811
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

When Color Really Matters: Horticultural Performance and Functional Quality of High-Lycopene Tomatoes

, , , , , & show all

References

  • Adamse, P., Peters, J. L., Jaspers, P. A. P. M., van Tuinen, A., Koornneef, M., and Kendrick, R. E. 1989. Photocontrol of anthocyanin synthesis in tomato seedlings: a genetic approach. Photochem. Photobiol. 50(1): 107–111.
  • Agarwal, S., and Rao, A. V. 1998. Tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study. Lipids 33: 981–984.
  • Agarwal, S., and Rao, A. V. 2000. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 163: 739–744.
  • Al-Wandawi, H., Abdul-Rahman, M., and Al-Shaikhly, K. 1985. Tomato processing wastes as essential raw materials source. J. Agric. Food Chem. 33(5): 804–807.
  • Andrade-Júnior, V. C. d., Maluf, W. R., Faria, M. V., Benites, F. R. G., and Santos Júnior, A. M. D. 2005. Produção e qualidade de frutos de tomateiros portadores de alelos mutantes de amadurecimento e coloração. Pesq. Agropec. Bras. 40(6): 555–561.
  • Araújo, M. L. D., Maluf, W. R., Gomes, L. A. A., and Oliveira, A. C. B. 2002. Intra and interlocus interactions between alcobaça (alc), crimson (ogc), and high pigment (hp) loci in tomato Lycopersicon esculentum Mill. Euphytica 125: 215–226.
  • Arias, R., Lee, T. C., Logendra, L., and Janes, H. 2000. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 48(5): 1697–1702.
  • Ashrafi, H., Kinkade, M. P., Merk, H. L., and Foolad, M. R. 2012. Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol. Breed. 30(1): 549–567.
  • Azanza, F., Young, T. E., Kim, D., Tanksley, S. D., and Juvik, J. A. 1994. Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersicon chmielewskii on tomato soluble solids, pH, and yield. Theor. Appl. Genet. 87(8): 965–972.
  • Bai, C., Twyman, R. M., Farré, G., Sanahuja, G., Christou, P., Capell, T., and Zhu, C. 2011. A golden era—pro-vitamin A enhancement in diverse crops. In Vitro Cell. Dev. Biol. Plant. 47: 205–221.
  • Balestrieri, M. L., De Prisco, R., Nicolaus, B., Pari, P., Moriello, V. S., Strazzullo, G., Iorio, E. L., Servillo, L., and Balestrieri, C. 2004. Lycopene in association with R-tocopherol or tomato lipophilic extracts enhances acyl-platelet-activating factor biosynthesis in endothelial cells during oxidative stress. Free Radic. Biol. Med. 36: 1058–1067.
  • Barker, L. R., and Tomes, M. L. 1964. Carotenoids and chlorophylls in two tomato mutants and their hybrid. Proc. Am. Soc. Hortic. Sci. 85: 507–513.
  • Beckles, D. M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63(1): 129–140.
  • Bergougnoux, V. 2014. The history of tomato: from domestication to biopharming. Biotechnol. Adv. 32(1): 170–189.
  • Bino, R. J., Ric de Vos, C. H., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., Tikunov, Y., Lommen, A., Moco, S., and Levin, I. 2005. The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol. 166(2): 427–438.
  • Böhm, V., and Bitch, R. 1999. Intestinal absorption of lycopene from different matrices and interactions to others carotenoids, the lipid status and the antioxidant capacity of human plasma. Eur. J. Nutr. 38(3): 118–125.
  • Bruno, A., Durante, M., Marrese, P. P., Migoni, D., Laus, M. N., Pace, E., Pastore, D., Mita, G., Piro, G., and Lenucci, M. S. 2018. Shades of red: comparative study on supercritical CO2 extraction of lycopene-rich oleoresins from gac, tomato and watermelon fruits and effect of the α-cyclodextrin clathrated extracts on cultured lung adenocarcinoma cells' viability. J. Food Compost. Anal. 65: 23–32.
  • Campardelli, R., Baldino, L., and Reverchon, E. 2015. Supercritical fluids applications in nanomedicine. J. Supercrit. Fluids 101: 193–214.
  • Canene-Adams, K., Campbell, J. K., Zaripheh, S., Jeffery, E. H., and Erdman, J. W. Jr. 2005. The tomato as a functional food. J. Nutr. 135(5): 1226–1230.
  • Cano, A., Acosta, M., and Arnao, M. B. 2003. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 28(1): 59–65.
  • Cantore, V., Boari, F., Vanadia, S., Pace, B., Depalma, E., Leo, L., and Zacheo, G. 2008. Evaluation of yield and qualitative parameters of high lycopene tomato cultivars. Acta Hortic. 789: 173–180.
  • Carluccio, F., Lenucci, M., Piro, G., Siems, W., and Luño, J. 2016. Vegetable derived antioxidant and vitamin D: effects on oxidative stress and bone mineral metabolism of aged patients with renal disease. FFHD 6(6): 379–387.
  • Chialva, M., Zouari, I., Salvioli, A., Novero, M., Vrebalov, J., Giovannoni, J. J., and Bonfante, P. 2016. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening. Planta 244(1): 155–165.
  • Chory, J. 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet. 9(5): 167–172.
  • Ciriminna, R., Fidalgo, A., Meneguzzo, F., Ilharco, L. M., and Pagliaro, M. 2016. Lycopene: emerging production methods and applications of a valued carotenoid. ACS Sustain. Chem. Eng. 4: 643–650.
  • Ciurlia, L., Bleve, M., and Rescio, L. 2009. Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicum esculentum L.) and hazelnuts (Corylus avellana L.): a new procedure in obtaining a source of natural lycopene. J. Supercrit. Fluids 49(3): 338–344.
  • Clinton, S. K. 1998. Lycopene: chemistry, biology, and implications for human health and disease. Nutr. Rev. 56: 35–51.
  • Collier, G., and Ozminkowski, R. 2015. Hybrid varieties H1301, H1307, H1310, and H1311. Patent US 20150327457 A1. www.freepatentsonline.com/y2015/0327457.html (accessed on January 2018).
  • Cookson, P. J., Kiano, J. W., Shipton, C. A., Fraser, P. D., Romer, S., Schuch, W., Bramley, P. M., and Pyke, K. A. 2003. Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217(6): 896–903.
  • Davies, J., and Hobson, G. E. 1981. The constituents of tomato fruit — the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 15(3): 205–280.
  • Di Mascio, P., Kaiser, S., and Sies, H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–538.
  • Diplock, A. T., Charleux, J. L., Crozier-Willi, G., Kok, F. J., Rice-Evans, C., Roberfroid, M., Stahl, W., and Vina-Ribes, J. 1998. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 80(Suppl. 1): S77–S112.
  • Dumas, Y., Dadomo, M., Di Lucca, G., and Grolier, P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83(5): 369–382.
  • Durante, M., Lenucci, M. S., Marrese, P. P., Rizzi, V., De Caroli, M., Piro, G., Fini, P., Russo, G. L., and Mita, G. 2016. α-Cyclodextrin encapsulation of supercritical CO2 extracted oleoresins from different plant matrices: a stability study. Food Chem. 199: 684–693.
  • Erdman, J. W., Ford, N. A., and Lindshield, B. L. 2009. Are the health attributes of lycopene related to its antioxidant function? Arch. Biochem. Biophys. 483(2): 229–235.
  • Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., and Saccardo, F. 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54(12): 4319–4325.
  • Faria, M. V., Maluf, W. R. d., Azevedo, S. M. d., Andrade-Júnior, V. C., Gomez, L. A. A., Moretto, P., and Licursi, V. 2003. Yield and post-harvest quality of tomato hybrids heterozygous at the loci alcobaça, old gold-crimson or high-pigment. Genet. Mol. Res. 2(3): 317–327.
  • Faria, M. V., Maluf, W. R. d., Resende, J. T. V. d., Andrade-Júnior, V. C., Nascimento, I. R. d., Benites, F. R. G., Menezes, C. B. d., and Azevedo, S. M. 2006. Mutantes rin, norA, ogc e hp em diferentes backgrounds genotípicos de tomateiro. Pesq. Agropec. Bras. 41(5): 793–800.
  • Fernández-García, E., Carvajal-Lérida, I., Jarén-Galán, M., Garrido-Fernández, J., Pérez-Gálvez, A., and Hornero-Méndez, D. 2012. Carotenoid bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Intl. 46(2): 438–450.
  • Flores, P., Sánchez, E., Fenoll, J., and Hellín, P. 2016. Genotypic variability of carotenoids in traditional tomato cultivars. Food Res. Intl. 100(3): 510–516.
  • Foolad, M. R. 2009. High lycopene content tomato plants and markers for use in breeding for same. Patent US 20090241209 A1. www.freepatentsonline.com/y2009/0241209.html (accessed on January 2018).
  • Galpaz, N., Wang, Q., Menda, N., Zamir, D., and Hirschberg, J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 53(5): 717–730.
  • Garcia, E., and Barrett, D. M. 2006. Assessing lycopene content in California processing tomatoes. J. Food Process. Preserv. 30(1): 56–70.
  • Gärtner, C., Stahl, W., and Sies, H. 1997. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am. J. Clin. Nutr. 66(1): 116–122.
  • Giordano, L. B., Boiteux, L. S., Quezado-Duval, A. M., Fonseca, M. E. N., Resende, F. V., Reis, A., González, M., Nascimento, W. M., and Mendonça, J. L. 2010. ‘BRS Tospodoro’: a high lycopene processing tomato cultivar adapted to organic cropping systems and with multiple resistance to pathogens. Hortic. Bras. 28: 241–245.
  • Giovanelli, G., Lavelli, V., Peri, C., and Nobili, S. 1999. Variation in antioxidant compounds of tomato during vine and post-harvest ripening. J. Sci. Food Agric. 79(12): 1583–1588.
  • Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst. 91: 317–331.
  • Gökmen, V., Serpen, A., and Fogliano, V. 2009. Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends Food Sci. Technol. 20(6–7): 278–288.
  • Gómez, R., Costa, J., Amo, M., Alvarruiz, A., Picazo, M., and Pardo, J. E. 2001. Physicochemical and colorimetric evaluation of local varieties of tomato grown in SE Spain. J. Sci. Food Agric. 81(11): 1101–1105.
  • Gómez-Estaca, J., López-de-Dicastillo, C., Hernandez-Muñoz, P., Catalá, R., and Gavara, R. 2014. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 35(1): 42–51.
  • Gragera, J., Gutiérrez, J. M., Daza, C., Esteban, A. G., and González, C. 2009. Evaluación de parámetros productivos y de calidad en cultivares de tomate de industria con alto contenido en licopeno en Extremadura. Actas de Horticultura 54: 256–257.
  • Hanson, P. M., and Yang, R. 2016. Genetic improvement of tomato (Solanum lycopersicum L.) for phytonutrient content at AVRDC – the world vegetable center. Ekin J. Crop Breed. Genet. 2(2): 1–10.
  • Hanson, P. M., Yang, R., Wu, J., Chen, J., Ledesma, D., and Tsou, S. C. S. 2004. Variation for antioxidant activity and antioxidants in tomato. J. Am. Soc. Hortic. Sci. 129(5): 704–711.
  • Harris, W. M., and Spurr, A. R. 1969. Chromoplasts of tomato fruit. II. The red tomato. Am. J. Bot. 56(4): 380–389.
  • Hazra, P., Akhtar, S. H., Karak, C., Biswas, P., Atanassova, B., and Balacheva, E. 2012. Effect of mutant genes on the content of the nutritive quality related compounds in tomato (Solanum lycopersicum) fruits. Acta Hortic. 960: 311–318.
  • Hdider, C., Ilahy, R., Tlili, I., Lenucci, M. S., and Dalessandro, G. 2013. Effect of the stage of maturity on antioxidant content and antioxidant activity of different high-pigment tomato cultivars grown in Italy. Food 7(SI 1): 1–7.
  • Herzog, A., Siler, U., Spitzer, V., Seifert, N., Denelavas, A., Hunziker, P. B., Hunziker, W., Goralczyk, R., and Wertz, K. 2005. Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. FASEB J. 19(2): 272–274.
  • Ilahy, R., and Hdider, C. 2006. Evaluation de variétés de tomate à teneurs élevées en lycopène. Actes des 13ème journées scientifiques Nationales nationales sur les Résultats résultats de la Recherche recherche agronomique, 14–15 Décembre 2006, pp. 242–248. Hammamet.
  • Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I., and Dalessandro, G. 2011a. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compost. Anal. 24(4–5): 588–595.
  • Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I., and Dalessandro, G. 2011b. Phytochemical composition and antioxidant activity of high-lycopene content tomato (Lycopersicon esculentum Mill) cultivars grown in Southern Italy. Sci. Hortic. 127(3): 255–261.
  • Ilahy, R., Hdider, C., and Tlili, I. 2009. Bioactive compounds and antioxidant activity of tomato high lycopene content advanced breeding lines. Afr. J. Plant Sci. Biotechnol. 3(SI1): 1–6.
  • Ilahy, R., Hdider, C., and Tlili, I. 2010. Assessing agronomic characteristics, lycopene and total phenolic contents in pulp and skin factions of different tomato varieties. Afr. J. Plant Sci. Biotechnol. 4(SI2): 64–67.
  • Ilahy, R., Piro, G., Tlili, I., Riahi, A., Rabaoui, S., Ouerghi, I., Hdider, C., and Lenucci, M. S. 2016a. Fractionate analysis of the phytochemical composition and antioxidant activities in advanced breeding lines of high-lycopene tomatoes. Food Funct. 7(1): 574–583.
  • Ilahy, R., Riahi, A., Tlili, I., Hdider, C., Lenucci, M. S., and Dalessandro, G. 2015. Carotenoid content in intact plastids isolated from ordinary and high-lycopene tomato (Solanum lycopersicum L.) cultivars. Acta Hortic. 1081: 135–140.
  • Ilahy, R., Siddiqui, M. W., Piro, G., Lenucci, M. S., and Hdider, C. 2016b. Functional quality and colour attributes of two high-lycopene tomato breeding lines grown under greenhouse conditions. TURJAF 4(5): 365–373.
  • Ilahy, R., Siddiqui, M. W., Piro, G., Lenucci, M. S., and Hdider, C. 2016c. Year-to-year variations in antioxidant components of high-lycopene tomato (Solanum lycopersicum L.) breeding lines. TURJAF 4(6): 486–492.
  • INTIA. 2009–2015. Horticultura, campaña 2009–2015. Retrieved from www.intiasa.es ( consulted on January 2018).
  • Jarret, R. L., Sayama, H., and Tigchelaar, E. C. 1984. Pleiotropic effects associated with the chlorophyll intensifier mutations high pigment and dark green in tomato. J. Am. Soc. Hortic. Sci. 109: 873–878.
  • Jeffery, J., Holzenburg, A., and King, S. 2012. Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. J. Sci. Food Agric. 92(13): 2594–2602.
  • Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., and Mullineaux, P. 2002. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214: 751–758.
  • Kader, A. A. 2008. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 88(11): 1863–1868.
  • Kerckhoffs, L. H. J., Schreuder, M. E. L., van Tuinen, A., Koornneef, M., and Kendrick, R. E. 1997. Phytochrome control of anthocyanin biosynthesis in tomato seedlings: analysis using photomorphogenic mutants. Photochem. Photobiol. 65: 374–381.
  • Kerr, E. A. 1955. The dark red, dr, and black shoulder, bs, genes of the Black Queen tomato. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 5: 104–105.
  • Kerr, E. A. 1965. Identification of high-pigment tomatoes in the seedling stage. Can. J. Plant Sci. 45: 104–105.
  • Klebek, H., Selli, S., Kadiroğlu, P., Kola, O., Kesen, S., Uçar, B., and Çetiner, B. 2017. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chem. 220: 31–41.
  • Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., Nahon, S., Shlomo, H., Chen, L., and Levin, I. 2007. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 145(2): 389–401.
  • Konsler, T. R. 1973. Three mutants appearing in “Manapal” tomato. HORTSCI 8(4): 331–333.
  • Lahoz, I., Leiva-Brondo, M., Martí, R., Macua, J. I., Campillo, C., Roselló, S., and Cebolla-Cornejo, J. 2016. Influence of high lycopene varieties and organic farming on the production and quality of processing tomato. Sci. Hortic. 204: 128–137.
  • Lampe, C., and Watada, A. E. 1971. Postharvest quality of high pigment and crimson tomato fruit. J. Am. Soc. Hortic. Sci. 96(4): 534–535.
  • Lavi, N., Tadmor, Y., Meir, A., Bechar, A., Oren-Shamir, M., Ovadia, R., Reuveni, M., Nahon, S., Shlomo, H., Chen, L., and Levin, I. 2009. Characterization of the INTENSE PIGMENT tomato genotype emphasizing targeted fruit metabolites and chloroplast biogenesis. J. Agric. Food Chem. 57(11): 4818–4826.
  • Lee, C. Y., and Robinson, R. W. 1980. Influence of the crimson gene (ogc) on vitamin A content of tomato. HORTSCI 15: 260–261.
  • Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., De Caroli, M., Piro, G., and Dalessandro, G. 2009. Carotenoid content during tomato (Solanum lycopersicum L.) fruit ripening in traditional and high-pigment cultivars. Ital. J. Food Sci. 4(21): 461–472.
  • Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Leonardo, R., Piro, G., and Dalessandro, G. 2010. Optimisation of biological and physical parameters for lycopene supercritical CO2 extraction from ordinary and high-pigment tomato cultivars. J. Sci. Food Agric. 90(10): 1709–1718.
  • Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Piro, G., and Dalessandro, G. 2007. Carotenoids content in ripe raw and processed (sauce) berries of high-pigment tomato hybrids. Acta Hortic. 758: 173–180.
  • Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., and Dalessandro, G. 2006. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 54(7): 2606–2613.
  • Lenucci, M. S., De Caroli, M., Marrese, P. P., Iurlaro, A., Rescio, L., Böhm, V., Dalessandro, G., and Piro, G. 2015. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem. 170: 193–202.
  • Lenucci, M. S., Durante, M., Montefusco, A., Dalessandro, G., and Piro, G. 2013. Possible use of the carbohydrates present in the tomato pomace and in the byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bio-ethanol production. J. Agric. Food Chem. 61(15): 3683–3692.
  • Lenucci, M. S., Serrone, L., De Caroli, M., Fraser, P. D., Bramley, P. M., Piro, G., and Dalessandro, G. 2012. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages. J. Agric. Food Chem. 60(7): 1764–1775.
  • Levin, I., Frankel, P., Gilboa, N., Tanny, S., and Lalazar, A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor. Appl. Genet. 106: 454–460.
  • Levin, I., Lieberman, M., Segev, O. A., Gilboa, N., and Lalazar, A. 2004. Isolated nucleotide sequences responsible for the tomato high pigment-1 mutant phenotype (hp-1) and uses thereof. Patent US8420322 B2. www.freepatentsonline.com/8420322.html (accessed on January 2018).
  • Levin, I., Ric de Vos, C. H., Tadmor, Y., Bovy, A., Liberman, M., Oren-Shamir, M., Segev, O., Kolotilin, I., Keller, M., Ovadia, R., Meir, A., and Bino, R. J. 2006. High-pigment tomato-more than just lycopene (a review). Isr. J. Plant Sci. 54(3): 179–190.
  • Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., and Levin, I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet. 108(8): 1574–1581.
  • Liu, J., Li, H., Miao, M., Tang, X., Giovannoni, J., Xiao, F., and Liu, Y. 2012. The tomato UV-damaged DNA-binding protein-1 (DDB1) is implicated in pathogenesis-related (PR) gene expression and resistance to Agrobacterium tumefaciens. Mol. Plant Pathol. 13(2): 123–134.
  • Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C., and Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. (U.S.A.) 101(26): 9897–9902.
  • Livny, O., Kaplan, I., Reifen, R., Polak-Charcon, S., Madar, Z., and Schwartz, B. 2002. Lycopene inhibits proliferation and enhances gap-junctional communication of KB-1 human oral tumor cells. J. Nutr. 132(12): 3754–3759.
  • Macua, J. I., Lahoz, I., Gragera, J., and Daza, C. 2011. Influencia varietal en el contenido en licopeno en tomate de industria en Extremadura y Navarra. Actas de Horticultura 58: 50–54.
  • Martínez-Valverde, I., Periago, M. J., Provan, G., and Chesson, A. 2002. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum). J. Sci. Food Agric. 82(3): 323–330.
  • Mastrogiacomo, D., Lenucci, M. S., Bonfrate, V., Di Carolo, M., Piro, G., Valli, L., Rescio, L., Milano, F., Comparelli, R., De Leo, V., and Giotta, L. 2015. Lipid/detergent mixed micelles as a tool for transferring antioxidant power from hydrophobic natural extracts into bio-deliverable liposome carriers: the case of lycopene rich oleoresins. RSC Adv. 5: 3081–3093.
  • Mochizuki, T., and Kamimura, S. 1984. Inheritance of vitamin C content and its relation to other characters in crosses between hp and og varieties of tomatoes. In 9th Meet. EUCARPIA Tomato Workshop, Wageningen, The Netherlands, pp. 8–13. EUCARPIA Tomato Working Group, Wageningen, The Netherlands.
  • Mohr, W. P. 1979. Pigment bodies in fruits of crimson and high pigment lines of tomatoes. Ann. Bot. 44(4): 427–434.
  • Mustilli, A. C., Fenzi, F., Gliento, R., Alfano, F., and Bowler, C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homologue of DEETIOLATED1. Plant Cell 11: 145–157.
  • Ozminkowski, R. 2013. Hybrid variety H1176 with high lycopene. Patent US20140130197 A1. www.freepatentsonline.com/y2014/0130197.html (accessed on January 2018).
  • Palmieri, S., Martiniello, P., and Soressi, G. P. 1978. Chlorophyll and carotene content in high pigment and green flesh fruits. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 28: 10.
  • Palozza, P., Colangelo, M., Simone, R., Catalano, A., Boninsegna, A., Lanza, P., Monego, G., and Ranelletti, F. O. 2010. Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis 31(10): 1813–1821.
  • Pasqualone, A., Gambacorta, G., Summo, A., Caponio, F., Di Miceli, G., Flagella, Z., Marrese, P. P., Piro, G., Perrotta, C., De Bellis, L., and Lenucci, M. S. 2016. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 213: 545–553.
  • Pastori, M., Pfander, H., Boscoboinik, D., and Azzi, A. 1998. Lycopene in association with R-tocopherol inhibits at physiological concentrations proliferation of prostate carcinoma cells. Biochem. Biophys. Res. Commun. 250(3): 582–585.
  • Peleg, E., and Vardi, E. 2005. High lycopene tomato varieties and use thereof. Patent US20080184382 A1. www.freepatentsonline.com/y2008/0184382.html (accessed on January 2018).
  • Pellegrini, N., Colombi, B., Salvatore, S., Brenna, O., Galaverna, G., and Del Rio, D. 2007. Evaluation of antioxidant capacity of some fruit and vegetable foods: efficiency of extraction of a sequence of solvents. J. Sci. Food Agric. 87(1): 103–111.
  • Pepper, A., Delaney, T., Washburn, T., Poole, D., and Chory, J. 1994. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78(1): 109–116.
  • Peters, J. L., Schreuder, M. E. L., Verduin, S. J. W., and Kendrick, R. E. 1992. Physiological characterization of a high-pigment mutant of tomato. Photochem. Photobiol. 56(1): 75–82.
  • Peters, J. L., Széll, M., and Kendrick, R. E. 1998. The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol. 117(3): 797–807.
  • Peters, J. L., van Tuinen, A., Adamse, P., Kendrick, R. E., and Koornneef, M. 1989. High-pigment mutant of tomato exhibits high sensitivity for phytochrome action. J. Plant Physiol. 134(6): 661–666.
  • Petyaev, I. M. 2016. Lycosome technology: advances and perspectives. Am. J. Food Sci. Nutr. 3(1): 18–23.
  • Pisoschi, A. M., and Negulescu, G. P. 2011. Methods for total antioxidant activity determination: a review. Biochem. Anal. Biochem. 1(1): 106–116.
  • Powell, A. L., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., Ashrafi, H., Pons, C., Fernández-Muñoz, R., Vicente, A., Lopez-Baltazar, J., Barry, C. S., Liu, Y., Chetelat, R., Granell, A., Van Deynze, A., Giovannoni, J. J., and Bennett, A. B. 2012. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336: 1711–1715.
  • Prakash, A., and Kumar, A. 2014. Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimer's disease. Eur. J. Pharmacol. 741: 104–111.
  • Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., Bugianesi, R., Giuffrida, F., and Quaglia, G. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 50(22): 6550–6556.
  • Raiola, A., Tenore, G. C., Barone, A., Frusciante, L., and Rigano, M. M. 2015. Vitamin E content and composition in tomato fruits: beneficial roles and bio-fortification. Int. J. Mol. Sci. 16(12): 29250–29264.
  • Rao, A. V. 2006. Tomatoes, lycopene and human health. Preventing Chronic Diseases. Caledonian Science Press, Badalona, Spain.
  • Rao, A. V., and Shen, H. 2002. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr. Res 22(10): 1125–1131.
  • Reynard, G. B. 1956. Origin of Webb Special (Black Queen) in tomato. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 40: 44–64.
  • Rick, C. M. 1974. High-soluble solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42(15): 493–510.
  • Rivero, R. M., Ruiz, J. M., García, P. C., López-Lefebre, L. R., Sánchez, E., and Romero, L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160(2): 315–321.
  • Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S., and Mahdi, F. 2014. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 14(2): e158–e165.
  • Robinson, N. L., Hewitt, J. D., and Bennett, A. B. 1988. Sink metabolism in tomato fruit: I. Developmental changes in carbohydrate metabolizing enzymes. Plant Physiol. 87(3): 727–730.
  • Ronen, G., Carmel-Goren, L., Zamir, D., and Hirschberg, J. 2000. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. (U.S.A). 97(20): 11102–11107.
  • Rosso, S. W. 1968. The ultrastructure of chromoplast development in red tomatoes. J. Ultrastruct. Res. 25(3–4): 307–322.
  • Salvioli, A., and Bonfante, P. 2013. Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci. 203–204: 107–114.
  • Sayama, H., and Tigchelaar, E. C. 1985. Yield and processing quality attributes associated with the high pigment (hp) and crimson (ogc) genes in tomato (Lycopersicon esculentum Mill.). Jpn. J. Breed. 35(2): 145–152.
  • Seroczynska, A., Korzeniewska, A., Sztangret-Wisniewska, J., Niemirowicz-Szczytt, K., and Gajewski, M. 2006. Relationship between carotenoid content and flower or fruit flesh colour of winter squash (Cucurbita maxima Duch.). Horticulturae 18(1): 51–61.
  • Sestari, I., Zsögön, A., Rehder, G. G., de Lira Teixeira, L., Hassimotto, N. M. A., Purgatto, E., Benedito, V. A., and Pereira Peres, L. E. 2014. Near-isogenic lines enhancing ascorbic acid, anthocyanin and carotenoid content in tomato (Solanum lycopersicum L. cv Micro-Tom) as a tool to produce nutrient-rich fruits. Sci. Hortic. 175: 111–120.
  • Sharoni, Y., Linnewiel-Hermoni, K., Zango, G., Khanin, M., Salman, H., Veprik, A., Danilenko, M., and Levy, J. 2012. The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. Am. J. Clin. Nutr. 96(5): 1173S–1178S.
  • Shrestha, N., Fogg, A., Wilder, J., Franco, D., Komisar, S., and Gadhamshetty, V. 2016. Electricity generation from defective tomatoes. Bioelectrochemistry 112: 67–76.
  • Siddiqui, M. W., Chakraborty, I., Homa, F., and Dhua, R. S. 2016. Bioactive compounds and antioxidant capacity in dark green, old gold crimson, ripening inhibitor, and normal tomatoes. Int. J. Food Prop. 19(3): 688–699.
  • Siddiqui, M. W., Chakraborty, I., Mishra, P., and Hazra, P. 2014. Bioactive attributes of tomato possessing carrying dg, ogc and rin genes. Food Funct. 5(5): 936–943.
  • Siddiqui, M. W., Chakraborty, I., Mishra, P., Hazra, P., and Ayala-Zavala, J. F. 2015. Postharvest physicochemical changes in mutant (dg, ogc, and rin) and non-mutant tomatoes. Acta Physiol. Plant. 37(1): 1–11.
  • Soressi, G. P. 1975. New spontaneous or chemically-induced fruit ripening tomato mutants. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 25: 21–22.
  • Stahl, W., and Sies, H. 1996. Lycopene: a biologically important carotenoid for humans. Arch. Biochem. Biophys. 336: 1–9.
  • Thompson, A. E. 1955. Inheritance of high total carotenoid pigments in tomato fruits. Science 121: 896–897.
  • Thompson, A. E. 1957. Additional information on the inheritance of ry, a modifier gene for red color in yellow tomato fruits. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 7: 14–15.
  • Thompson, A. E., Tomes, M. L., Erickson, H. T., Wann, E. V., and Armstrong, R. J. 1967. Inheritance of crimson fruit color in tomatoes. Proc. Am. Soc. Hortic. Sci. 91: 495–504.
  • Thompson, A. E., Tomes, M. L., McCollum, J. P., and Wann, E. V. 1963. Pigment analysis of crimson. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 13: 28–29.
  • Thompson, A. E., Tomes, M. L., Wann, E. V., McCollum, A. K., and Stoner, A. K. 1964. Characterization of crimson tomato fruit color. J. Am. Soc. Hortic. Sci. 86: 610–616.
  • Thompson, K. A., Marshall, M. R., Sims, C. A., Wei, C. I., Sargent, S. A., and Scott, J. W. 2000. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 65(5): 791–795.
  • Tomes, M. L. 1963. Temperature inhibition of carotene synthesis in tomato. Bot. Gaz. 124(3): 180–185.
  • Tomes, M. L., and Thompson, A. E. 1965. On crimson and high pigment-crimson recombinants. Rep. Tomato Genet. Coop. Tomato Genet. Coop. 15: 60–61.
  • Toor, R. K., and Savage, G. P. 2005. Antioxidant activity in different fraction of tomatoes. Food Res. Intl. 38(5): 487–494.
  • Vági, E., Simándi, B., Vásárhelyiné, K. P., Daood, H., Kery, Á., Doleschall, F., and Nagy, B. 2007. Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids 40(2): 218–226.
  • van Tuinen, A., Cordonnier-Pratt, M. M., Pratt, L. H., Verkerk, R., Zabel, P., and Koornneef, M. 1997. The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor. Appl. Genet. 94(1): 115–122.
  • Vasapollo, G., Longo, L., Rescio, L., and Ciurlia, L. 2004. Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J. Supercrit. Fluids 29(1–2): 87–96.
  • Von Wettstein-Knowles, P. 1969. Mutations affecting anthocyanin synthesis in the tomato. II. Physiology. Hereditas 61(1–2): 255–275.
  • Wann, E. V. 1995. Reduced plant growth in tomato mutants high pigment and dark green partially overcome by gibberellin. HortScience 30: 379.
  • Wann, E. V. 1997. Tomato germplasm lines T4065, T4099, T5019, and T5020 with unique genotypes that enhance fruit quality. HORTSCI 32(4): 747–748.
  • Wann, E. V., Jourdain, E. L., Pressay, R., and Lyon, B. G. 1985. Effect of mutant genotypes hp ogc and dg ogc on tomato fruit quality. J. Am. Soc. Hortic. Sci. 110(2): 212–215.
  • Weingerl, V., and Unuk, T. 2015. Chemical and fruit skin colour markers for simple quality control of tomato fruits. CJFST 7(2): 76–85.
  • Yen, H. C., Shelton, B. A., Howard, R. L., Lee, S., Vrebalov, J., and Giovannoni, J. J. 1997. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor. Appl. Genet. 95(7): 1069–1079.
  • Zajara, L., Rodriguez, R., Gómez, M., Carrasco, L. E., and Ordiales, E. 2011. Evaluación de variedades comerciales de tomate de industria por su contenido en licopeno. Actas de Horticultura 58: 46–49.
  • Zuknik, M. H., Norulaini, N. A. N., and Omar, A. K. M. 2012. Supercritical carbon dioxide extraction of lycopene: A review. J. Food Eng. 112(4): 253–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.