2,502
Views
40
CrossRef citations to date
0
Altmetric
Articles

The Lifecycle of the Plant Immune System

, , &

References

  • Adachi, H., Derevnina, L., and Kamoun, S. 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol 50:121–131. doi:10.1016/j.pbi.2019.04.007
  • Anderson, J.C., Bartels, S., Besteiro, M.A.G., Shahollari, B., Ulm, R., and Peck, S.C. 2011. Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J. 67:258–268. doi:10.1111/j.1365-313X.2011.04588.x
  • Anjago, W.M., Zhou, T., Zhang, H., Shi, M., Yang, T., Zheng, H., and Wang, Z. 2018. Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae. Mycol. 9:211–222. doi:10.1080/21501203.2018.1492981
  • Arnaud, D., and Hwang, I. 2015. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant. 8:566–581. doi:10.1016/j.molp.2014.10.012
  • Auyong, A.S., Ford, R., and Taylor, P.W. 2015. The role of cutinase and its impact on pathogenicity of Colletotrichum truncatum. Plant Pathol. Microbiol. 6:259–270.
  • Backer, R., Naidoo, S., and van den Berg, N. 2019. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front Plant Sci. 10:102. doi:10.3389/fpls.2019.00102
  • Baker, C.M., Chitrakar, R., Obulareddy, N., Panchal, S., Williams, P., and Melotto, M. 2010. Molecular battles between plant and pathogenic bacteria in the phyllosphere. Braz. J. Med. Biol. Res. 43:698–704. doi:10.1590/S0100-879X2010007500060
  • Balint-Kurti, P. 2019. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol. 20:1163–1178. doi:10.1111/mpp.12821
  • Bellincampi, D., Cervone, F., and Lionetti, V. 2014. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions. Front. Plant Sci. 5:228. doi:10.3389/fpls.2014.00228
  • Beneloujaephajri, E., Costa, A., L’Haridon, F., Métraux, J.-P., and Binda, M. 2013. Production of reactive oxygen species and wound-induced resistance in Arabidopsis thaliana against Botrytis cinerea are preceded and depend on a burst of calcium. BMC Plant Biol. 13:160. doi:10.1186/1471-2229-13-160
  • Berens, M.L., Berry, H.M., Mine, A., Argueso, C.T., and Tsuda, K. 2017. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55:401–425. doi:10.1146/annurev-phyto-080516-035544
  • Bernoux, M., Moncuquet, P., Kroj, T., and Dodds, P. N. 2014. A novel conserved mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis. Front. Plant Sci. 5:606.
  • Birkenbihl, R.P., Kracher, B., Roccaro, M., and Somssich, I.E. 2017. Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity. Plant Cell. 29:20–38. doi:10.1105/tpc.16.00681
  • Bonardi, V., Tang, S., Stallmann, A., Roberts, M., Cherkis, K., and Dangl, J.L. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl. Acad. Sci. USA. 108:16463–16468. doi:10.1073/pnas.1113726108
  • Boutrot, F., and Zipfel, C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–286. doi:10.1146/annurev-phyto-080614-120106
  • Brandt, B., Brodsky, D.E., Xue, S., Negi, J., Iba, K., Kangasjärvi, J., Ghassemian, M., Stephan, A.B., Hu, H., and Schroeder, J.I. 2012. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. USA. 109:10593–10598. doi:10.1073/pnas.1116590109
  • Braun, U., Shin, H.-D., Takamatsu, S., Meeboon, J., Kiss, L., Lebeda, A., Kitner, M., and Götz, M. 2019. Phylogeny and taxonomy of Golovinomyces orontii revisited. Mycol. Progress. 18:335–357. doi:10.1007/s11557-018-1453-y
  • Bredow, M., and Monaghan, J. 2019. Regulation of plant immune signaling by calcium- dependent protein kinases. Mol. Plant Microbe Interact. 32:6–19. doi:10.1094/MPMI-09-18-0267-FI
  • Brooks, D.M., Bender, C.L., and Kunkel, B.N. 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6:629–639. doi:10.1111/j.1364-3703.2005.00311.x
  • Burger, M., and Chory, J. 2019. Stressed out about hormones: how plants orchestrate immunity. Cell Host Microbe. 26:163–172. doi:10.1016/j.chom.2019.07.006
  • Campos, M.L., Kang, J.H., and Howe, G.A. 2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40:657–675. doi:10.1007/s10886-014-0468-3
  • Canales, J., Henriquez-Valencia, C., and Brauchi, S. 2018. The integration of electrical signals originating in the root of vascular plants. Front. Plant Sci. 8:2173. doi:10.3389/fpls.2017.02173
  • Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crüsemann, M., Bok Lee, Y., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M., and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. Isme J. 10:119–129. doi:10.1038/ismej.2015.95
  • Chang, H.-X., Miller, L.A., and Hartman, G.L. 2014. Melanin-independent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi. Phytopathol. 104:977–984. doi:10.1094/PHYTO-12-13-0335-R
  • Chappelka, A.H., and Grulke, N.E. 2016. Disruption of the ‘disease triangle’ by chemical and physical environmental change. Plant Biol. J. 18: 5–12. doi:10.1111/plb.12353
  • Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y., and Ma, Z. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Comm. 9:1–14.
  • Cheng, F., Ma, A., Zhuang, X., He, X., and Zhuang, G. 2016. N-(3-oxo-hexanoyl)-homoserine lactone has a critical contribution to the quorum-sensing-dependent regulation in phytopathogen Pseudomonas syringae pv. tabaci 11528. FEMS Microbiol. Lett. 363:fnw265.
  • Cheng, Y.T., Zhang, L., and He, S.Y. 2019. Plant-microbe interactions facing environmental challenge. Cell Host Microbe. 26:183–192. doi:10.1016/j.chom.2019.07.009
  • Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 124:803–814. doi:10.1016/j.cell.2006.02.008
  • Choi, J., Tanaka, K., Liang, Y., Cao, Y., Lee, S.Y., and Stacey, G. 2014a. Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis. Biochem. J. 463:429–437. doi:10.1042/BJ20140666
  • Choi, W.-G., Hilleary, R., Swanson, S.J., Kim, S.-H., and Gilroy, S. 2016. Rapid, long-distance electrical and calcium signaling in plants. Ann. Rev. Plant Biol. 67:287–307.
  • Choi, W.G., Miller, G., Wallace, I., Harper, J., Mittler, R., and Gilroy, S. 2017. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 90:698–707. doi:10.1111/tpj.13492
  • Choi, W.-G., Toyota, M., Kim, S.-H., Hilleary, R., and Gilroy, S. 2014b. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl. Acad. Sci. USA. 111:6497–6502. doi:10.1073/pnas.1319955111
  • Claus, L.A.N., Savatin, D.V., and Russinova, E. 2018. The crossroads of receptor-mediated signaling and endocytosis in plants. J. Integr. Plant Biol. 60:827–840. doi:10.1111/jipb.12672
  • Coates, M.E., and Beynon, J.L. 2010. Hyaloperonospora arabidopsidis as a pathogen model. Annu. Rev. Phytopathol. 48:329–345.
  • Conde, A., Chaves, M.M., and Geros, H. 2011. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol. 52:1583–1602. doi:10.1093/pcp/pcr107
  • Corredor-Moreno, P., and Saunders, D.G.O. 2020. Expecting the unexpected: factors influencing the emergence of fungal and oomycete plant pathogens. New Phytol. 225:118–125. doi:10.1111/nph.16007
  • Couto, D., Niebergall, R., Liang, X., Bücherl, C. A., Sklenar, J., Macho, A. P., Ntoukakis, V., Derbyshire, P., Altenbach, D., Maclean, D., Robatzek, S., Uhrig, J., Menke, F., Zhou, J.-M., and Zipfel, C. 2016. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLoS Pathog. 12:e1005811. doi:10.1371/journal.ppat.1005811
  • Dangl, J.L., and Jones, J.D.G. 2019. A pentangular plant inflammasome. Science. 364:31–32. doi:10.1126/science.aax0174
  • De Schepper, V., De Swaef, T., Bauweraerts, I., and Steppe, K. 2013. Phloem transport: a review of mechanisms and controls. J. Exp. Bot. 64:4839–4850. doi:10.1093/jxb/ert302
  • Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X., and Zhang, Y. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell. 173:1454–1467. doi:10.1016/j.cell.2018.03.044
  • Frei dit Frey, N., Garcia, A., Bigeard, J., Zaag, R., Bueso, E., Garmier, M., Pateyron, S., de Tauzia-Moreau, M.-L., Brunaud, V., Balzergue, S., Colcombet, J., Aubourg, S., Martin-Magniette, M.-L., and Hirt, H. 2014. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. doi:10.1186/gb-2014-15-6-r87
  • Dulla, G., and Lindow, S.E. 2008. Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc. Natl. Acad. Sci. USA. 105:3082–3087. doi:10.1073/pnas.0711723105
  • Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and Hacquard, S. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 175:973–983. e914. doi:10.1016/j.cell.2018.10.020
  • Durrant, W.E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209.
  • Duxbury, Z. 2016. Determining the molecular mechanism of plant disease resistance following pathogen effector perception by the resistance gene pair RPS4/RRS1. Thesis, University of East Anglia.
  • Eichmann, R., and Schafer, P. 2015. Growth versus immunity-a redirection of the cell cycle? Curr. Opin. Plant Biol. 26:106–112. doi:10.1016/j.pbi.2015.06.006
  • Evans, M.J., Choi, W.-G., Gilroy, S., and Morris, R.J. 2016. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol. 171:1771–1784. doi:10.1104/pp.16.00215
  • Fawke, S., Doumane, M., and Schornack, S. 2015. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 79:263–280. doi:10.1128/MMBR.00010-15
  • Ficke, A., Gadoury, D.M., and Seem, R.C. 2002. Ontogenic resistance and plant disease management: a case study of grape powdery mildew. Phytopathol. 92:671–675. doi:10.1094/PHYTO.2002.92.6.671
  • Forde, B.G., and Roberts, M.R. 2014. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000 Prime Rep. 6:37.
  • Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 486:228–232. doi:10.1038/nature11162
  • Gadoury, D.M., Seem, R.C., Ficke, A., and Wilcox, W.F. 2003. Ontogenic resistance to powdery mildew in grape berries. Phytopathol. 93:547–555. doi:10.1094/PHYTO.2003.93.5.547
  • Gaquerel, E., and Stitz, M. 2017. Insect resistance: an emerging molecular framework linking plant age and JA signaling. Mol. Plant. 10:537–539. doi:10.1016/j.molp.2017.02.006
  • Geng, X., Cheng, J., Gangadharan, A., and Mackey, D. 2012. The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell. 24:4763–4774. doi:10.1105/tpc.112.105312
  • Geng, X., Jin, L., Shimada, M., Kim, M.G., and Mackey, D. 2014. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta. 240:1149–1165. doi:10.1007/s00425-014-2151-x
  • Gillmor, C. S., Silva-Ortega, C. O., Willmann, M. R., Buendia-Monreal, M., and Poethig, R. S. 2014. The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions. Dev. 141:4580–4589. doi:10.1242/dev.111229
  • Gimenez-Ibanez, S., Boter, M., Fernandez-Barbero, G., Chini, A., Rathjen, J.P., and Solano, R. 2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol. 12:e1001792.
  • Gimenez-Ibanez, S., Chini, A., and Solano, R. 2016. How microbes twist jasmonate signaling around their little fingers. Plants (Basel) 5:9. doi:10.3390/plants5010009
  • Glander, S., He, F., Schmitz, G., Witten, A., Telschow, A., and de Meaux, J. 2018. Assortment of flowering time and immunity alleles in natural Arabidopsis thaliana populations suggests immunity and vegetative lifespan strategies coevolve. Genome Biol. Evol. 10:2278–2291. doi:10.1093/gbe/evy124
  • Guerra, T., Schilling, S., Hake, K., Gorzolka, K., Sylvester, F.P., Conrads, B., Westermann, B., and Romeis, T. 2020. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid-and SARD 1-dependent immune memory in systemic acquired resistance. New Phytol. 225:310–325. doi:10.1111/nph.16147
  • Guo, J., Zeng, W., Chen, Q., Lee, C., Chen, L., Yang, Y., Cang, C., Ren, D., and Jiang, Y. 2016. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. 531:196. doi:10.1038/nature16446
  • Gupta, R., Lee, S.E., Agrawal, G.K., Rakwal, R., Park, S., Wang, Y., and Kim, S.T. 2015. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Front. Plant Sci. 6:352. doi:10.3389/fpls.2015.00352
  • Hacquard, S., Spaepen, S., Garrido-Oter, R., and Schulze-Lefert, P. 2017. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55:565–589. doi:10.1146/annurev-phyto-080516-035623
  • Haffner, E., Konietzki, S., and Diederichsen, E. 2015. Keeping control: the role of senescence and development in plant pathogenesis and defense. Plants. 4:449–488. doi:10.3390/plants4030449
  • Hander, T., Fernández-Fernández, Á. D., Kumpf, R. P., Willems, P., Schatowitz, H., Rombaut, D., Staes, A., Nolf, J., Pottie, R., Yao, P., Gonçalves, A., Pavie, B., Boller, T., Gevaert, K., Van Breusegem, F., Bartels, S., and Stael, S. 2019. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science. 363:eaar7486. doi:10.1126/science.aar7486
  • Handley, R., Ekbom, B., and Ågren, J. 2005. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol. Entomol. 30:284–292. doi:10.1111/j.0307-6946.2005.00699.x
  • Hartmann, M., and Zeier, J. 2018. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J. 96:5–21. doi:10.1111/tpj.14037
  • Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Brautigam, A., Holzel, T., Ganter, C., and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell. 173:456–469. doi:10.1016/j.cell.2018.02.049
  • Hassani, M.A., Durán, P., and Hacquard, S. 2018. Microbial interactions within the plant holobiont. Microbiome 6:58.
  • Heil, M., and Land, W.G. 2014. Danger signals - damaged-self recognition across the tree of life. Front. Plant Sci. 5:578. doi:10.3389/fpls.2014.00578
  • Henty-Ridilla, J.L., Li, J., Day, B., and Staiger, C.J. 2014. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell. 26:340–352. doi:10.1105/tpc.113.122499
  • Heo, J.o., Roszak, P., Furuta, K.M., and Helariutta, Y. 2014. Phloem development: current knowledge and future perspectives. Am. J. Bot. 101:1393–1402. doi:10.3732/ajb.1400197
  • Hirakawa, Y., Torii, K.U., and Uchida, N. 2017. Mechanisms and strategies shaping plant peptide hormones. Plant Cell Physiol. 58:1313–1318. doi:10.1093/pcp/pcx069
  • Hou, S., Liu, Z., Shen, H., and Wu, D. 2019. Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 10:646. doi:10.3389/fpls.2019.00646
  • Hu, L., and Yang, L. 2019. Time to Fight: molecular mechanisms of age-related resistance. Phytopathol. 109:1500–1508.
  • Huang, C.-Y., Wang, H., Hu, P., Hamby, R., and Jin, H. 2019. Small RNAs–Big Players in Plant-Microbe Interactions. Cell Host Microbe 26:173–182. doi:10.1016/j.chom.2019.07.021
  • Hubbard, K. E., and Webb, A. A. 2015. Circadian rhythms in stomata: physiological and molecular aspects. In: Rhythms in Plants. Springer, pp 231–255.
  • Huffaker, A., Pearce, G., and Ryan, C.A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA. 103:10098–10103. doi:10.1073/pnas.0603727103
  • Huot, B., Yao, J., Montgomery, B.L., and He, S.Y. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant. 7:1267–1287. doi:10.1093/mp/ssu049
  • Hussain, A., Noman, A., Khan, M. I., Zaynab, M., Aqeel, M., Anwar, M., Ashraf, M. F., Liu, Z., Raza, A., Mahpara, S., Bakhsh, A., and He, S. 2019. Molecular regulation of pepper innate immunity and stress tolerance: an overview of WRKY TFs. Micro. Pathogen. 135:103610. doi:10.1016/j.micpath.2019.103610
  • Jewell, J.B., Sowders, J.M., He, R., Willis, M.A., Gang, D.R., and Tanaka, K. 2019. Extracellular ATP shapes a defense-related transcriptome both independently and along with other defense signaling pathways. Plant Physiol. 179:1144–1158. doi:10.1104/pp.18.01301
  • Jeworutzki, E., Roelfsema, M.R.G., Anschütz, U., Krol, E., Elzenga, J.T.M., Felix, G., Boller, T., Hedrich, R., and Becker, D. 2010. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J. 62:367–378. doi:10.1111/j.1365-313X.2010.04155.x
  • Jiang, L., Anderson, J.C., Besteiro, M.A.G., and Peck, S.C. 2017a. Phosphorylation of Arabidopsis MAP kinase phosphatase 1 (MKP1) is required for PAMP responses and resistance against bacteria. Plant Physiol. 175:1839–1852. doi:10.1104/pp.17.01152
  • Jiang, L., Chen, Y., Luo, L., and Peck, S.C. 2018. Central roles and regulatory mechanisms of dual-specificity MAPK phosphatases in developmental and stress signaling. Front. Plant Sci. 9:1697. doi:10.3389/fpls.2018.01697
  • Jiang, L., Wan, Y., Anderson, J.C., Hou, J., Islam, S.M., Cheng, J., and Peck, S.C. 2017b. Genetic dissection of Arabidopsis MAP kinase phosphatase 1-dependent PAMP-induced transcriptional responses. J. Exp. Bot. 68:5207–5220. doi:10.1093/jxb/erx335
  • Jiang, S., Yao, J., Ma, K.W., Zhou, H., Song, J., He, S.Y., and Ma, W. 2013. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog. 9:e1003715. doi:10.1371/journal.ppat.1003715
  • Jones, J.D., and Dangl, J.L. 2006. The plant immune system. Nature. 444:323–329. doi:10.1038/nature05286
  • Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F., and Dangl, J.L. 2019. Help wanted: helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50:82–94. doi:10.1016/j.pbi.2019.03.013
  • Kadota, Y., Shirasu, K., and Zipfel, C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56:1472–1480. doi:10.1093/pcp/pcv063
  • Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A., and Zipfel, C. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell. 54:43–55. doi:10.1016/j.molcel.2014.02.021
  • Karasov, T.L., Chae, E., Herman, J.J., and Bergelson, J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell. 29:666–680. doi:10.1105/tpc.16.00931
  • Kebdani, N., Pieuchot, L., Deleury, E., Panabieres, F., Le Berre, J.Y., and Gourgues, M. 2010. Cellular and molecular characterization of Phytophthora parasitica appressorium- mediated penetration. New Phytol. 185:248–257. doi:10.1111/j.1469-8137.2009.03048.x
  • Kehr, J., and Kragler, F. 2018. Long distance RNA movement. New Phytol. 218:29–40. doi:10.1111/nph.15025
  • Kleemann, J., Rincon-Rivera, L.J., Takahara, H., Neumann, U., van Themaat, E.V.L., van der Does, H.C., Hacquard, S., Stüber, K., Will, I., and Schmalenbach, W. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog. 8:e1002643.
  • Klikno, J., and Kutschera, U. 2017. Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria. Protoplasma. 254:1867–1877. doi:10.1007/s00709-016-1067-7
  • Kremer, J.M. 2017. Characterization of axenic immune deficiency in Arabidopsis thaliana. Michigan State University.
  • Kremer, J.M., Paasch, B.C., Rhodes, D., Thireault, C., Froehlich, J.E., Schulze-Lefert, P., Tiedje, J.M., and He, S.Y. 2018. FlowPot axenic plant growth system for microbiota research. bioRxiv. 254953. doi:10.1101/254953
  • Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., Postel, S., Arents, M., Jeworutzki, E., Al-Rasheid, K.A., Becker, D., and Hedrich, R. 2010. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J. Biol. Chem. 285:13471–13479. doi:10.1074/jbc.M109.097394
  • Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K. 2002. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell. 14:479–490. doi:10.1105/tpc.010481
  • Latunde-Dada, A., O’connell, R., Nash, C., and Lucas, J. 1999. Stomatal penetration of cowpea (Vigna unguiculata) leaves by a Colletotrichum species causing latent anthracnose. Plant Pathol. 48:777–785. doi:10.1046/j.1365-3059.1999.00405.x
  • Lee, J., and Lee, I. 2010. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 61:2247–2254. doi:10.1093/jxb/erq098
  • Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S.E., and Metraux, J.P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochem. 112:54–62. doi:10.1016/j.phytochem.2014.08.027
  • Lenzoni, G., Liu, J., and Knight, M.R., 2018. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. New Phytol. 217:2. 1598–1609.
  • Leonard, S., Hommais, F., Nasser, W., and Reverchon, S. 2017. Plant–phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ. Microbiol. 19:1689–1716.
  • Lewis, L. A., Polanski, K., de Torres-Zabala, M., Jayaraman, S., Bowden, L., Moore, J., Penfold, C. A., Jenkins, D. J., Hill, C., Baxter, L., Kulasekaran, S., Truman, W., Littlejohn, G., Prusinska, J., Mead, A., Steinbrenner, J., Hickman, R., Rand, D., Wild, D. L., Ott, S., Buchanan-Wollaston, V., Smirnoff, N., Beynon, J., Denby, K., and Grant, M. 2015. Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. Plant Cell. 27:3038–3064. doi:10.1105/tpc.15.00471
  • Leybaert, L., and Sanderson, M.J. 2012. Intercellular Ca(2+) waves: mechanisms and function. Physiol Rev. 92:1359–1392. doi:10.1152/physrev.00029.2011
  • Li, B., Meng, X., Shan, L., and He, P. 2016. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe. 19:641–650. doi:10.1016/j.chom.2016.04.011
  • Li, J., and Staiger, C.J. 2018. Understanding cytoskeletal dynamics during the plant immune response. Annu. Rev. Phytopathol. 56:513–533. doi:10.1146/annurev-phyto-080516-035632
  • Li, J., Cao, L., and Staiger, C.J. 2017. Capping protein modulates actin remodeling in response to reactive oxygen species during plant innate immunity. Plant Physiol. 173:1125–1136. doi:10.1104/pp.16.00992
  • Li, J., Henty-Ridilla, J.L., Staiger, B.H., Day, B., and Staiger, C.J. 2015. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat. Comm. 6:7206.
  • Li, P., and Day, B. 2019. Battlefield cytoskeleton: turning the tide on plant immunity. Mol. Plant Microbe Interact. 32:25–34. doi:10.1094/MPMI-07-18-0195-FI
  • Li, Q., Wang, C., and Mou, Z. 2020. Perception of Damaged Self in Plants. Plant Physiol. 182:1545–1565. doi:10.1104/pp.19.01242
  • Li, S., Han, X., Yang, L., Deng, X., Wu, H., Zhang, M., Liu, Y., Zhang, S., and Xu, J. 2018. Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana. Plant. Cell Environ. 41:134–147. doi:10.1111/pce.12984
  • Liang, X., Ding, P., Lian, K., Wang, J., Ma, M., Li, L., Li, L., Li, M., Zhang, X., Chen, S., Zhang, Y., and Zhou, J.-M. 2016. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. Elife. 5:e13568. doi:10.7554/eLife.13568
  • Liao, D., Cao, Y., Sun, X., Espinoza, C., Nguyen, C.T., Liang, Y., and Stacey, G., 2017. Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB 13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK 5) protein abundance. New Phytol. 214:2. 1646–1656.
  • Linthorst, H. J.M., and Van Loon, L.C. 1991. Pathogenesis‐related proteins of plants. Crit. Rev. Plant Sci. 10:123–150.
  • Liu, J., Lenzoni, G., and Knight, M.R. 2020. Design principles for decoding calcium signals to generate specific gene expression via transcription. Plant Physiol. 182:1743–1761. doi:10.1104/pp.19.01003
  • Liu, L., Sonbol, F.-M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., and He, S.Y., Dong D. X. 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Comm. 7:1–10.
  • Liu, S., Kracher, B., Ziegler, J., Birkenbihl, R.P., and Somssich, I.E. 2015. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. Elife. 4:e07295. doi:10.7554/eLife.07295
  • Liu, Y., Du, M., Deng, L., Shen, J., Fang, M., Chen, Q., Lu, Y., Wang, Q., Li, C., and Zhai, Q. 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell. 31:106–127. doi:10.1105/tpc.18.00405
  • Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T.P., He, P., and Shan, L. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science. 332:1439–1442. doi:10.1126/science.1204903
  • Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Penuelas, J., Qian, H., and Zhu, Y.G. 2018. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome. 6:231. doi:10.1186/s40168-018-0615-0
  • Ludwig, N., Löhrer, M., Hempel, M., Mathea, S., Schliebner, I., Menzel, M., Kiesow, A., Schaffrath, U., Deising, H.B., and Horbach, R. 2014. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola. Mol. Plant Microbe Interact. 27:315–327. doi:10.1094/MPMI-09-13-0267-R
  • Lumbreras, V., Vilela, B., Irar, S., Solé, M., Capellades, M., Valls, M., Coca, M., and Pagès, M. 2010. MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J. 63:1017–1030.
  • Luo, X., Xu, N., Huang, J., Gao, F., Zou, H., Boudsocq, M., Coaker, G., and Liu, J. 2017. A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling. Plant Physiol. 174:2501–2514. doi:10.1104/pp.17.00404
  • Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell. 112:379–389. doi:10.1016/S0092-8674(03)00040-0
  • Mackey, D., Holt, B. F., Wiig, A., and Dangl, J. L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 108:743–754. doi:10.1016/S0092-8674(02)00661-X
  • Manners, J.M., Penninckx, I.A., Vermaere, K., Kazan, K., Brown, R.L., Morgan, A., Maclean, D.J., Curtis, M.D., Cammue, B.P., and Broekaert, W.F. 1998. The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol. Biol. 38:1071–1080.
  • Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell. 23:1639–1653. doi:10.1105/tpc.111.084996
  • Mao, Y.-B., Liu, Y.-Q., Chen, D.-Y., Chen, F.-Y., Fang, X., Hong, G.-J., Wang, L.-J., and Wang, J.-W., Chen X.-Y. 2017. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nature Comm. 8:1–13.
  • Marcec, M.J., Gilroy, S., Poovaiah, B., and Tanaka, K. 2019. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 283:343–354. doi:10.1016/j.plantsci.2019.03.004
  • Mbengue, M., Bourdais, G., Gervasi, F., Beck, M., Zhou, J., Spallek, T., Bartels, S., Boller, T., Ueda, T., Kuhn, H., and Robatzek, S. 2016. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc. Natl. Acad. Sci. USA. 113:11034–11039. doi:10.1073/pnas.1606004113
  • Mehlmer, N., Wurzinger, B., Stael, S., Hofmann-Rodrigues, D., Csaszar, E., Pfister, B., Bayer, R., and Teige, M. 2010. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J. 63:484–498. doi:10.1111/j.1365-313X.2010.04257.x
  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell. 126:969–980. doi:10.1016/j.cell.2006.06.054
  • Melotto, M., Zhang, L., Oblessuc, P.R., and He, S.Y. 2017. Stomatal defense a decade later. Plant Physiol. 174:561–571.
  • Meng, X., and Zhang, S. 2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–266.
  • Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M.A., Shulaev, V., Dangl, J.L., and Mittler, R. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2:ra45–ra45. doi:10.1126/scisignal.2000448
  • Mine, A., Berens, M.L., Nobori, T., Anver, S., Fukumoto, K., Winkelmüller, T.M., Takeda, A., Becker, D., and Tsuda, K. 2017. Pathogen exploitation of an abscisic acid-and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proc. Natl. Acad. Sci. USA. 114:7456–7461. doi:10.1073/pnas.1702613114
  • Mine, A., Seyfferth, C., Kracher, B., Berens, M.L., Becker, D., and Tsuda, K. 2018. The defense phytohormone signaling network enables rapid, high-amplitude transcriptional reprogramming during effector-triggered immunity. Plant Cell. 30:1199–1219. doi:10.1105/tpc.17.00970
  • Mithoe, S.C., and Menke, F.L. 2018. Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Curr. Opin. Plant Biol. 45:162–170. doi:10.1016/j.pbi.2018.07.008
  • Monteiro, F., and Nishimura, M.T. 2018. Structural, functional, and genomic diversity of plant nlr proteins: an evolved resource for rational engineering of plant immunity. Annu. Rev. Phytopathol. 56:243–267. doi:10.1146/annurev-phyto-080417-045817
  • Moore, J.W., Loake, G.J., and Spoel, S.H. 2011. Transcription dynamics in plant immunity. Plant Cell 23:2809–2820. doi:10.1105/tpc.111.087346
  • Morris, C.E., Barny, M.A., Berge, O., Kinkel, L.L., and Lacroix, C. 2017. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: challenges in bacterial molecular plant pathology. Mol. Plant Pathol. 18:308–319. doi:10.1111/mpp.12508
  • Müller, D.B., Vogel, C., Bai, Y., and Vorholt, J.A. 2016. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50:211–234. doi:10.1146/annurev-genet-120215-034952
  • Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D. 2006. The ubiquitin-proteasome system. J. Biosci. 31:137–155.
  • Návarová, H., Bernsdorff, F., Döring, A.-C., and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 24:5123–5141. doi:10.1105/tpc.112.103564
  • Notaguchi, M., and Okamoto, S. 2015. Dynamics of long-distance signaling via plant vascular tissues. Front Plant Sci . 6:161doi:10.3389/fpls.2015.00161
  • Nühse, T.S., Bottrill, A.R., Jones, A.M., and Peck, S.C. 2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51:931–940. doi:10.1111/j.1365-313X.2007.03192.x
  • Ortiz-Martín, I., Thwaites, R., Macho, A.P., Mansfield, J.W., and Beuzón, C.R. 2010. Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Mol. Plant Microbe Interact. 23:665–681. doi:10.1094/MPMI-23-5-0665
  • Ortiz-Morea, F. A., Savatin, D. V., Dejonghe, W., Kumar, R., Luo, Y., Adamowski, M., Van den Begin, J., Dressano, K., Pereira de Oliveira, G., Zhao, X., Lu, Q., Madder, A., Friml, J., Scherer de Moura, D., and Russinova, E. 2016. Danger-associated peptide signaling in Arabidopsis requires clathrin. Proc. Natl. Acad. Sci. USA. 113:11028–11033. doi:10.1073/pnas.1605588113
  • Paccanaro, M.C., Sella, L., Castiglioni, C., Giacomello, F., Martínez-Rocha, A.L., D’Ovidio, R., Schäfer, W., and Favaron, F. 2017. Synergistic effect of different plant cell wall–degrading enzymes Is important for virulence of Fusarium graminearum. Mol. Plant Microbe Interact. 30:886–895. doi:10.1094/MPMI-07-17-0179-R
  • Padmanabhan, M.S., Ma, S., Burch-Smith, T.M., Czymmek, K., Huijser, P., and Dinesh-Kumar, S.P. 2013. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog. 9:e1003235. doi:10.1371/journal.ppat.1003235
  • Pandey, S.P., Roccaro, M., Schön, M., Logemann, E., and Somssich, I.E. 2010. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 64:912–923. doi:10.1111/j.1365-313X.2010.04387.x
  • Pearce, G., Johnson, S., and Ryan, C.A. 1993. Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J. Biol. Chem. 268:212–216.
  • Porter, K., Shimono, M., Tian, M., and Day, B. 2012. Arabidopsis actin-depolymerizing Factor- 4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog. 8:e1003006. doi:10.1371/journal.ppat.1003006
  • Preston, J.C., and Hileman, L. 2013. Functional evolution in the plant SQUAMOSA- PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front. Plant Sci. 4:80. doi:10.3389/fpls.2013.00080
  • Qi, Z., Verma, R., Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C.A., and Berkowitz, G.A. 2010. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc. Natl. Acad. Sci. USA. 107:21193–21198. doi:10.1073/pnas.1000191107
  • Quiñones, B., Dulla, G., and Lindow, S.E. 2005. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol. Plant Microbe Interact. 18:682–693. doi:10.1094/MPMI-18-0682
  • Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., and Scheel, D. 2011. Interplay between calcium signalling and early signalling elements during defence responses to microbe-or damage-associated molecular patterns. Plant J. 68:100–113. doi:10.1111/j.1365-313X.2011.04671.x
  • Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y., and Feussner, I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 365:498–502. doi:10.1126/science.aaw1720
  • Robatzek, S., Chinchilla, D., and Boller, T. 2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20:537–542. doi:10.1101/gad.366506
  • Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., and Zhang, K. 2019. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 20:2479.
  • Rusterucci, C., Zhao, Z., Haines, K., Mellersh, D., Neumann, M., and Cameron, R. 2005. Age-related resistance to Pseudomonas syringae pv. tomato is associated with the transition to flowering in Arabidopsis and is effective against Peronospora parasitica. Physiol. Mol. Plant Pathol. 66:222–231. doi:10.1016/j.pmpp.2005.08.004
  • Ryder, L.S., and Talbot, N.J. 2015. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26:8–13. doi:10.1016/j.pbi.2015.05.013
  • Sanabria, N., Goring, D., Nurnberger, T., and Dubery, I. 2008. Self/nonself perception and recognition mechanisms in plants: a comparison of self-incompatibility and innate immunity. New Phytol. 178:503–514. doi:10.1111/j.1469-8137.2008.02403.x
  • Savatin, D.V., Gramegna, G., Modesti, V., and Cervone, F. 2014. Wounding in the plant tissue: the defense of a dangerous passage. Front. Plant Sci. 5:470. doi:10.3389/fpls.2014.00470
  • Scheer, J.M., and Ryan, C.A. 1999. A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell. 11:1525–1536. doi:10.1105/tpc.11.8.1525
  • Schuman, M.C., Meldau, S., Gaquerel, E., Diezel, C., McGale, E., Greenfield, S., and Baldwin, I.T. 2018. The active jasmonate JA-Ile regulates a specific subset of plant Jasmonate-Mediated Resistance to Herbivores in Nature. Front. Plant Sci. 9:787doi:10.3389/fpls.2018.00787
  • Segonzac, C., and Monaghan, J. 2019. Modulation of plant innate immune signaling by small peptides. Curr. Opin. Plant Biol. 51:22–28. doi:10.1016/j.pbi.2019.03.007
  • Segonzac, C., Macho, A.P., Sanmartín, M., Ntoukakis, V., Sánchez-Serrano, J.J., and Zipfel, C. 2014. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. Embo J. 33:2069–2079.
  • Serrano, M., Wang, B., Aryal, B., Garcion, C., Abou-Mansour, E., Heck, S., Geisler, M., Mauch, F., Nawrath, C., and Métraux, J.-P. 2013. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol. 162:1815–1821. doi:10.1104/pp.113.218156
  • Sharma, B., Joshi, D., Yadav, P.K., Gupta, A.K., and Bhatt, T.K. 2016. Role of ubiquitin- mediated degradation system in plant biology. Front. Plant Sci. 7:806. doi:10.3389/fpls.2016.00806
  • Sharma, D., and Kanneganti, T.D. 2016. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol. 213:617–629. doi:10.1083/jcb.201602089
  • Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., He, S.Y., Rizo, J., Howe, G.A., and Zheng, N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405. doi:10.1038/nature09430
  • Shine, M.B., Xiao, X., Kachroo, P., and Kachroo, A. 2019. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci. 279:81–86. doi:10.1016/j.plantsci.2018.01.001
  • Singh, A., Sagar, S., and Biswas, D.K. 2017. Calcium dependent protein kinase, a versatile player in plant stress management and development. Crit. Rev. Plant Sci. 36:336–352. doi:10.1080/07352689.2018.1428438
  • Skamnioti, P., and Gurr, S.J. 2007. Magnaporthe grisea Cutinase-2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell. 19:2674–2689. doi:10.1105/tpc.107.051219
  • Smith, J.M., and Heese, A. 2014. Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. Plant Meth. 10: 6. doi:10.1186/1746-4811-10-6
  • Stam, R., Mantelin, S., McLellan, H., and Thilliez, G. 2014. The role of effectors in nonhost resistance to filamentous plant pathogens. Front. Plant Sci 5: 582. doi:10.3389/fpls.2014.00582
  • Staskawicz, B.J. 2001. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol. 125: 73–76. doi:10.1104/pp.125.1.73
  • Sukarta, O.C., Slootweg, E.J., and Goverse, A. 2016. Structure-informed insights for NLR functioning in plant immunity. Semin. Cell Dev. Biol. 56: 134–149. doi:10.1016/j.semcdb.2016.05.012
  • Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y., and Zhang, Y. 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Comm. 6:1–12.
  • Sun, Y., Zhu, Y.-X., Balint-Kurti, P.J., and Wang, G.-F. 2020. Fine-tuning immunity: players and regulators for plant NLRs. Trends Plant Sci. doi:10.1016/j.tplants.2020.02.008
  • Tang, W., Gao, C., Wang, J., Yin, Z., Zhang, J., Ji, J., Zhang, H., Zheng, X., Zhang, Z., and Wang, P. 2018. Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae. Mol. Plant Pathol. 19:689–699. doi:10.1111/mpp.12554
  • Tang, X., Xiao, Y., and Zhou, J.M. 2006. Regulation of the type III secretion system in phytopathogenic bacteria. Mol. Plant Microbe Interact. 19:1159–1166. doi:10.1094/MPMI-19-1159
  • Teixeira, P.J.P., Colaianni, N.R., Fitzpatrick, C.R., and Dangl, J.L. 2019. Beyond pathogens: microbiota interactions with the plant immune system. Curr. Opin. Microbiol 49:7–17. doi:10.1016/j.mib.2019.08.003
  • Tena, G., Boudsocq, M., and Sheen, J. 2011. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14:519–529. doi:10.1016/j.pbi.2011.05.006
  • Thomma, B.P., Nürnberger, T., and Joosten, M.H. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell. 23:4–15.
  • Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., Staskawicz, B. J., and Luan, S. 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature. 572:131–135. doi:10.1038/s41586-019-1413-y
  • Torrens-Spence, M.P., Bobokalonova, A., Carballo, V., Glinkerman, C.M., Pluskal, T., Shen, A., and Weng, J.-K. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol. Plant. 12:1577–1586. doi:10.1016/j.molp.2019.11.005
  • Torres, M.A., Jones, J.D., and Dangl, J.L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141:373–378. doi:10.1104/pp.106.079467
  • Toyota, M., Spencer, D., Sawai-Toyota, S., Jiaqi, W., Zhang, T., Koo, A.J., Howe, G.A., and Gilroy, S. 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 361:1112–1115. doi:10.1126/science.aat7744
  • Tsuda, K., and Somssich, I.E. 2015. Transcriptional networks in plant immunity. New Phytol. 206:932–947. doi:10.1111/nph.13286
  • Underwood, W. 2012. The plant cell wall: a dynamic barrier against pathogen invasion. Front. Plant Sci. 3:85.
  • Van der Biezen, E.A., and Jones, J.D. 1998. Plant disease-resistance proteins and the gene- for-gene concept. Trends Biochem. Sci. 23:454–456. doi:10.1016/S0968-0004(98)01311-5
  • Van Ngo, H., and Mostowy, S. 2019. Role of septins in microbial infection. J. Cell Sci. 132:jcs226266.
  • Van Vu, B., Itoh, K., Nguyen, Q.B., Tosa, Y., and Nakayashiki, H. 2012. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae. Mol. Plant Microbe Interact. 25:1135–1141. doi:10.1094/MPMI-02-12-0043-R
  • Vannier, N., Agler, M., and Hacquard, S. 2019. Microbiota-mediated disease resistance in plants. PLoS Pathog. 15:e1007740. doi:10.1371/journal.ppat.1007740
  • Verdeil, J.L., Alemanno, L., Niemenak, N., and Tranbarger, T.J. 2007. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci. 12:245–252. doi:10.1016/j.tplants.2007.04.002
  • Verma, V., Ravindran, P., and Kumar, P.P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16:86. doi:10.1186/s12870-016-0771-y
  • Volkov, A.G., Lang, R.D., and Volkova-Gugeshashvili, M.I. 2007. Electrical signaling in Aloe vera induced by localized thermal stress. Bioelectrochem. 71:192–197.
  • Wang, C., Zhou, M., Zhang, X., Yao, J., Zhang, Y., and Mou, Z. 2017. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. Elife. 6: e25474. doi:10.7554/eLife.25474
  • Wang, J., Grubb, L. E., Wang, J., Liang, X., Li, L., Gao, C., Ma, M., Feng, F., Li, M., Li, L., Zhang, X., Yu, F., Xie, Q., Chen, S., Zipfel, C., Monaghan, J., and Zhou, J.-M. 2018. A regulatory module controlling homeostasis of a plant immune kinase. Mol. Cell. 69:493–504. e496. doi:10.1016/j.molcel.2017.12.026
  • Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.W., Zhou, J.M., and Chai, J. 2019a. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 364:eaav5870. doi:10.1126/science.aav5870
  • Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., Han, Z., Qi, Y., Gao, N., Wang, H.W., Zhou, J.M., and Chai, J. 2019b. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science. 364:eaav5868. doi:10.1126/science.aav5868
  • Wang, L., Einig, E., Almeida-Trapp, M., Albert, M., Fliegmann, J., Mithöfer, A., Kalbacher, H., and Felix, G. 2018a. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat. Plants. 4:152–156. doi:10.1038/s41477-018-0106-0
  • Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., and Glazebrook, J. 2009. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5:e1000301.
  • Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L.V., Katagiri, F., and Glazebrook, J. 2011. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 67:1029–1041. doi:10.1111/j.1365-313X.2011.04655.x
  • Wang, L., Wilkins, K. A., and Davies, J. M. 2018b. Arabidopsis DORN1 extracellular ATP receptor; activation of plasma membrane K+-and Ca2+-permeable conductances. New Phytol. 218:1301–1304. doi:10.1111/nph.15111
  • Wang, X., Gao, J., Zhu, Z., Dong, X., Wang, X., Ren, G., Zhou, X., and Kuai, B. 2015. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. Plant J. 82:151–162. doi:10.1111/tpj.12803
  • Wei, Z., Yang, T., Friman, V.-P., Xu, Y., and Shen, Q., Jousset J. A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Comm. 6:1–9.
  • Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 414:562–565. doi:10.1038/35107108
  • Wilson, D.C., Kempthorne, C.J., Carella, P., Liscombe, D.K., and Cameron, R.K. 2017. Age- Related Resistance in Arabidopsis thaliana Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and direct action of salicylic acid on Pseudomonas syringae. Mol. Plant Microbe Interact. 30:919–929. doi:10.1094/MPMI-07-17-0172-R
  • Winter, C. M., Austin, R. S., Blanvillain-Baufumé, S., Reback, M. A., Monniaux, M., Wu, M.-F., Sang, Y., Yamaguchi, A., Yamaguchi, N., Parker, J. E., Parcy, F., Jensen, S. T., Li, H., and Wagner, D. 2011. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev. Cell. 20:430–443. doi:10.1016/j.devcel.2011.03.019
  • Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. 2007. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718. doi:10.1371/journal.pone.0000718
  • Withers, J., and Dong, X. 2017. Post-translational regulation of plant immunity. Curr. Opin. Plant Biol. 38:124–132. doi:10.1016/j.pbi.2017.05.004
  • Withers, J., Yao, J., Mecey, C., Howe, G.A., Melotto, M., and He, S.Y. 2012. Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proc Natl Acad Sci USA. 109:20148–20153. doi:10.1073/pnas.1210054109
  • Wu, D., Ding, W., Zhang, Y., Liu, X., and Yang, L. 2015. Oleanolic acid induces the type III secretion system of Ralstonia solanacearum. Front. Microbiol. 6:1466. doi:10.3389/fmicb.2015.01466
  • Wu, F., Chi, Y., Jiang, Z., Xu, Y., Xie, L., Huang, F., Wan, D., Ni, J., Yuan, F., Wu, X., Zhang, Y., Wang, L., Ye, R., Byeon, B., Wang, W., Zhang, S., Sima, M., Chen, S., Zhu, M., Pei, J., Johnson, D. M., Zhu, S., Cao, X., Pei, C., Zai, Z., Liu, Y., Liu, T., Swift, G. B., Zhang, W., Yu, M., Hu, Z., Siedow, J. N., Chen, X., and Pei, Z.-M. 2020. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature. 578:577–581. doi:10.1038/s41586-020-2032-3
  • Wu, G., Park, M.Y., Conway, S.R., Wang, J.-W., Weigel, D., and Poethig, R.S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 138:750–759. doi:10.1016/j.cell.2009.06.031
  • Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D., De Luca, V., and Després, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639–647. doi:10.1016/j.celrep.2012.05.008
  • Xie, K., Chen, J., Wang, Q., and Yang, Y. 2014. Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell. 26:3077–3089. doi:10.1105/tpc.114.126441
  • Xin, X.-F., Kvitko, B., and He, S.Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16:316–328. doi:10.1038/nrmicro.2018.17
  • Xu, X., Chen, C., Fan, B., and Chen, Z. 2006. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 18:1310–1326. doi:10.1105/tpc.105.037523
  • Xu, Y.P., Lv, L.H., Xu, Y.J., Yang, J., Cao, J.Y., and Cai, X.Z. 2018. Leaf stage-associated resistance is correlated with phytohormones in a pathosystem-dependent manner. J. Integr. Plant Biol. 60:703–722. doi:10.1111/jipb.12661
  • Yamada, K., Yamashita-Yamada, M., Hirase, T., Fujiwara, T., Tsuda, K., Hiruma, K., and Saijo, Y. 2016. Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1. Embo J. 35:46–61. doi:10.15252/embj.201591807
  • Yamaguchi, A., Wu, M.-F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. 2009. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell. 17:268–278. doi:10.1016/j.devcel.2009.06.007
  • Yamaguchi, Y., Huffaker, A., Bryan, A.C., Tax, F.E., and Ryan, C.A. 2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell. 22:508–522. doi:10.1105/tpc.109.068874
  • Ye, B.B., Zhang, K., and Wang, J.W. 2019. The role of miR156 in rejuvenation in Arabidopsis thaliana. J. Int. Plant Biol. doi:10.1111/jipb.12855
  • Yi, M., and Valent, B. 2013. Communication between filamentous pathogens and plants at the biotrophic interface. Annu. Rev. Phytopathol. 51:587–611. doi:10.1146/annurev-phyto-081211-172916
  • Yin, H., Hong, G., Li, L., Zhang, X., Kong, Y., Sun, Z., Li, J., Chen, J., and He, Y. 2019. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana. Phytopathol. 109:632–642. doi:10.1094/PHYTO-08-18-0306-R
  • Yuan, P., Jauregui, E., Du, L., Tanaka, K., and Poovaiah, B. 2017. Calcium signatures and signaling events orchestrate plant–microbe interactions. Curr. Opin. Plant Biol. 38:173–183. doi:10.1016/j.pbi.2017.06.003
  • Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., and Pieterse, C.M. 2013. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 162:304–318. doi:10.1104/pp.112.212597
  • Zhang, H., Zhang, H., and Lin, J. 2020. Systemin‐mediated long‐distance systemic defense responses. New Phytol. doi:10.1111/nph.16495
  • Zhang, Y., Li, J., Zhang, W., Wang, R., Qiu, Q., Luo, F., Hikichi, Y., Ohnishi, K., and Ding, W. 2017. Ferulic acid, but not all hydroxycinnamic acids, is a novel T3SS inducer of Ralstonia solanacearum and promotes its infection process in host plants under hydroponic condition. Front. Plant Sci. 8:1595. doi:10.3389/fpls.2017.01595
  • Zheng, C., Ye, M., Sang, M., and Wu, R. 2019. A regulatory network for miR156-SPL module in Arabidopsis thaliana. Ijms. 20:6166. doi:10.3390/ijms20246166
  • Ziv, C., Zhao, Z., Gao, Y.G., and Xia, Y. 2018. Multifunctional roles of plant cuticle during plant- pathogen interactions. Front. Plant Sci. 9:1088. doi:10.3389/fpls.2018.01088
  • Zou, Y., Wang, S., Zhou, Y., Bai, J., Huang, G., Liu, X., Zhang, Y., Tang, D., and Lu, D. 2018. Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell. 30:2779–2794. doi:10.1105/tpc.18.00297

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.