305
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Function and Compensatory Mechanisms Among the Components of the Chloroplastic Redox Network

, , , , , & ORCID Icon show all

References

  • Abadie, C., Lothier, J., Boex-Fontvieille, E., Carroll, A., and Tcherkez, G. 2017. Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using 13C-NMR. New Phytol. 216: 1079–1089.
  • Albert, R. 2005. Scale-free networks in cell biology. J. Cell. Sci. 118: 4947–4957.
  • Albert, R., Jeong, H., and Barabasi, A.-L. 2001. Error and attack tolerance of complex networks. Nature 409: 542–542.
  • Angeli, A. De, Zhang, J., Meyer, S., and Martinoia, E. 2013. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat. Commun. 4: 1804.
  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.
  • Arabidopsis Interactome Mapping Consortium. 2011. Evidence for network evolution in an Arabidopsis Interactome. Map Sci. 333: 601–607.
  • Araújo, W. L., Nunes-Nesi, A., and Fernie, A. R. 2011a. Fumarate: multiple functions of a simple metabolite. Phytochemistry 72: 838–843.
  • Araújo, W. L., Nunes-Nesi, A., Osorio, S., Usadel, B., Fuentes, D., Nagy, R., Balbo, I., Lehmann, M., Studart-Witkowski, C., Tohge, T., Martinoia, E., Jordana, X., DaMatta, F. M., and Fernie, A. R. 2011b. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell 23: 600–627.
  • Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639.
  • Baba, K., Nakano, T., Yamagishi, K., and Yoshida, S. 2001. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD. Plant Physiol. 125: 595–603.
  • Barabási, A. and Oltvai, Z. N. 2004. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5: 101–113.
  • Bashandy, T., Taconnat, L., Renou, J. P., Meyer, Y., and Reichheld, J. P. 2009. Accumulation of flavonoids in an NTRA NTRB mutant leads to tolerance to UV-C. Mol. Plant 2: 249–258.
  • Bauwe, H., Hagemann, M., and Fernie, A. R. 2010. Photorespiration: players, partners and origin. Trends Plant Sci. 15: 330–336.
  • Belin, C., Bashandy, T., Cela, J., Delorme-Hinoux, V., Riondet, C., and Reichheld, J. P. 2015. A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. Plant Cell Environ. 38: 299–314.
  • Benitez-Alfonso, Y., Cilia, M., Roman, A. S., Thomas, C., Maule, A., Hearn, S., and Jackson, D. 2009. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc. Natl. Acad. Sci. 106: 3615–3620.
  • Biteau, B., Labarre, J., and Toledano, M. B. 2003. ATP-dependent reduction of of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980–984.
  • Blanco, N. E., Guinea-Diaz, M., Whelan, J., and Strand, A. 2014. Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philos. Trans. R. Soc. B Biol. Sci. 369: 20130231–20130231.
  • Bonifacio, A., Carvalho, F. E. L., Martins, M. O., Lima Neto, M. C., Cunha, J. R., Ribeiro, C. W., Margis-Pinheiro, M., and Silveira, J. A. G. 2016. Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase. J. Plant Physiol. 201: 17–27.
  • Bréhélin, C., Laloi, C., Setterdahl, A. T., Knaff, D. B., and Meyer, Y. 2004. Cytosolic, mitochondrial thioredoxins and thioredoxin reductases in Arabidopsis thaliana. Photosynth. Res. 79: 295–304.
  • Broin, M. and Rey, P. 2003. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol. 132: 1335–1343.
  • Buchanan, B. B. 2016a. The carbon (formerly dark) reactions of photosynthesis. Photosyn. Res. 128: 215–217.
  • Buchanan, B. B. 2016b. The path to thioredoxin and redox regulation in chloroplasts. Annu. Rev. Plant Biol. 67: 1–24.
  • Buchanan, B. B., Holmgren, A., Jacquot, J. P., and Scheibe, R. 2012. Fifty years in the thioredoxin field and a bountiful harvest. Biochim. Biophys. Acta 1820: 1822–1829.
  • Burritt, P. D. D. J. 2017. Glutathione in Plant Growth, Development, and Stress Tolerance. Cham: Springer International Publishing.
  • Calderón, A., Sánchez-Guerrero, A., Ortiz-Espín, A., Martínez-Alcalá, I., Camejo, D., Jiménez, A., and Sevilla, F. 2018. Lack of mitochondrial thioredoxin o 1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. Physiol. Plant 7418: 1–24.
  • Carrillo, L. R., Froehlich, J. E., Cruz, J. A., Savage, L. J., and Kramer, D. M. 2016. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant J. 87: 654–663.
  • Caverzan, A., Bonifacio, A., Carvalho, F. E. L., Andrade, C. M. B., Passaia, G., Schünemann, M., dos Maraschin, F. S., Martins, M. O., Teixeira, F. K., Rauber, R., Margis, R., Silveira, J. A. G., and Margis-Pinheiro, M. 2014. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Sci. 425: 980–87.
  • Cerveau, D., Kraut, A., Stotz, H. U., Mueller, M. J., Couté, Y., and Rey, P. 2016. Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome. Plant Sci. 252: 30–41.
  • Cha, S. K., Navrot, N., Didierjean, C., Rouhier, N., Hirasawa, M., Knaff, D.B., Wingsle, G., Samian, R., Jacquot, J. P., Corbier, C., and Gelhaye, E. 2008. An atypical catalytic mechanism involving three cysteines of thioredoxin. J. Biol. Chem. 283: 23062–23072.
  • Cheung, C. Y. M., Poolman, M. G., Fell, D. A., Ratcliffe, R. G., and Sweetlove, L. J. 2014. A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in c3 and crassulacean acid metabolism leaves. Plant Physiol. 165: 917–929.
  • Chew, O., Whelan, J., and Millar, A. H. 2003. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J. Biol. Chem. 278: 46869–46877.
  • Chronopoulou, E., Madesis, P., Tsaftaris, A., and Labrou, N.E. 2014. Cloning and characterization of a biotic-stress-inducible glutathione transferase from phaseolus vulgaris. Appl. Biochem. Biotechnol. 172: 1–609.
  • Collin, V., Issakidis-Bourguet, E., Marchand, C., Hirasawa, M., Lancelin, J.M., Knaff, D.B., and Miginiac-Maslow, M. 2003. The Arabidopsis plastidial thioredoxins. New functions and new insights into specificity. J. Biol. Chem. 278: 23747–23752.
  • Comelli, R. N. and Gonzalez, D. H. 2007. Conserved homeodomain cysteines confer redox sensitivity and influence the DNA binding properties of plant class III HD-Zip proteins. Arch. Biochem. Biophys. 467: 41–47.
  • Conrad, M., Jakupoglu, C., Moreno, S., Lippl, S., Banjac, A., Schneider, M., Beck, H., Hatzopoulos, A., Just, U., Sinowatz, F., Schmahl, W., Chien, K., Wurst, W., Bornkamm, G., and Brielmeier, M. 2004. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell Biol. 24: 9414.
  • Courteille, A., Vesa, S., Sanz-Barrio, R., Cazale, A.-C., Becuwe-Linka, N., Farran, I., Havaux, M., Rey, P., and Rumeau, D. 2013. Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol. 161: 508–520.
  • Dahal, K. and Vanlerberghe, G. C. 2017. Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought. New Phytol. 213: 560–571.
  • Daloso, D. M., Müller, K., Obata, T., Florian, A., Tohge, T., Bottcher, A., Riondet, C., Bariat, L., Carrari, F., Nunes-Nesi, A., Buchanan, B. B., Reichheld, J.-P., Araújo, W. L., and Fernie, A. R. 2015. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc. Natl. Acad. Sci. USA 112: E1392–E1400.
  • Dangoor, I., Peled-Zehavi, H., Levitan, A., Pasand, O., and Danon, A. 2009. A small family of chloroplast atypical thioredoxins. Plant Physiol. 149: 1240–1250.
  • Danna, C. H. 2003. Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol. 132: 2116–2125.
  • Davletova, S. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell Online 17: 268–281.
  • Del-Saz, N. F., Florez-Sarasa, I., Clemente-Moreno, M. J., Mhadhbi, H., Flexas, J., Fernie, A. R., and Ribas-Carbó, M. 2016. Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress. Plant Cell Environ. 39: 2361–2369.
  • Del-Saz, N. F., Ribas-Carbo, M., McDonald, A. E., Lambers, H., Fernie, A. R., and Florez-Sarasa, I. 2018. An in vivo perspective of the role(s) of the alternative oxidase pathway. Trends Plant Sci. 23: 206–219.
  • Delorme-Hinoux, V., Bangash, S. A. K., Meyer, A. J., and Reichheld, J. P. 2016. Nuclear thiol redox systems in plants. Plant Sci. 243: 84–95.
  • Dietz, K.-J. 2011. Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 15: 1129–1159.
  • Dietz, K.-J. 2015. Efficient high light acclimation involves rapid processes at multiple mechanistic levels. J. Exp. Bot. 66: 2401–2414.
  • Dietz, K. J., Jacob, S., Oelze, M. L., Laxa, M., Tognetti, V., Miranda, S. M. N. De, Baier, M., and Finkemeier, I. 2006. The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57: 1697–1709.
  • Ding, S., Jiang, R., Lu, Q., Wen, X., and Lu, C. 2016a. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta Bioenerg. 1857: 665–677.
  • Ding, S., Wang, L., Yang, Z., Lu, Q., Wen, X., and Lu, C. 2016b. Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis. J Integr Plant Biol . 58: 29–47.
  • Dixon, D. P., and Edwards, R. 2010. Glutathione transferases. Arabidopsis Book 8: e0131.
  • Dixon, D. P., Hawkins, T., Hussey, P. J., and Edwards, R. 2009. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J. Exp. Bot. 60: 1207–1218.
  • Eisenhut, M., Bräutigam, A., Timm, S., Florian, A., Tohge, T., Fernie, A.R., Bauwe, H., and Weber, A. P. M. 2017. Photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol. Plant 10: 47–61.
  • Engineer, C. B., Hashimoto-Sugimoto, M., Negi, J., Israelsson-Nordström, M., Azoulay-Shemer, T., Rappel, W. J., Iba, K., and Schroeder, J. I. 2016. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci. 21: 16–30.
  • Exposito-Rodriguez, M., Laissue, P. P., Yvon-Durocher, G., Smirnoff, N., and Mullineaux, P. M. 2017. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat. Commun. 8: 49.
  • Farnese, F. S., Menezes-Silva, P. E., Gusman, G. S., and Oliveira, J. A. 2016. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 7: 1–15.
  • Fernie, A. R. 2012. Grand challenges in plant systems biology: closing the circle(s). Front. Plant Sci. 3: 1–4.
  • Fernie, A. R. and Martinoia, E. 2009. Malate. Jack of all trades or master of a few? Phytochemistry 70: 828–832.
  • Florez-Sarasa, I., Noguchi, K., Araújo, W. L., Garcia-Nogales, A., Fernie, A. R., Flexas, J., and Ribas-Carbo, M. 2016a. Impaired cyclic electron flow around photosystem I disturbs high-light respiratory metabolism. Plant Physiol. 172: 2176–2189.
  • Florez-Sarasa, I., Ribas-Carbo, M., Del-Saz, N. F., Schwahn, K., Nikoloski, Z., Fernie, A. R., and Flexas, J. 2016b. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C 3 species under photoinhibitory conditions. New Phytol. 212: 29–79.
  • Flügel, F., Timm, S., Arrivault, S., Florian, A., Stitt, M., Fernie, A. R., and Bauwe, H. 2017. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29: e0131-2551.
  • Fomenko, D. E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J. C., Siu, K.-L., Jin, D.-Y., Winge, D. R., and Gladyshev, V. N. 2011. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA. 108: 2729–2734.
  • Foyer, C. H. and Halliwell, B. 1976. The Presence of Glutathione and Glutathione Reductase in Chloroplasts: A Proposed Role in Ascorbic Acid Metabolism. Planta 133: 21–25.
  • Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., and Harbinson, J. 2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63: 1637–1661.
  • Foyer, C. H. and Noctor, G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant 119: 355–364.
  • Foyer, C. H. and Noctor, G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 2–18.
  • Foyer, C. H. and Noctor, G. 2013. Redox signaling in plants. Antioxid. Redox Signal. 18: 2087–2090.
  • Friboulet, A. and Thomas, D. 2005. Systems biology an interdisciplinary approach. Biosens. Bioelectron. 20: 2404–2407.
  • Friso, G. and van Wijk, K. J. 2015. Update: post-translational protein modifications in plant metabolism. Plant Physiol. 169: 1469–1487.
  • Geigenberger, P., and Fernie, A. R. 2014. Metabolic control of redox and redox control of metabolism in plants. Antioxid. Redox Signal. 21: 1389–1421.
  • Geigenberger, P., Thormählen, I., Daloso, D. M., and Fernie, A. R. 2017. The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 22: 249–262.
  • Gelhaye, E., Rouhier, N., Gerard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P.-I., Wingsle, G., Hirasawa, M., Knaff, D. B., Wang, H., Dizengremel, P., Meyer, Y., and Jacquot, J.-P. 2004a. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc. Natl. Acad. Sci. USA 101: 14545–14550.
  • Gelhaye, E., Rouhier, N., and Jacquot, J. P. 2004b. The thioredoxin h system of higher plants. Plant Physiol. Biochem. 42: 265–271.
  • Giacomelli, L., Masi, A., Ripoll, D. R., Lee, M. J., and Van Wijk, K. J. 2007. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol. Biol. 65: 627–644.
  • Hägglund, P., Finnie, C., Yano, H., Shahpiri, A., Buchanan, B. B., Henriksen, A., and Svensson, B. 2016. Seed thioredoxin H. Biochim. Biophys. Acta 1864: 974–982.
  • Hara, S., Motohashi, K., Arisaka, F., Romano, P. G. N., Hosoya-Matsuda, N., Kikuchi, N., Fusada, N., and Hisabori, T. 2006. Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants. J. Biol. Chem. 281: 32065–32071.
  • Harshavardhan, V. T., Wu, T., and Hong, C. 2017. Glutathione reductase and abiotic stress tolerance in plants. Springer: Cham, pp. 265–286.
  • Herbette, S., Lenne, C., Leblanc, N., Julien, J. L., Drevet, J. R., and Roeckel-Drevet, P. 2002. Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur. J. Biochem. 269: 2414–2420.
  • Herbette, S., Roeckel-Drevet, P., and Drevet, J. R. 2007. Seleno-independent glutathione peroxidases: more than simple antioxidant scavengers. FEBS J. 274: 2163–2180.
  • Heyno, E., Innocenti, G., Lemaire, S. D., Issakidis-Bourguet, E., and Krieger-Liszkay, A. 2014. Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos. Trans. R. Soc. B Biol. Sci. 369: 20130228.
  • Hills, A., Chen, Z.-H., Amtmann, A., Blatt, M. R., and Lew, V. L. 2012. OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol. 159: 1026–1042.
  • Hiltscher, H., Rudnik, R., Shaikhali, J., Heiber, I., Mellenthin, M., Meirelles Duarte, I., Schuster, G., Kahmann, U., and Baier, M. 2014. The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes. Front. Plant Sci. 5: 475.
  • Hu, H., Rappel, W.-J., Occhipinti, R., Ries, A., Böhmer, M., You, L., Xiao, C., Engineer, C. B., Boron, W. F., and Schroeder, J. I. 2015. Distinct cellular locations of carbonic anhydrases mediate carbon dioxide control of stomatal movements. Plant Physiol. 169: 1168–1178.
  • Huang, J., Niazi, A. K., Young, D., Rosado, L. A., Vertommen, D., Bodra, N., Abdelgawwad, M. R., Vignols, F., Wei, B., Wahni, K., Bashandy, T., Bariat, L., Van Breusegem, F., Messens, J., and Reichheld, J. P. 2018. Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. J. Exp. Bot. 69: 3491–3505.
  • Hyun, A. W., Jeong, W., Chang, T. S., Kwang, J. P., Sung, J. P., Jeong, S. Y., and Sue, G. R. 2005. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-Cys peroxiredoxins. J. Biol. Chem. 280: 3125–3128.
  • Iqbal, A., Yabuta, Y., Takeda, T., Nakano, Y., and Shigeoka, S. 2006. Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J. 273: 5589–5597.
  • Ito, J., Batth, T. S., Petzold, C. J., Redding-Johanson, A. M., Mukhopadhyay, A., Verboom, R., Meyer, E. H., Millar, A. H., and Heazlewood, J. L. 2011. Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J. Proteome Res. 10: 1571–1582.
  • Jeong, H., Mason, S. P., Barabasi, A.-L., and Oltvai, Z. N. 2001. Lethality and centrality in protein networks. Nature. 411: 41–42.
  • Jeong, W., Sung, J. P., Chang, T. S., Lee, D. Y., and Sue, G. R. 2006. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem. 281: 14400–14407.
  • Jung, B. G., Lee, K. O., Lee, S. S., Chi, Y. H., Jang, H. H., Kang, S. S., Lee, K., Lim, D., Yoon, S. C., Yun, D. J., Inoue, Y., Cho, M. J., and Lee, S. Y. 2002. A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J. Biol. Chem. 277: 12572–12578.
  • Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E.-M., Aro, E.-M., and Rintamäki, E. 2008. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 412: 275–285.
  • Kikutani, S., Tanaka, R., Yamazaki, Y., Hara, S., Hisabori, T., Kroth, P. G., and Matsuda, Y. 2012. Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum. J. Biol. Chem. 287: 20689–20700.
  • Kim, C. G., Park, K. W., Lee, B., Kim, D. I., Park, J. Y., Kim, H. J., Park, J. E., An, J. H., Cho, K. H., Jeong, S. C., Choi, K. H., Harn, C. H., and Kim, H. M. 2009. Gene flow from genetically modified to conventional chili pepper (Capsicum annuum L.). Plant Sci. 176: 406–412.
  • König, K., Vaseghi, M. J., Dreyer, A., and Dietz, K. J. 2018. The significance of glutathione and ascorbate in modulating the retrograde high light response in Arabidopsis thaliana leaves. Physiol. Plant. 162: 262–273.
  • Krueger, S., Steinhauser, D., Lisec, J., and Giavalisco, P. 2014. Analysis of subcellular metabolite distributions within Arabidopsis thaliana leaf tissue: a primer for subcellular metabolomics. In Arabidopsis Protocols. Methods in Molecular Biology, Sanchez-Serrano, J. and J. Salinas, Eds. Totowa, NJ: Humana Press, pp. 575–596.
  • Labrou, N. E., Papageorgiou, A. C., Pavli, O., and Flemetakis, E. 2015. Plant GSTome: structure and functional role in xenome network and plant stress response. Curr. Opin. Biotechnol. 32: 186–194.
  • Lallement, P. A., Brouwer, B., Keech, O., Hecker, A., and Rouhier, N. 2014. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front. Pharmacol. 5: 1–22.
  • Laugier, E., Tarrago, L., Courteille, A., Innocenti, G., Eymery, F., Rumeau, D., Issakidis-Bourguet, E., and Rey, P. 2013. Involvement of thioredoxin y2 in the preservation of leaf methionine sulfoxide reductase capacity and growth under high light. Plant Cell Environ. 36: 670–682.
  • Lemaire, S. D., Michelet, L., Zaffagnini, M., Massot, V., and Issakidis-Bourguet, E. 2007. Thioredoxins in chloroplasts. Curr. Genet. 51: 343–365.
  • Lepistö, A., Pakula, E., Toivola, J., Krieger-Liszkay, A., Vignols, F., and Rintamäki, E. 2013. Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. J. Exp. Bot. 64: 3843–3854.
  • Li, S., Assmann, S. M., and Albert, R. 2006. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4: 1732–1748.
  • Liebthal, M., Maynard, D., and Dietz, K.-J. 2017. Peroxiredoxins and redox signaling in plants. Antioxid. Redox Signal. 28: 609–623.
  • Lima-Melo, Y., Carvalho, F. E. L., Martins, M. O., Passaia, G., Sousa, R. H. V., Neto, M. C. L., Margis-Pinheiro, M., and Silveira, J. A. G. 2016. Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. J. Integr. Plant Biol. 58: 737–748.
  • Margis, R., Dunand, C., Teixeira, F. K., and Margis-Pinheiro, M. 2008. Glutathione peroxidase family – an evolutionary overview. FEBS J. 275: 3959–3970.
  • Marty, L., Siala, W., Schwarzländer, M., Fricker, M. D., Wirtz, M., Sweetlove, L. J., Meyer, Y., Meyer, A. J., Reichheld, J.-P., and Hell, R. 2009. The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. USA 106: 9109–9114.
  • Maruta, T., Sawa, Y., Shigeoka, S., and Ishikawa, T. 2016. Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? Plant Cell Physiol. 57: 1377–1386.
  • Maruta, T., Tanouchi, A., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., and Shigeoka, S. 2010. Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol. 51: 190–200.
  • Medeiros, D. B., Barros, K., Barros, J. A., Omena-Garcia, R. P., Arrivault, S., Vincis Pereira Sanglard, L., Detmann, K. C., Silva, W. B., Daloso, D. M., DaMatta, F., Nunes-Nesi, A., Fernie, A. R., and Araújo, W. L. 2017. Impaired malate and fumarate accumulation due the mutation of tonoplast dicarboxylate transporter has little effects on stomatal behaviour. Plant Physiol. 175: 1–34.
  • Medeiros, D. B., Martins, S. C. V., Cavalcanti, J. H. F., Daloso, D. M., Martinoia, E., Nunes-Nesi, A., DaMatta, F. M., Fernie, A. R., and Araújo, W. L. 2016. Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance. Plant Physiol. 170: 86–101.
  • Meng, L., Wong, J. H., Feldman, L. J., Lemaux, P. G., and Buchanan, B. B. 2010. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc. Natl. Acad. Sci. USA 107: 3900–3905.
  • Meyer, Y., Belin, C., Delorme-Hinoux, V., Reichheld, J.-P., and Riondet, C. 2012. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid. Redox Signal. 17: 1124–1160.
  • Meyer, Y., Buchanan, B. B., Vignols, F., and Reichheld, J.-P. 2009. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet. 43: 335–367.
  • Merlot, S., Mustilli, A.-C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A., and Giraudat, J. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30: 601–9.
  • Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L., Saindrenan, P., Gouia, H., Issakidis-Bourguet, E., Renou, J.-P., and Noctor, G. 2010. Arabidopsis gluthatione reductase 1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 153: 1144–1160.
  • Miao, Y., Lv, D., Wang, P., Wang, X.-C., Chen, J., Miao, C., and Song, C.-P. 2006. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell Online 18: 2749–2766.
  • Michalska, J., Zauber, H., Buchanan, B. B., Cejudo, F. J., and Geigenberger, P. 2009. NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc. Natl. Acad. Sci. USA 106: 9908–9913.
  • Michelet, L., Zaffagnini, M., Morisse, S., Sparla, F., Pérez-Pérez, M.E., Francia, F., Danon, A., Marchand, C.H., Fermani, S., Trost, P., et al. 2013. Redox regulation of the Calvin–Benson cycle: something old, something new. Front. Plant Sci. 4: 1–21.
  • Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F.A., Mühlenbock, P., Brosche, M., Van Breusegem, F., and Kangasjärvi, J. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67: 3831–3844.
  • Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., and Mittler, R. 2007. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 144: 1777–1785.
  • Mittler, R. 2017. ROS are good. Trends Plant Sci. 22: 11–19.
  • Møller, I. M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 561–591.
  • Møller, I. M., Jensen, P. E., and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 58: 459–481.
  • Møller, I. M., and Rasmusson, A. G. 1998. The role of NADP in the mitochondrial matrix. Trends Plant Sci. 3: 21–27.
  • Montrichard, F., Alkhalfioui, F., Yano, H., Vensel, W. H., Hurkman, W. J., and Buchanan, B. B. 2009. Thioredoxin targets in plants: the first 30 years. J. Proteomics. 72: 452–474.
  • Munne-Bosch, S., Queval, G., and Foyer, C. H. 2013. The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol. 161: 5–19.
  • Murata, N., and Nishiyama, Y. 2018. ATP is a driving force in the repair of photosystem II during photoinhibition. Plant Cell Environ. 41: 285–299.
  • Naranjo, B., Mignée, C., Krieger-Liszkay, A., Hornero-Méndez, D., Gallardo-Guerrero, L., Cejudo, F. J., and Lindahl, M. 2016. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant Cell Environ. 39: 804–822.
  • Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasawa, M., Rey, P., Knaff, D. B., Issakidis, E., Jacquot, J.-P., and Rouhier, N. 2006. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol. 142: 1364–1379.
  • Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., and Labrou, N. E. 2017. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep. 36: 791–805.
  • Nietzel, T., Mostertz, J., Hochgräfe, F., and Schwarzländer, M. 2017. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion 33: 72–83.
  • Nikkanen, L., Toivola, J., and Rintamäki, E. 2016. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant Cell Environ. 39: 1691–1705.
  • Nikoloski, Z., Perez-Storey, R., and Sweetlove, L. J. 2015. Inference and prediction of metabolic network fluxes. Plant Physiol. 169: 1443–1455.
  • Noctor, G., and Foyer, C. H. 2016. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 171: 1581–1592.
  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C. H. 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35: 454–484.
  • Noctor, G., Reichheld, J.-P., and Foyer, C. H. 2018. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80: 3–12.
  • Nonn, L., Williams, R. R., Erickson, R. P., and Powis, G. 2003. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 23: 916–22
  • Obata, T., Florian, A., Timm, S., Bauwe, H., and Fernie, A. R. 2016. On the metabolic interactions of (photo)respiration. J. Exp. Bot. 67: 3003–3014.
  • Okegawa, Y. and Motohashi, K. 2015. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. Plant J. 84: 900–913.
  • Park, S. K., Jung, Y. J., Lee, J. R., Lee, Y. M., Jang, H. H., Lee, S. S., Park, J. H., Kim, S. Y., Moon, J. C., Lee, S. Y., Chae, H. B., Shin, M. R., Jung, J. H., Kim, M. G., Kim, W. Y., Yun, D.-J., and Lee, K. O. 2009. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol. 150: 552–561.
  • Passaia, G. and Margis-Pinheiro, M. 2015. Glutathione peroxidases as redox sensor proteins in plant cells. Plant Sci. 234: 22–26.
  • Passaia, G., Spagnolo Fonini, L., Caverzan, A., Jardim-Messeder, D., Christoff, A. P., Gaeta, M. L., Araujo Mariath, J. E. de , Margis, R., and Margis-Pinheiro, M. 2013. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 208: 93–101.
  • Peltier, J.-B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A.J., Rutschow, H., and van Wijk, K. J. 2006. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics. 5: 114–133.
  • Perez-Ruiz, J. M., Spínola, M. C., Kirchsteiger, K., Moreno, J., Sahrawy, M., and Cejudo, F. J. 2006. Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell Online. 18: 2356–2368.
  • Pérez-Ruiz, J. M., Guinea, M., Puerto-Galán, L., and Cejudo, F. J. 2014. NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Mol. Plant. 7: 454–1255.
  • Pérez-Ruiz, J. M., Naranjo, B., Ojeda, V., Guinea, M., and Cejudo, F. J. 2017. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc. Natl. Acad. Sci. 114: 12069–12074.
  • Pesaresi, P., Schneider, A., Kleine, T., and Leister, D. 2007. Interorganellar communication. Curr. Opin. Plant Biol. 10: 600–606.
  • Petersson, U. A., Kieselbach, T., García-Cerdán, J. G., and Schröder, W. P. 2006. The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett. 580: 6055–6061.
  • Pires, M. V., Pereira Júnior, A. A., Medeiros, D. B., Daloso, D. M., Pham, P. A., Barros, K. A., Engqvist, M. K. M., Florian, A., Krahnert, I., Maurino, V. G., Araújo, W. L., and Fernie, A. R. 2016. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ. 39: 1304–1319.
  • Polle, A. 2001. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. computer simulations as a step towards flux analysis. Plant Physiol. 126: 445–462.
  • Powis, G. and Montfort, W. R. 2001. Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct. 30: 261–295.
  • Pracharoenwattana, I., Zhou, W., Keech, O., Francisco, P. B., Udomchalothorn, T., Tschoep, H., Stitt, M., Gibon, Y., and Smith, S. M. 2010. Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J. 62: 785–795.
  • Puerto-Galán, L., Pérez-Ruiz, J.M., Guinea, M., and Cejudo, F. J. 2015. The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 66: 2957–2966.
  • Rahantaniaina, M. S., Li, S., Chatel-Innocenti, G., Tuzet, A., Mhamdi, A., Vanacker, H., and Noctor, G. 2017. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases. Plant Signal. Behav. 12: 0–12.
  • Rasmusson, A. G., Soole, K. L., and Elthon, T. E. 2004. Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu. Rev. Plant Biol. 55: 23–39.
  • Reichheld, J.-P., Khafif, M., Riondet, C., Droux, M., Bonnard, G., and Meyer, Y. 2007. Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19: 1851–1865.
  • Reichheld, J.-P., Mestres-Ortega, D., Laloi, C., and Meyer, Y. 2002. The multigenic family of thioredoxin h in Arabidopsis thaliana: Specific expression and stress response. Plant Physiol. Biochem. 40: 685–690.
  • Reichheld, J.-P., Meyer, E., Khafif, M., Bonnard, G., and Meyer, Y. 2005. AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett. 579: 337–342.
  • Reichheld, J.-P., Riondet, C., Delorme, V., Vignols, F., and Meyer, Y. 2010. Thioredoxins and glutaredoxins in development. Plant Sci. 178: 420–423.
  • Richter, A. S., Peter, E., Rothbart, M., Schlicke, H., Toivola, J., Rintamaki, E., and Grimm, B. 2013. Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol. 162: 63–73.
  • Río, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., and Barroso, J. B. 2003. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life. 55: 71–81.
  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J. E., Rodermel, S., Inzé, D., and Mittler, R. 2002. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 32: 329–342.
  • Robaina-Estévez, S., Daloso, D. M., Zhang, Y., Fernie, A. R., and Nikoloski, Z. 2017. Resolving the central metabolism of Arabidopsis guard cells. Sci. Rep. 7: 1–13.
  • Rodriguez Milla, M. A., Maurer, A., Huete, A. R., and Gustafson, J. P. 2003. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36: 602–615.
  • Rouhier, N., Dos Santos, C. V., Tarrago, L., and Rey, P. 2006. Plant methionine sulfoxide reductase A and B multigenic families. Photosynth. Res. 89: 247–262.
  • Rudnik, R., Bulcha, J. T., Reifschneider, E., Ellersiek, U., and Baier, M. 2017. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases. BMC Plant Biol. 17: 1–17.
  • Sanz-Barrio, R., Corral-Martinez, P., Ancin, M., Segui-Simarro, J. M., and Farran, I. 2013. Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol. J. 11: 618–627.
  • Schenk, H., Klein, M., Erdbrügger, W., Dröge, W., and Schulze-Osthoff, K. 1994. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc. Natl. Acad. Sci. USA 91: 1672–1676.
  • Schmidtmann, E., König, A.-C., Orwat, A., Leister, D., Hartl, M., and Finkemeier, I. 2014. Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol. Plant 7: 156–169.
  • Selles, B., Hugo, M., Trujillo, M., Srivastava, V., Wingsle, G., Jacquot, J.-P., Radi, R., and Rouhier, N. 2012. Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation. Biochem. J. 442: 369–380.
  • Sperry, J. S. 2013. Evolution of water transport and xylem structure. Evol. Funct. Traits Plants 164: S115–S127
  • Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C., and Cejudo, F. J. 2004. A novel NADPH thioredoxin reductase, localised in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 279: 43821–43827.
  • Sevilla, F., Camejo, D., Ortiz-Espín, A., Calderón, A., Lázaro, J. J., and Jiménez, A. 2015. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J. Exp. Bot. 66: 2945–2955.
  • Sewelam, N., Jaspert, N., Kelen, K. Van Der, Tognetti, V. B., Schmitz, J., Frerigmann, H., Stahl, E., Zeier, J., Breusegem, F. Van, and Maurino, V. G. 2014. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol. Plant 7: 1191–1210.
  • Shannon, P., Markiel, A., Owen O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498–2504.
  • Shahpiri, A., Svensson, B., and Finnie, C. 2009. From proteomics to structural studies of cytosolic/mitochondrial-type thioredoxin systems in barley seeds. Mol. Plant 2: 378–389.
  • Shaikhali, J., Heiber, I., Seidel, T., Ströher, E., Hiltscher, H., Birkmann, S., Dietz, K. J., and Baier, M. 2008. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol. 8: 1–14.
  • Shaikhali, J., and Wingsle, G. 2017. Redox-regulated transcription in plants: emerging concepts. AIMS Mol. Sci. 4: 1672–338.
  • Sheth, B. P., and Thaker, V. S. 2014. Plant systems biology: insights, advances and challenges. Planta 240: 33–54.
  • Sousa, R. H. V., Carvalho, F. E. L., Ribeiro, C. W., Passaia, G., Cunha, J. R., Lima-Melo, Y., Margis-Pinheiro, M., and Silveira, J. A. G. 2015. Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2O2 induced by CAT deficiency in rice. Plant Cell Environ. 38: 499–513.
  • Souza, G. M., Prado, C. H. B. A., Ribeiro, R. V., Barbosa, J. P. R. A. D., Gonçalves, A. N., and Habermann, G. 2016. Toward a systemic plant physiology. Theor. Exp. Plant Physiol. 28:341–346.
  • Su, T., Shao, Q., Wang, P., Ma, C., Peroxisome, Á. P. Á., and Pexophagy, Á. 2016. Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer International Publishing, Cham.
  • Sun, Y. and Oberley, L. W. 1996. Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21: 335–348.
  • Sweetlove, L. J., Lytovchenko, A., Morgan, M., Nunes-Nesi, A., Taylor, N. L., Baxter, C. J., Eickmeier, I., and Fernie, A. R. 2006. Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc. Natl. Acad. Sci. USA 103: 19587–19592.
  • Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J., and Von Mering, C. 2017. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45: D362–D368.
  • Tan, S. X., Greetham, D., Raeth, S., Grant, C. M., Dawes, I. W., and Perrone, G. G. 2010. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem. 285: 6118–6126.
  • Tcherkez, G., Boex-Fontvieille, E., Mahé, A., and Hodges, M. 2012. Respiratory carbon fluxes in leaves. Curr. Opin. Plant Biol. 15: 308–314.
  • Teixeira, F. K., Menezes-Benavente, L., Galvão, V. C., Margis, R., and Margis-Pinheiro, M. 2006. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224: 300–314.
  • Thormählen, I., Meitzel, T., Groysman, J., Öchsner, A. B., Roepenack-Lahaye, E. von, Naranjo, B., Cejudo, F. J., and Geigenberger, P. 2015. Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol. 169: 1766–1786.
  • Thormählen, I., Ruber, J., Roepenack-Lahaye, E. Von, Ehrlich, S. M., Massot, V., Hümmer, C., Tezycka, J., Issakidis-Bourguet, E., and Geigenberger, P. 2013. Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. Plant Cell Environ. 36: 16–29.
  • Thormählen, I., Zupok, A., Rescher, J., Leger, J., Weissenberger, S., Groysman, J., Orwat, A., Chatel-Innocenti, G., Issakidis-Bourguet, E., Armbruster, U., and Geigenberger, P. 2017. Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Mol. Plant 10: 168–182.
  • Timm, S., Florian, A., Arrivault, S., Stitt, M., Fernie, A. R., and Bauwe, H. 2012. Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett. 586: 3692–3697.
  • Timm, S., Florian, A., Fernie, A. R., and Bauwe, H. 2016. The regulatory interplay between photorespiration and photosynthesis. J. Exp. Bot. 67: 2923–2929.
  • Timm, S., Florian, A., Wittmiss, M., Jahnke, K., Hagemann, M., Fernie, A. R., and Bauwe, H. 2013. Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiol. 162: 379–389.
  • Timm, S., Giese, J., Engel, N., Wittmiß, M., Florian, A., Fernie, A. R., and Bauwe, H. 2018. T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis. Planta 247: 41–51.
  • Timm, S., Wittmiß, M., Gamlien, S., Ewald, R., Florian, A., Frank, M., Wirtz, M., Hell, R., Fernie, A. R., and Bauwe, H. 2015. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27: 1968–1984.
  • Tomaz, T., Bagard, M., Pracharoenwattana, I., Linden, P., Lee, C. P., Carroll, A. J., Stroher, E., Smith, S. M., Gardestrom, P., and Millar, A. H. 2010. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 154: 1143–1157.
  • Toubiana, D., Fernie, A. R., Nikoloski, Z., and Fait, A. 2013. Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol. 31: 29–36.
  • Tovar-Méndez, A., Miernyk, J. A., and Randall, D. D. 2003. Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur. J. Biochem. 270: 1043–1049.
  • Traverso, J. A., Micalella, C., Martinez, A., Brown, S. C., Satiat-Jeunemaître, B., Meinnel, T., and Giglione, C. 2013. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell. 25: 1056–1077.
  • Tzafrir, I., Pena-muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., Sweeney, T. C., Mcelver, J., Aux, G., Patton, D., Meinke, D., and Oklahoma, I. T. 2004. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135: 1206–1220.
  • Uhmeyer, A., Cecchin, M., Ballottari, M., and Wobbe, L. 2017. Impaired mitochondrial transcription termination disrupts the stromal redox poise in Chlamydomonas. Plant Physiol. 174: 1399–1419.
  • Ursini, F., Maiorino, M., and Gregolin, C. 1985. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839: 62–70.
  • Viola, I. L., Guttlein, L. N., and Gonzalez, D. H. 2013. Redox modulation of plant developmental regulators from the class I TCP transcription factor family. Plant Physiol. 162: 1434–1447.
  • Vishwakarma, A., Bashyam, L., Senthilkumaran, B., Scheibe, R., and Padmasree, K. 2014. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana. Plant Physiol. Biochem. 81: 44–53.
  • von Bertalanffy, L. 1968. General System Theory. New York: George Braziller.
  • Wang, J. and Vanlerberghe, G. C. 2013. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol. Plant 149: 461–473.
  • Wang, P., Liu, J., Liu, B., Feng, D., Da, Q., Wang, P., Shu, S., Su, J., Zhang, Y., Wang, J., and Wang, H.-B. 2013. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol. 163: 1710–1728.
  • Wang, X., Fang, G., Yang, J., and Li, Y. 2017. A thioredoxin-dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance. Plant Mol. Biol. Rep. 35: 333–342.
  • Welchen, E. and Gonzalez, D.H. 2016. Cytochrome c, a hub linking energy, redox, stress and signaling pathways in mitochondria and other cell compartments. Physiol. Plant 157: 310–321.
  • Williams, T. C. R., Poolman, M. G., Howden, A. J. M., Schwarzlander, M., Fell, D. A., Ratcliffe, R. G., and Sweetlove, L. J. 2010. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol. 154: 311–323.
  • Wingler, A., Lea, P. J., Quick, W. P., and Leegood, R. C. 2000. Photorespiration: metabolic pathways and their role in stress protection. Philos. Trans. R. Soc. B Biol. Sci. 355: 1517–1529.
  • Wolosiuk, R. A., Buchanan, B. B., and Crawford, N. A. 1977. Regulation of NADP-malate dehydrogenase by the light-actuated ferredoxin/thioredoxin system of chloroplasts. FEBS Lett. 81: 253–258.
  • Wu, J., Sun, Y., Zhao, Y., Zhang, J., Luo, L., Li, M., Wang, J., Yu, H., Liu, G., Yang, L., Xiong, G., Zhou, J. M., Zuo, J., Wang, Y., and Li, J. 2015. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res. 25: 621–633.
  • Yoshida, K., Hara, S., and Hisabori, T. 2015. Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J. Biol. Chem. 290: 14278–14288.
  • Yoshida, K. and Hisabori, T. 2014. Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Front. Environ. Sci. 2: 1–7.
  • Yoshida, K. and Hisabori, T. 2016a. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Biochim. Biophys. Acta 1857: 810–818.
  • Yoshida, K. and Hisabori, T. 2016b. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc. Natl. Acad. Sci. 113: E3967–E3976.
  • Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J.-F., Dricot, A., Vazquez, A., Murray, R. R., Simon, C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A.-S., Motyl, A., Hudson, M. E., Park, J., Xin, X., Cusick, M. E., Moore, T., Boone, C., Snyder, M., Roth, F. P., Barabasi, A.-L., Tavernier, J., Hill, D. E., and Vidal, M. 2008. High-quality binary protein interaction map of the yeast interactome network. Science 322: 104–110.
  • Yu, X., Pasternak, T., Eiblmeier, M., Ditengou, F., Kochersperger, P., Sun, J., Wang, H., Rennenberg, H., Teale, W., Paponov, I., et al. 2013. Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell. 25: 4451–4468.
  • Zhang, Y. and Fernie, A. R. 2018. On the role of the tricarboxylic acid cycle in plant productivity. J. Integr. Plant Biol. XXX: 1–39.
  • Zubimendi, J. P., Martinatto, A., Valacco, M. P., Moreno, S., Andreo, C. S., Drincovich, M. F., and Tronconi, M. A. 2018. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate. FEBS J. 285: 2205–2224.
  • Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., and van Wijk, K. J. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3: 1–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.