1,110
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Metabolic Mechanisms of Host Species Against Citrus Huanglongbing (Greening Disease)

, , , &

References

  • Alarcón-Flores, M. I., Romero-González, R., Vidal, J. L. M., and Frenich, A. G. 2013. Multiclass determination of phytochemicals in vegetables and fruits by ultra high performance liquid chromatography coupled to tandem mass spectrometry. Food Chem. 141: 1120–1129.
  • Albrecht, U., Fiehn, O., and Bowman, K. D. 2016. Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiol. Biochem. 107: 33–44.
  • Alegria TG, Meireles DA, Cussiol JR, Hugo M, Trujillo M, de Oliveira MA, Miyamoto S, Queiroz RF, Valadares NF, Garratt RC, Radi R, Di Mascio P, Augusto O, Netto LE. 2017. Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proc. Natl. Acad. Sci. U.S.A. 114: E132–E141.
  • Ammar, E.-D., Richardson, M. L., Abdo, Z., Hall, D. G., and Shatters Jr, R. G. 2014. Differences in stylet sheath occurrence and the fibrous ring (sclerenchyma) between x Citroncirus plants relatively resistant or susceptible to adults of the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS ONE. 9: e110919.
  • Arima, H., and Danno, G. 2002. Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation. Biosci. Biotechnol. Biochem. 66: 1727–1730.
  • Atindehou, M., Lagnika, L., Guérold, B., Strub, J. M., Zhao, M., Van Dorsselaer, A., Marchioni, E., Prévost, G., Haikel, Y., and Taddéi, C. 2013. Isolation and identification of two antibacterial agents from Chromolaena odorata L. active against four diarrheal strains. Adv. Microbiol. 3: 115–121.
  • Baldwin, E., Plotto, A., Bai, J., Manthey, J., Zhao, W., Raithore, S., and Irey, M. 2018. Effect of abscission zone formation on orange (Citrus sinensis) fruit/juice quality for trees affected by Huanglongbing (HLB). J. Agric. Food Chem. 66: 2877–2890.
  • Baldwin, E., Plotto, A., Manthey, J., McCollum, G., Bai, J., Irey, M., Cameron, R., and Luzio, G. 2009. Effect of Liberibacter infection (Huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: chemical and physical analyses. J. Agric. Food Chem. 58: 1247–1262.
  • Basile, A., Sorbo, S., Giordano, S., Ricciardi, L., Ferrara, S., Montesano, D., Cobianchi, R. C., Vuotto, M. L., and Ferrara, L. 2000. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71: 110–116.
  • Bassanezi, R. B., Montesino, L. H., Gasparoto, M. C. G., Bergamin Filho, A., and Amorim, L. 2011. Yield loss caused by Huanglongbing in different sweet orange cultivars in São Paulo, Brazil. Eur. J. Plant Pathol. 130: 577–586.
  • Bassanezi, R. B., and Stuchi, E. S. 2009. Effects of Huanglongbing on fruit quality of sweet orange cultivars in Brazil. Eur. J. Plant Pathol. 125: 565–572.
  • Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., and Conejero, V. 2008. Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Sci. 174: 524–533.
  • Bennett, R. N., and Wallsgrove, R. M. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127: 617–633.
  • Boeckler, G. A., Gershenzon, J., and Unsicker, S. B. 2011. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72: 1497–1509.
  • Bohinc, T., Ban, S. G., Ban, D., and Trdan, S. 2012. Glucosinolates in plant protection strategies: a review. Arch. Biol. Sci. 64: 821–828.
  • Bolton, M. D. 2009. Primary metabolism and plant defense fuel for the fire. Mol. Plant Microbe Interact. 22: 487–497.
  • Bové, J. M. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus [Asia; South Africa; Brazil; Florida]. J. Plant Pathol. 88: 7–37.
  • Brodersen, C., Narciso, C., Reed, M., and Etxeberria, E. 2014. Phloem production in Huanglongbing-affected citrus trees. Hortscience 49: 59–64.
  • Buxdorf, K., Rubinsky, G., Barda, O., Burdman, S., Aharoni, A., and Levy, M. 2014. The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Mol. Biol. 84: 37–47.
  • Cevallos, J. M., Rouseff, R., and ReyesDe Corcuera, J. I. 2009. Untargeted metabolite analysis of healthy and Huanglongbing-infected orange leaves by CE‐DAD. Electrophoresis 30: 1240–1247.
  • Chan, B. C. L., Ip, M., Gong, H., Lui, S. L., See, R. H., Jolivalt, C., Fung, K. P., Leung, P. C., Reiner, N. E., and Lau, C. B. S. 2013. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine 20: 611–614.
  • Chong, K. P., Rossall, S., and Atong, M. 2009. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. J. Agric. Sci. 1: 15.
  • Clark, K., Franco, J. Y., Schwizer, S., Pang, Z., Hawara, E., Liebrand, T. W. H., Pagliaccia, D., Zeng, L., Gurung, F. B., and Wang, P. 2018. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nat. Commun. 9: 1718.
  • Compean, K. L. and Ynalvez, R. A. 2014. Antimicrobial activity of plant secondary metabolites: a review. Proc. Natl. Acad. Sci. U.S.A. 8: 204–213.
  • Creelman, R. A., and Mullet, J. E. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. 92: 4114–4119.
  • Dagulo, L., Danyluk, M. D., Spann, T. M., Valim, M. F., Goodrich Schneider, R., Sims, C., and Rouseff, R. 2010. Chemical characterization of orange juice from trees infected with citrus greening (Huanglongbing). J. Food Sci. 75: 199–207.
  • Dala, B. M., Raithore, S., Manthey, J. A., Baldwin, E. A., Bai, J., Zhao, W., Glória, M. B. A., and Plotto, A. 2018. LWT– food science and technology active taste compounds in juice from oranges symptomatic for Huanglongbing (HLB) citrus greening disease. LWT Food Sci. Technol. 91: 518–525.
  • Daniels, J. 2017. Online Internet. URL: https://www.cnbc.com/2017/10/11/usda-forecast-on-florida-citrus-could-show-smallest-crop-since-1940s.html (accessed Oct 11, 2017).
  • Dorman, H. J. D., and Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88: 308–316.
  • dos Freitas, D. S., Carlos, E. F., de Gil, M. C. S. S., Vieira L. G. E., and Alcantara, G. B. 2015. NMR-based metabolomic analysis of Huanglongbing-asymptomatic and symptomatic citrus trees. J. Agric. Food Chem. 63: 7582–7588.
  • Duan, Y., Zhou, L., Hall, D. G., Li, W., Doddapaneni, H., Lin, H., Liu, L., Vahling, C. M., Gabriel, D. W., and Williams, K. P. 2009. Complete genome sequence of citrus Huanglongbing bacterium,“Candidatus Liberibacter asiaticus” obtained through metagenomics. Mol. Plant-Microbe Interact. 22: 1011–1020.
  • Fan, J., Chen, C., Brlansky, R. H., Gmitter Jr F. G. and Li, Z. 2010. Changes in carbohydrate metabolism in Citrus sinensis infected with “Candidatus Liberibacter asiaticus”. Plant Pathol. 59:1037–1043.
  • Feng, S., Suh, J. H., Gmitter, F. G., and Wang, Y. 2018. Differentiation between flavors of sweet orange (Citrus sinensis) and mandarin (Citrus reticulata). J. Agric. Food Chem. 66: 203–211.
  • Firrao, G., Conci, L., and Locci, R. 2007. Molecular identification and diversity of phytoplasmas. Biotechnol. Plant Dis. Manag. 250: 276.
  • Folimonova, S. Y., Robertson, C. J., Garnsey, S. M., Gowda, S., and Dawson, W. O. 2009. Examination of the responses of different genotypes of citrus to Huanglongbing (citrus greening) under different conditions. Phytopathology. 99: 1346–1354.
  • Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., and Brillouet, J.-M. 2005. Leaf volatile compounds of six citrus somatic allotetraploid hybrids originating from various combinations of lime, lemon, citron, sweet orange, and grapefruit. Mol. Plant Microbe Interact.53: 2224–2230.
  • Gaurivaud, P., Danet, J.-L., Laigret, F., Garnier, M., and Bové, J. M. 2000. Fructose utilization and phytopathogenicity of Spiroplasma citri. Mol. Plant Microbe Interact. 13: 1145–1155.
  • Ghasemzadeh, A. and Ghasemzadeh, N. 2011. Flavonoids and phenolic acids: role and biochemical activity in plants and human. J. Med. Plants Res. 5: 6697–6703.
  • Gottwald, T. R., Da Graça, J. V., and Bassanezi, R. B. 2007. Citrus Huanglongbing: the pathogen and its impact. Plant Heal. Prog. 6: 1–37. doi:10.1094/PHP-2007-0906-01-RV.
  • Hall, D. G., Richardson, M. L., Ammar, E. D., and Halbert, S. E. 2013. Asian citrus psyllid, Diaphorina citri, vector of citrus Huanglongbing disease. Entomol. Exp. Appl. 146: 207–223.
  • Handral, H. K., Pandith, A., and Shruthi, S. D. 2012. A review on Murraya koenigii: multipotential medicinal plant. Asian J. Pharm Clin. Res. 4: 5–14.
  • Harborne, J. B. 1999. Classes and functions of secondary products from plants. In Chemicals from Plants Perspectives on Plant Secondary Products; Walton, J. N., and Brown, D. E., Eds. Imperial College Press: London, UK, pp 1–25.
  • Hijaz, F., Nehela, Y., and Killiny, N. 2016. Possible role of plant volatiles in tolerance against Huanglongbing in citrus. Plant Signal Behav . 11: e1138193.
  • Hijaz, F. M., Manthey, J. A., Folimonova, S. Y., Davis, C. L., Jones, S. E., and Reyes-De-Corcuera, J. I. 2013. An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus. PLoS ONE. 8: e1138193.
  • Huang, M., Valim, M. F., Feng, S., Reuss, L., Yao, L., Gmitter, F., and Wang, Y. 2017. Characterization of the major aroma-active compounds in peel oil of an HLB-tolerant mandarin hybrid using aroma extraction dilution analysis and gas chromatography-mass spectrometry/olfactometry. Chemosens. Percept. 10: 161–169.
  • Hung, W.L., and Wang, Y. 2018. Metabolite Profiling of Candidatus Liberibacter infection in Hamlin sweet oranges. J. Agric. Food Chem. 66: 3983–3991.
  • Ikigai, H., Nakae, T., Hara, Y., and Shimamura, T. 1993. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta (BBA)-Biomembranes. 1147: 132–136.
  • Isaacson, T., Kosma, D. K., Matas, A. J., Buda, G. J., He, Y., Yu, B., Pravitasari, A., Batteas, J. D., Stark, R. E., and Jenks, M. A. 2009. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J. 60: 363–377.
  • Johnson, E. G., Wu, J., Bright, D. B., and Graham, J. H. 2014. Association of “Candidatus Liberibacter asiaticus” root infection, but not phloem plugging with root loss on Huanglongbing‐affected trees prior to appearance of foliar symptoms. Plant Pathol. 63: 290–298.
  • Kachroo, A., and Kachroo, P. 2009. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47: 153–176.
  • Kiefl, J., Kohlenberg, B., Hartmann, A., Obst, K., Paetz, S., Krammer, G., and Trautzsch, S. 2018. Investigation on key molecules of Huanglongbing (HLB)-induced orange juice off-flavor. J. Agric. Food Chem. 66: 2370–2377.
  • Killiny, N. 2017. Metabolite signature of the phloem sap of fourteen citrus varieties with different degrees of tolerance to Candidatus Liberibacter asiaticus. Physiol. Mol. Plant Pathol. 97: 20–29.
  • Killiny, N., and Hijaz, F. 2016. Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties. Plant Signal. Behav. 11: e1171449.
  • Killiny, N., and Jones, S. E. 2018. Metabolic alterations in the nymphal instars of Diaphorina citri induced by Candidatus Liberibacter asiaticus, the putative pathogen of Huanglongbing. PLoS ONE 13: 1–17.
  • Killiny, N., and Nehela, Y. 2017. Metabolomic response to Huanglongbing: Role of carboxylic compounds in Citrus sinensis response to “Candidatus Liberibacter asiaticus” and its vector, Diaphorina citri. Mol. Plant-Microbe Interact. 30: 666–678.
  • Koh, E.-J., Zhou, L., Williams, D. S., Park, J., Ding, N., Duan, Y.-P., and Kang, B.-H. 2012. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus.” Protoplasma. 249: 687–697.
  • Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E., and Singer, B. H. 2015. Asymptomatic spread of Huanglongbing and implications for disease control. Proc. Natl. Acad. Sci. U.S.A. 112: 7605–7610.
  • Li, W., Hartung, J. S., and Levy, L. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus Huanglongbing. J. Microbiol. Meth. 66: 7605–7115.
  • Liu, T.-Y., Chang, C.-Y., and Chiou, T.-J. 2009. The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 12: 312–319.
  • López-Gresa, M. P., Torres, C., Campos, L., Lisón, P., Rodrigo, I., Bellés, J. M., and Conejero, V. 2011. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ. Exp. Bot. 74: 216–228.
  • López ‒ Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., and Verpoorte, R. 2010. Metabolic response of tomato leaves upon different plant pathogen interactions. Phytochem. Anal. 21: 89–94.
  • Lu, J., Qin, P., Han, X., Wang, Y., and Li, Z. 2015. Evaluation of antioxidant and antibacterial properties of extracts from Trollius chinensis Bunge. Eur. Food Res. Technol. 240: 301–310.
  • Ma, W., Liang, M., Guan, L., Xu, M., Wen, X., Deng, X., and Chen, J. 2014. Population structures of “Candidatus Liberibacter asiaticus” in Southern China. Phytopathology. 104: 158–162.
  • Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M., and Droby, S. 2007. Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology 97: 1491–1500.
  • MacDonald, M. C., Arivalagan, P., Barre, D. E., MacInnis, J. A., and D’Cunha, G. B. 2016. Rhodotorula glutinis Phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity. Front. Microbiol. 7: 281.
  • Maffei, M. E. 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. South African J. Bot. 76: 612–631.
  • Manthey, J. A., Grohmann, K., Berhow, M. A., and Tisserat, B. 2000. Changes in citrus leaf flavonoid concentrations resulting from blight-induced zinc-deficiency. Plant Physiol. Biochem. 38: 333–343.
  • Massenti, R., Lo Bianco, R., Sandhu, A. K., Gu, L., and Sims, C. 2016. Huanglongbing modifies quality components and flavonoid content of “Valencia” oranges. J. Sci. Food Agric. 96: 73–78.
  • Meena, R. K., Jangra, S., Wadhwa, Z., and Leela Wati, M. 2017. Role of plant volatiles in defense and communication. Int. J. Curr. Microbiol. Appl. Sci. 6: 300–313.
  • Meziani, S., Oomah, B. D., Zaidi, F., Simon-Levert, A., Bertrand, C., and Zaidi-Yahiaoui, R. 2015. Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb. Pathog. 78: 95–102.
  • Nayaka, H. B., Londonkar, R. L., Umesh, M. K., and Tukappa, A. 2014. Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014: 1–8.
  • Pearce, G., Marchand, P. A., Griswold, J., Lewis, N. G., and Ryan, C. A. 1998. Accumulation of feruloyltyramine and p-coumaroyltyramine in tomato leaves in response to wounding. Phytochemistry 47: 659–664.
  • Pollard, M., Beisson, F., Li, Y., and Ohlrogge, J. B. 2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci. 13: 236–246.
  • Prost, I. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139: 1902–1913.
  • Rahman, A., Islam, R., Al-Reza, S. M., and Kang, S. C. 2014. In vitro control of plant pathogenic Xanthomonas spp. using Poncirus trifoliata rafin. Excli J. 13: 1104–1110.
  • Ramadugu, C., Keremane, M. L., Halbert, S. E., Duan, Y. P., Roose, M. L., Stover, E., and Lee, R. F. 2016. Long-term field evaluation reveals Huanglongbing resistance in Citrus relatives. Plant Dis. 100: 1858–1869.
  • Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., and Vuorela, P. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56: 3–12.
  • Roberts, R., Steenkamp, E. T., and Pietersen, G. 2015. Three novel lineages of “Candidatus liberibacter africanus” associated with native rutaceous hosts of Trioza erytreae in South africa. Int. J. Syst. Evol. Microbiol. 65: 723–731.
  • Roepenack-Lahaye, V., Newman, M.-A., Schornack, S., Hammond-Kosack, K. E., Lahaye, T., Jones, J. D. G., Daniels, M. J., and Dow, J. M. 2003. p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J. Biol. Chem. 278: 43373–43383.
  • Ruffell, S. E., Müller, K. M., and McConkey, B. J. 2016. Comparative assessment of microalgal fatty acids as topical antibiotics. J. Appl. Phycol. 28: 1695–1704.
  • Schaaf, J., Walter, M. H., and Dieter Hess, D. 1995. Primary metabolism in plant defense (regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues). Plant Physiol. 108: 949–960.
  • Slisz, A. M., Breksa III, A. P., Mishchuk, D. O., McCollum G., and Slupsky, C. M. 2012. Metabolomic analysis of citrus infection by “Candidatus Liberibacter”reveals insight into pathogenicity. J. Proteome Res. 11: 4223–4230.
  • Sønderby, I. E., Geu-Flores, F., and Halkier, B. A. 2010. Biosynthesis of glucosinolates gene discovery and beyond. Trends Plant Sci. 15: 283–290.
  • Suh, J. H., Niu, Y. S., Wang, Z., Gmitter, F. G., and Wang, Y. 2018. Metabolic analysis reveals altered long-chain fatty acid metabolism in the host by Huanglongbing disease. J. Agric. Food Chem. 66: 1296–1304.
  • Szabados, L., and Savoure, A. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15: 89–97.
  • Teixeira, C., Saillard, C., Eveillard, S., Ayres, A. J., Danet, J. L., Ina, P., and Bove, J. 2005. “Candidatus Liberibacter americanus” , associated with citrus Huanglongbing (greening disease) in Paulo State, Brazil Sa. Int. J. Syst. Evol. Microbiol. 55: 1857–1862.
  • Tolba, I. H. and Soliman, M. A. 2015. Citrus Huanglongbing (greening disease) in Egypt: symptoms documentation and pathogen detection. American-Eurasian J. Agric. & Environ. Sci. 15: 2045–2058.
  • Trivedi, P., Duan, Y., and Wang, N. 2010. Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Appl. Environ. Microbiol. 76: 3427–3436.
  • Wang, H., and Liu, Y. 2010. Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chem. Biodivers. 7: 229–235.
  • Wang, N. and Trivedi, P. 2013. Citrus Huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology. 103: 652–665.
  • Wang, N., Pierson, E. A., Setubal, J. C., Xu, J., Levy, J. G., Zhang, Y., Li, J., Rangel, L. T., and Martins, J. 2017. The Candidatus Liberibacter–host interface: insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 55: 451–482.
  • Wang, X., Xu, Y., Zhang, S., Cao, L., Huang, Y., Cheng, J., Wu, G., Tian, S., Chen, C., and Liu, Y. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49: 765–772.
  • Wu, G. A., Prochnik, S., Jenkins, J., Salse, J., Hellsten, U., Murat, F., Perrier, X., Ruiz, M., Scalabrin, S., and Terol, J. 2014. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotechnol. 32: 656–662.
  • Wu, J., Alférez, F. M., Johnson, E. G., and Graham, J. H. 2018. Up-regulation of PR1 and less disruption of hormone and sucrose metabolism in roots is associated with lower susceptibility to “Candidatus Liberibacter asiaticus.” Plant Pathol. 67: 1426–1435.
  • Xing, J., and Chin, C. K. 2000. Modification of fatty acids in eggplant affects its resistance to Verticillium dahliae. Physiol. Mol. Plant Pathol. 56: 217–225.
  • Yaeno, T., Matsuda, O., and Iba, K. 2004. Role of chloroplast trienoic fatty acids in plant disease defense responses. Plant J. 40: 931–941.
  • Yamasaki, Y., Kunoh, H., Yamamoto, H., and Akimitsu, K. 2007. Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush.) in citrus defense. J. Gen. Plant Pathol. 73: 168–179.
  • Yang, S. L., Lan, S.-S., and Gong, M. 2009. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J. Plant Physiol. 166: 1694–1699.
  • Yao, X., Zhu, X., Pan, S., Fang, Y., Jiang, F., Phillips, G. O., and Xu, X. 2012. Antimicrobial activity of nobiletin and tangeretin against Pseudomonas. Food Chem. 132: 1883–1890.
  • Zeier, J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 36: 2085–2103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.