tomai, G., Narayanasamy, S., and Reddy, R.A. 2014. Transcriptomics and functional genomics of ROS-induced cell death regulation by radical-induced cell death1. PLoS Genet. 10: e1004112.
  • Buerstmayr, H., Ban, T., and Anderson, J.A. 2009. QTL mapping and marker‐assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 128: 1–26.
  • Chen, W., Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., Li, Y., Liu, X., Zhang, H., and Dong, H. 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 46: 714–721.
  • Chen, L., Zhang, L., Li, D., Wang, F., and Yu, D. 2013. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 110: E1963–E1971.
  • Chen, L., Zhang, Z., Liang, H., Liu, H., Du, L., and Xu, H. 2008. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J. Exp. Bot. 59: 4195–4204.
  • Christensen, S.A., Nemchenko, A., Park, Y.-S., Borrego, E., Huang, P.-C., Schmelz, E.A., Kunze, S., Feussner, I., Yalpani, N., and Meeley, R. 2014. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against fusarium verticillioides in Maize. Mol. Plant Microbe Interact. 27: 1263–1276.
  • Clasen, B.M., Stoddard, T.J., Luo, S., Demorest, Z.L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E.E., and Daulhac, A. 2015. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 14: 169–76.
  • Cristina, M.S., Petersen, M., and Mundy, J. 2010. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621–649.
  • Dangl J.L, Jones J.D.G. 2001. Plant pathogens and integrated defence responses to infection. Nature. 411: 826–33.
  • De Bruyne, L., Höfte, M., and De Vleesschauwer, D. 2014. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol. Plant. 7: 943–959.
  • Didi, V., Jackson, P., and Hejátko, J. 2015. Hormonal regulation of secondary cell wall formation. J. Exp. Bot. 66: 5015–27.
  • Dodds, P.N., and Rathjen, J.P. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11: 539–548.
  • Dong, X., Gao, Y., Chen, W., Wang, W., Gong, L., Liu, X., and Luo, J. 2015. Spatiotemporal Distribution of Phenolamides and the Genetics of Natural Variation of Hydroxycinnamoyl Spermidine in Rice. Mol. Plant. 8: 111–121.
  • Dong, N., Liu, X., Lu, Y., Du, L., Xu, H., and Liu, H. 2010. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct. Integr. Genomics. 10: 215–226.
  • Dracatos, P. M., Weerden, N. L., Carroll, K. T., Johnson, E. D., Plummer, K. M., and Anderson, M. A. 2014. Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Mol. Plant Pathol. 15: 67–79.
  • Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L.P., Zhou, J., Liebrand, T.W., Xie, C., Govers, F., and Robatzek, S. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants. 1: 15034.
  • Duan, Y., Guo, J., Shi, X., Guan, X., Liu, F., and Bai, P., 2013. Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Rep. 32: 273–283.
  • Egorov, T.A., and Odintsova, T. 2012. Defense peptides of plant immunity. Russ. J. Bioorg. Chem. 38: 1–9.
  • Etalo, D.W., Stulemeijer, I.J., van Esse, H.P., de Vos, R.C., Bouwmeester, H.J., and Joosten, M.H. 2013. System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiol. 162: 1599–1617.
  • Eudes, A., Liang, Y., Mitra, P., and Loque, D. 2014. Lignin bioengineering. Curr. Opin. Biotechnol. 26: 189–198.
  • Fellenberg, C., and Vogt, T. 2015. Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci. 20: 212–218.
  • Fernández‐Pérez, M., Villafranca‐Sánchez, M., Flores‐Céspedes, F., and Daza‐Fernández, I. 2015. Lignin‐polyethylene glycol matrices and ethylcellulose to encapsulate highly soluble herbicides. J. Appl. Polym. Sci. 132: 41422.
  • Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275–296.
  • Frescatada-Rosa, M., Robatzek, S., and Kuhn, H. 2015. Should I stay or should I go? Traffic control for plant pattern recognition receptors. Curr. Opin. Plant Biol. 28: 23–29.
  • Furniss, J.J., and Spoel, S.H. 2015. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. Front Plant Sci. 6: 154.
  • Gallego‐Giraldo, L., Jikumaru, Y., Kamiya, Y., Tang, Y., and Dixon, R.A. 2011. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New. Phytol. 190: 627–639.
  • Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F.M., De Lorenzo, G., and Ferrari, S. 2008. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol. 148: 1695–1706.
  • Geng, S., Li, A., Tang, L., Yin, L., Wu, L., and Lei, C., 2013. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice. J. Exp. Bot. 64: 3125–3136.
  • Giberti, S., Bertea, C.M., Narayana, R., Maffei, M.E., and Forlani, G. 2012. Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. J. Plant Physiol. 169: 249–254.
  • Giraldo, M.C., and Valent, B. 2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11: 800–814.
  • Golshani, F., Fakheri, B.A., Behshad, E., and Vashvaei, R.M. 2015. PRs proteins and their Mechanism in Plants. In: Biological Forum: Research Trend. 7: 477–495.
  • Grosjean, K., Mongrand, S., Beney, L., Simon-Plas, F., and Gerbeau-Pissot, P. 2015. Differential Effect of Plant Lipids on Membrane Organization specificities of phytosphingolipids and phytosterols. J. Biol. Chem. 290: 5810–5825.
  • Gunnaiah, R., and Kushalappa, A.C. 2014. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. Plant Physiol. Biochem. 83: 40–50.
  • Gunnaiah, R., Kushalappa, A.C., Duggavathi, R., Fox, S., and Somers, D.J. 2012. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One. 7: e40695.
  • Han, J., Lakshman, D. K., Galvez, L. C., Mitra, S., Baenziger, P. S., and Mitra, A. 2012. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol. 12: 33.
  • Holme, I.B., Wendt, T., and Holm, P.B. 2013. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotech. J. 11:395–407.
  • Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Maas, C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–109.
  • Jacobsen, E. 2013. Cisgenesis: a modern way of domesticating traits of the breeders' gene pool. CAB Reviews. 8: 56.
  • Jeandet, P., Hébrard, C., Deville, M.-A., Cordelier, S., Dorey, S., Aziz, A., and Crouzet, J. 2014. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19:18033–18056.
  • Jha, S., Tank, H. G., Prasad, B. D., and Chattoo, B. B. 2009. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res. 18: 59–69.
  • Jones, H.D. 2015. Regulatory uncertainty over genome editing. Nat. Plants. 1.
  • Jones, J.D., and Dangl, J.L. 2006. The plant immune system. Nature 444: 323–329.
  • Jordá, L., Conejero, V., and Vera, P. 2000. Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin-like proteinase family from tomato plants. Plant Physiol. 122: 67–74.
  • Kabbage, M., Yarden, O., and Dickman, M.B. 2015. Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Sci. 233: 53–60.
  • Kage, U., and Kushalappa, A. C. 2015. Identification of Candidate Genes in QTL 2DL and Deciphering Mechanisms of Resistance Against Fusarium Head Blight Based on Metabolo-Genomics in Wheat. In: Plant and Animal Genome XXIII Conference: Plant and Animal Genome.
  • Kage, U., Kumar, A., Dhokane, D., Karre, S., and Kushalappa, A., 2015. Functional molecular markers for crop improvement. Crit. Rev. Biotechnol. 16: 1–14.
  • Kang, J.-H., McRoberts, J., Shi, F., Moreno, J.E., Jones, A.D., and Howe, G.A. 2014. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol. 164: 1161–1174.
  • Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., and Martinoia, E. 2011. Plant ABC transporters. The Arabidopsis book/American Society of Plant Biologists. 9: e0153.
  • Karlovsky, P. 1999. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat. Toxins. 7: 1–23.
  • Kazan, K., and Lyons, R. 2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 26: 2285–2309.
  • Kim, N.H., and Hwang, B.K. 2015. Pepper pathogenesis‐related protein 4c is a plasma membrane‐localized cysteine protease inhibitor that is required for plant cell death and defense signaling. Plant J. 81: 81–94.
  • Kishi‐Kaboshi, M., Okada, K., Kurimoto, L., Murakami, S., Umezawa, T., Shibuya, N., Yamane, H., Miyao, A., Takatsuji, H., and Takahashi, A. 2010. A rice fungal MAMP‐responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J. 63: 599–612.
  • Kou, Y., and Wang, S. 2012. Toward an understanding of the molecular basis of quantitative disease resistance in rice. J. Biotechnol. 159: 283–290.
  • Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., and Keller, B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 323: 1360–1363.
  • Krishnamurthy, K., Balconi, C., Sherwood, J. E., and Giroux, M. J. 2001. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol. Plant Microbe Interact. 14: 1255–1260.
  • Kumaraswamy, G., Kushalappa, A., Choo, T., Dion, Y., and Rioux, S. 2012. Differential metabolic response of barley genotypes, varying in resistance, to trichothecene‐producing and‐nonproducing (tri5−) isolates of Fusarium graminearum. Plant Pathol. 61: 509–521.
  • Kusano, T., Kim, D.W., Liu, T., and Berberich, T. 2015. Polyamine Catabolism in Plants. In: Polyamine: A Universal Molecular Nexus for Growth, Survival and Specialized Metabolism, pp. 77–88. T. Kusano, & H. Suzuki (Eds.). Tokyo, Japan: Springer.
  • Kushalappa, A.C., and Gunnaiah, R. 2013. Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci. 18: 522–531.
  • Lanubile, A., Ferrarini, A., Maschietto, V., Delledonne, M., Marocco, A., and Bellin, D. 2014. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC genomics. 15: 710.
  • Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-Pettenati, J. 2001. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry. 57: 1187–1195.
  • Łaźniewska, J., Macioszek, V.K., and Kononowicz, A.K. 2012. Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol. Mol. Plant Pathol. 78: 24–30.
  • Leba, L. J., Cheval, C., Ortiz‐Martín, I., Ranty, B., Beuzón, C. R., and Galaud, J. P., 2012. CML9, an Arabidopsis calmodulin‐like protein, contributes to plant innate immunity through a flagellin‐dependent signalling pathway. Plant J. 71: 976–989.
  • Lee, H., Ko, Y. J., Cha, J.-Y., Park, S. R., Ahn, I., and Hwang, D.-J. 2013. The C-terminal region of OsWRKY30 is sufficient to confer enhanced resistance to pathogen and activate the expression of defense-related genes. Plant Biotechnol. Rep. 7: 221–230.
  • Li, J., Wang, J., Wang, N., Guo, X., and Gao, Z. 2015a. GhWRKY44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. Plant Cell Tissue Organ Cult. 121: 127–140.
  • Li, W., Wang, F., Wang, J., Fan, F., Zhu, J., and Yang, J. 2015b. Overexpressing CYP71Z2 Enhances Resistance to Bacterial Blight by Suppressing Auxin Biosynthesis in Rice. Plos one. 10: e0119867.
  • Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., and Zhang, H. 2014. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14: 166.
  • Liu, B., Hong, Y.-B., Zhang, Y.-F., Li, X.-H., Huang, L., and Zhang, H.-J. 2014a. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress. Plant Sci. 227: 145–156.
  • Liu, B., Ouyang, Z., Zhang, Y., Li, X., Hong, Y., and Huang, L. 2014b. Tomato NAC Transcription Factor SlSRN1 Positively Regulates Defense Response against Biotic Stress but Negatively Regulates Abiotic Stress Response. Plos One. 9: e102067.
  • Liu, W., Liu, J., Ning, Y., Ding, B., Wang, X., Wang, Z., and Wang, G.-L. 2013. Recent progress in understanding PAMP-and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol. Plant. 6: 605–620.
  • Lloyd, A.J., William Allwood, J., Winder, C.L., Dunn, W.B., Heald, J.K., Cristescu, S.M., Sivakumaran, A., Harren, F.J., Mulema, J., and Denby, K. 2011. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene‐mediated resistance against Botrytis cinerea. Plant J. 67: 852–868.
  • López-Gresa, M.P., Torres, C., Campos, L., Lisón, P., Rodrigo, I., Bellés, J.M., and Conejero, V. 2011. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ. Exp. Bot. 74: 216–228.
  • Lumba, S., Cutler, S., and McCourt, P. 2010. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu. Rev. Cell Dev. Biol. 26: 445–469.
  • Macho, A.P., and Zipfel, C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23: 14–22.
  • Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell. 23: 1639–1653.
  • Marchive, C., Léon, C., Kappel, C., Coutos-Thévenot, P., Corio-Costet, M.-F., Delrot, S., and Lauvergeat, V. 2013. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS One. 8: e54185.
  • Maury, S., Geoffroy, P., and Legrand, M. 1999. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. Plant Physiol. 121: 215–224.
  • Mei, C., Qi, M., Sheng, G., and Yang, Y. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant Microbe Interact. 19: 1127–1137.
  • Mengiste, T. 2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50: 267–294.
  • Mengiste, T., Chen, X., Salmeron, J., and Dietrich, R. 2003. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell. 15: 2551–2565.
  • Miao, W., Wang, X., Li, M., Song, C., Wang, Y., and Hu, D. 2010. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol. 10: 67.
  • Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104: 19613–19618.
  • Muroi, A., Ishihara, A., Tanaka, C., Ishizuka, A., Takabayashi, J., Miyoshi, H., and Nishioka, T. 2009. Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta. 230: 517–527.
  • Nakano, Y., Yamaguchi, M., Endo, H., Rejab, N.A., and Ohtani, M. 2015. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci. 6: 288.
  • Nawrot, R., Barylski, J., Nowicki, G., Broniarczyk, J., Buchwald, W., and Goździcka-Józefiak, A. 2014. Plant antimicrobial peptides. Folia microbiologica. 59: 181–196.
  • Nedukha, O. 2015. Callose: Localization, functions, and synthesis in plant cells. Cytol. Genet. 49: 49–57.
  • Niks, R., Li, X., and Marcel, T.C. 2015. Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annu. Rev. Phytopathol. 53: 445–470.
  • Ogata, T., Kida, Y., Arai, T., Kishi, Y., Manago, Y., and Murai, M. 2012. Overexpression of tobacco ethylene response factor NtERF3 gene and its homologues from tobacco and rice induces hypersensitive response-like cell death in tobacco. J. General Plant Pathol. 78: 8–17.
  • Oliver, R.P., and Solomon, P.S. 2010. New developments in pathogenicity and virulence of necrotrophs. Curr. Opin. Plant Biol. 13: 415–419.
  • Pajerowska-Mukhtar, K.M., Mukhtar, M.S., Guex, N., Halim, V.A., Rosahl, S., Somssich, I.E., and Gebhardt, C. 2008. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta. 228: 293–306.
  • Palmgren, M.G., Edenbrandt, A.K., Vedel, S.E., Andersen, M.M., Landes, X., Østerberg, J.T., Falhof, J., Olsen, L.I., Christensen, S.B., and Sandøe, P. 2015. Are we ready for back-to-nature crop breeding? Trends Plant Sci. 20: 155–164.
  • Petersen, L. N., Ingle, R. A., Knight, M. R., and Denby, K. J. 2009. OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. J. Exp. Bot. 60: 3727–3735.
  • Pedras, M.S.C., and To, Q.H. 2015. Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols, a striking convergent evolution of defenses in terrestrial plants and marine animals? Phytochemistry. 113: 57–63.
  • Pendleton, A.L., Smith, K.E., Feau, N., Martin, F.M., Grigoriev, I.V., Hamelin, R., Nelson, C.D., Burleigh, J.G., and Davis, J.M. 2014. Duplications and losses in gene families of rust pathogens highlight putative effectors. Front Plant Sci. 5: 299.
  • Piasecka, A., Jedrzejczak‐Rey, N., and Bednarek, P. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206: 948–964.
  • Pieterse, C.M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S.C. 2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28: 489–521.
  • Poland, J.A., Balint-Kurti, P.J., Wisser, R.J., Pratt, R.C., and Nelson, R.J. 2009. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 14: 21–29.
  • Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., and Kahmann, R. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66: 513–545.
  • Pushpa, D., Yogendra, K.N., Gunnaiah, R., Kushalappa, A.C., and Murphy, A. 2014. Identification of late blight resistance-related metabolites and genes in potato through nontargeted metabolomics. Plant Mol. Biol. Rep. 32: 584–595.
  • Raffaele, S., Vailleau, F., Léger, A., Joubès, J., Miersch, O., and Huard, C., 2008. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell. 20: 752–767.
  • Rong, W., Qi, L., Wang, J., Du, L., Xu, H., and Wang, A. 2013. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct. Integr. Genomics. 13: 403–409.
  • Ruelland, E., Kravets, V., Derevyanchuk, M., Martinec, J., Zachowski, A., and Pokotylo, I. 2015. Role of phospholipid signalling in plant environmental responses. Environ. Exp. Bot. 114: 129–143.
  • Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J. 2010. WRKY transcription factors. Trends Plant Sci. 15: 247–258.
  • Sarowar, S., Kim, Y. J., Kim, E. N., Kim, K. D., Hwang, B. K., and Islam, R. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant cell Rep. 24: 216–224.
  • Sarowar, S., Kim, Y. J., Kim, K. D., Hwang, B. K., Ok, S. H., and Shin, J. S. 2009. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant cell Rep. 28: 419–427.
  • Sarris, P.F., Duxbury, Z., Huh, S.U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., and Saucet, S.B. 2015. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell. 161: 1089–1100.
  • Schweiger, W., Boddu, J., Shin, S., Poppenberger, B., Berthiller, F., Lemmens, M., Muehlbauer, G.J., and Adam, G. 2010. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol. Plant Microbe Interact. 23: 977–986.
  • Sels, J., Mathys, J., De Coninck, B.M., Cammue, B.P., and De Bolle, M.F. 2008. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem. 46: 941–950.
  • Serazetdinova, L., Oldach, K. H., and Lörz, H. 2005. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J. Plant Physiol. 162: 985–1002.
  • Shan, Q., Wang, Y., Li, J., and Gao, C. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9: 2395–2410.
  • Shan, W., Chen, J.Y., Kuang, J.F., and Lu, W.J. 2015. Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance expressions of Pathogenesis‐Related genes against Colletotrichum musae. Mol. Plant. Pathol. 1–9.
  • Sharma, P., Ito, A., Shimizu, T., Terauchi, R., Kamoun, S., and Saitoh, H. 2003. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol. Genet. Genomics. 269: 583–591.
  • Shi, J., Zhang, L., An, H., Wu, C., and Guo, X. 2011. GhMPK16, a novel stress responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol. Biol. 12: 1.
  • Shi, J.X., Adato, A., Alkan, N., He, Y., Lashbrooke, J., Matas, A.J., Meir, S., Malitsky, S., Isaacson, T., and Prusky, D. 2013. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol. 197: 468–480.
  • Singh, A.K., Dwivedi, V., Rai, A., Pal, S., Reddy, S.G.E., Rao, D.K.V., Shasany, A.K., and Nagegowda, D.A. 2015. Virus‐induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence‐related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotech. J. 13:1287–99.
  • St. Clair, D.A. 2010. Quantitative disease resistance and quantitative resistance loci in breeding. Annu. Rev. Phytopathol. 48:247–268.
  • Stael, S., Kmiecik, P., Willems, P., Van Der Kelen, K., Coll, N.S., Teige, M., and Van Breusegem, F. 2015. Plant innate immunity–sunny side up? Trends Plant Sci. 20: 3–11.
  • Taniguchi, S., Hosokawa‐Shinonaga, Y., Tamaoki, D., Yamada, S., Akimitsu, K., and Gomi, K. 2014. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ. 37: 451–461.
  • Tholl, D. 2015. Biosynthesis and Biological Functions of Terpenoids in Plants. Adv. Biochem. Eng. Biotechnol. 148: 63–106.
  • Trdá, L., Boutrot, F., Claverie, J., Brulé, D., Dorey, S., and Poinssot, B. 2015. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci. 6: 219.
  • Tronchet, M., Balague, C., Kroj, T., Jouanin, L., and Roby, D. 2010. Cinnamyl alcohol dehydrogenases‐C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant. Pathol. 11: 83–92.
  • Uma, B., Rani, T.S., and Podile, A.R. 2011. Warriors at the gate that never sleep: non-host resistance in plants. J. Plant Physiol. 168: 2141–2152.
  • Van Loon, L.C., Rep, M., and Pieterse, C. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44: 135–162.
  • Vishwanath, S.J., Delude, C., Domergue, F., and Rowland, O. 2015. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 34: 573–586.
  • Walter, S., Kahla, A., Arunachalam, C., Perochon, A., Khan, M.R., Scofield, S.R., and Doohan, F.M. 2015. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance. J. Exp. Bot. erv048.
  • Wan, J., Zhang, X.-C., Neece, D., Ramonell, K. M., Clough, S., and Kim, S.Y. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell. 20: 471–481.
  • Wang, H., Hao, J., Chen, X., Hao, Z., Wang, X., and Lou, Y. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol. Biol. 65: 799–815.
  • Wang, X., Tang, C., Huang, X., Li, F., Chen, X., and Zhang, G., 2012. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J. Exp. Bot. 3:4571–84.
  • Wang, X., Wang, X., Deng, L., Chang, H., Dubcovsky, J., and Feng, H., 2014a. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici). J. Exp. Bot. 65: 4807–20.
  • Wang, S., Li, E., Porth, I., Chen, J.-G., Mansfield, S.D., and Douglas, C.J. 2014b. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Sci. Rep. 4: 5054.
  • Waszczak, C., Akter, S., Jacques, S., Huang, J., Messens, J., and Van Breusegem, F. 2015. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66: 2923–2934.
  • Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., Liu, J., Liu, H., Chen, W., and Luo, J. 2014. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5: 3438.
  • Whitmarsh, A.J. 2007. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. BBA-Mol. Cell. Res. 1773: 1285–1298.
  • Wirthmueller, L., Maqbool, A., and Banfield, M.J. 2013. On the front line: structural insights into plant-pathogen interactions. Nat. Rev. Microbiol. 11: 761–776.
  • Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.-G., Kim, S.-T., Choe, S., and Kim, J.-S. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33: 1162–4.
  • Xia, N., Zhang, G., Liu, X.-Y., Deng, L., Cai, G. L., and Zhang, Y. 2010. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol. Biol. Rep. 37: 3703–3712.
  • Xiao, J., Jin, X., Jia, X., Wang, H., Cao, A., Zhao, W., Pei, H., Xue, Z., He, L., and Chen, Q. 2013. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC genomics 14: 197.
  • Xu, Z.S., Chen, M., Li, L.C., and Ma, Y.Z. 2011. Functions and application of the AP2/ERF transcription factor family in crop improvementF. J. Integr. Plant. Biol. 53: 570–585.
  • Xu, Y.-H., Wang, J.-W., Wang, S., Wang, J.-Y., and Chen, X.-Y. 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiol. 135: 507–515.
  • Yamamura, C., Mizutani, E., Okada, K., Nakagawa, H., Fukushima, S., Tanaka, A., Maeda, S., Kamakura, T., Yamane, H., and Takatsuji, H. 2015. Diterpenoid Phytoalexin Factor, a bHLH Transcription Factor, Plays a Central Role in the Biosynthesis of Diterpenoid Phytoalexins in Rice. Plant J. 84: 1100–13.
  • Yeh, Y.-H., Chang, Y.-H., Huang, P.-Y., Huang, J.-B., and Zimmerli, L. 2015. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front. Plant Sci. 6: 322.
  • Yogendra, K.N., Kumar, A., Sarkar, K., Li, Y., Pushpa, D., Mosa, K.A., Duggavathi, R., and Kushalappa, A.C. 2015a. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. J. Exp. Bot. 66: 7377–7389.
  • Yogendra, K.N., Kushalappa, A.C., Sarmiento, F., Rodriguez, E., and Mosquera, T. 2015b. Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight. Funct. Plant Biol. 42: 284–298.
  • Yogendra, K.N., Pushpa, D., Mosa, K.A., Kushalappa, A.C., Murphy, A., and Mosquera, T. 2014. Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct. Integr. Genomics. 14: 285–298.
  • Zeng, W., and He, S. Y. 2010. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 153: 1188–1198.
  • Zhan, J., Thrall, P.H., Papaïx, J., Xie, L., and Burdon, J.J. 2015. Playing on a Pathogen's Weakness: Using Evolution to Guide Sustainable Plant Disease Control Strategies. Annu. Rev. Phytopathol. 53: 19–43.
  • Zhang, B., Yang, Y., Chen, T., Yu, W., Liu, T., and Li, H., 2012. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. Plos One. 7: e51091.
  • Zhang, F., Huang, L.-Y., Ali, J., Cruz, C. V., Zhuo, D.-L., and Du, Z.-L. 2015. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC genomics. 16: 111.
  • Zhang, H., Hu, Y., Yang, B., Xue, F., Wang, C., and Kang, Z. 2013. Isolation and characterization of a wheat IF2 homolog required for innate immunity to stripe rust. Plant Cell Rep. 32: 591–600.
  • Zhang, J., Peng, Y., and Guo, Z. 2008. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res. 18: 508–521.
  • Zhu, X., Qi, L., Liu, X., Cai, S., Xu, H., and Huang, R. 2014. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol. 164: 1499–1514.
  • Zuo, W., Chao, Q., Zhang, N., Ye, J., Tan, G., and Li, B. 2015. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 47: 151–157.