2,297
Views
29
CrossRef citations to date
0
Altmetric
Articles

Defining Cyanobacterial Species: Diversity and Description Through Genomics

ORCID Icon &

References

  • Abreu, V. A. C., Popin, R. V., Alvarenga, D. O., Schaker, P. D. C., Hoff-Risseti, C., Varani, A. M., and Fiore, M. F. 2018. Genomic and genotypic characterization of Cylindrospermopsis raciborskii: toward an intraspecific phylogenetic evaluation by comparative genomics. Front. Microbiol. 9: 306.
  • Achtman, M., and Wagner, M. 2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6: 431–440.
  • Aguilera, A., Gómez, E. B., Kaštovský, J., Echenique, R. O., and Salerno, G. L. 2018. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57: 130–146.
  • Al-Tebrineh, J., Merrick, C., Ryan, D., Humpage, A., Bowling, L., and Neilan, B. A. 2012. Community composition, toxigenicity, and environmental conditions during a cyanobacterial bloom occurring along 1,100 kilometres of the Murray River. Appl. Environ. Microbiol. 78: 263–272.
  • Anagnostidis, K., and Komárek, J. 1985. Modern approach to the classification system of the cyanophytes 1: introduction. Algol. Stud. 38: 291–302.
  • Anagnostidis, K., and Komárek, J. 1988. Modern approach to the classification system of the cyanophytes 3: oscillatoriales. Algol. Stud. 50: 327–472.
  • Anagnostidis, K., and Komárek, J. 1990. Modern approach to the classification system of the cyanophytes – Stigonematales. Algol. Stud. 59: 1–74.
  • Avrani, S., and Lindell, D. 2015. Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc. Natl. Acad. Sci. USA. 112: E2191–E2200.
  • Barraclough, T. G. 2010. Evolving entities: towards a unified framework for understanding diversity at the species and higher levels. Philos. Trans. R. Soc. B. 365: 1801–1813.
  • Barraclough, T. G., Balbi, K. J., and Ellis, R. J. 2012. Evolving concepts of bacterial species. Evol. Biol. 39: 148–157.
  • Barton, N. H. 2010. Mutation and the evolution of recombination. Philos. Trans. R. Soc. B. 365: 1281–1294.
  • Becraft, E. D., Wood, J. M., Rusch, D. B., Kuhl, M., Jensen, S. I., Bryant, D. A., Roberts, D. W., Cohan, F. M., and Ward, D. M. 2015. The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park. Front. Microbiol. 6: 590.
  • Berry, M. A., White, J. D., Davis, T. W., Jain, S., Johengen, T. H., Dick, G. J., Sarnelle, O., and Denef, V. J. 2017. Are oligotypes meaningful ecological and phylogenetic units? A case study of Microcystis in freshwater lakes. Front. Microbiol. 08: 365.
  • Biller, S. J., Berube, P. M., Lindell, D., and Chisholm, W. 2015. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13: 13–27.
  • Bobay, L.-M., and Ochman, H. 2017. Biological species are universal across life’s domains. Genome Biol. Evol. 9: 491–501.
  • Burford, M. A., Beardall, J., Willis, A., Orr, P. T., Magalhaes, V. F., Rangel, L. M., Azevedo, S. M. F. O. E., and Neilan, B. A. 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae. 54: 44–53.
  • Burford, M. A., Davis, T. W., Orr, P. T., Sinha, R., Willis, A., and Neilan, B. A. 2014. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium Cylindrospermopsis raciborskii. FEMS Microbiol. Ecol. 89: 135–148.
  • Capelli, C., Ballot, A., Cerasino, L., Papini, A., and Salmaso, N. 2017. Biogeography of bloom-forming microcystin producing and non-toxigenic populations of Dolichospermum lemmermanni (Cyanobacteria). Harmful Algae. 67: 1–12.
  • Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science. 276: 1221–1229.
  • Cohan, F. M. 2001. Bacterial species and speciation. Syst. Biol. 50: 513–524.
  • Cohan, F. M., and Perry, E. B. 2007. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17: R373–R386.
  • Collins, R. E., and Higgs, P. G. 2012. Testing the infinity many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29: 3413–3425.
  • Coutinho, F., Tschoeke, D. A., Thompson, F., and Thompson, C. 2016. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ. 4: e1522.
  • Daubin, V., Gouy, M., and Perrière, G. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 12: 1080–1090.
  • Davis, T. W., Berry, D. L., Boyer, G. L., and Gobler, C. J. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Harmful Algae. 8: 715–725.
  • Delmont, T. O., and Eren, A. M. 2018. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 6: e4320.
  • Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., Schweitzer, J. A., and Palkovacs, E. P. 2018. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2: 57–64.
  • Doolittle, W. F., and Zhaxybayeva, O. 2009. On the origin of prokaryotic species. Genome Res. 19: 744–756.
  • Doroghazi, J. R., and Buckley, D. H. 2010. Widespread homologous recombination within and between Streptomyces species. ISME J. 4: 1136–1143.
  • Drouet, F. 1968. Revision of the Classification of the Oscillatoriaceae. Monography of Academy of National Sciences, Philadelphia.
  • Drouet, F. 1973. Revision of the Nostocaceae with Cylindrical Trichomes. Hafner Press, New York.
  • Drouet, F. 1978. Revision of the Nostocaceae with constricted trichomes. Beih. Nova Hedwigia. 57: 1–258.
  • Drouet, F. 1981. Revision of the Stigonemataceae with a summary of the classification of the blue-green algae. Beih. Nova Hedwigia. 66: 1–221.
  • Drouet, F., and Daily, W. A. 1956. Revision of the coccoid Myxophyceae. Butler Univ. Bot. 12: 1–218.
  • Dvořák, P., Jahodarova, E., Casamatta, D. A., Hasler, P., and Poulickova, A. 2018. Difference without distinction? Gaps in cyanobacterial systematics; when more is just too much. Fottea. 18: 130–136.
  • Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D. A., and Papini, A. 2015. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers. Conserv. 24: 739–757.
  • Edwards, C. T. 2019. Links between Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): a review. Palaeoworld .28: 37–50.
  • Engene, N., Cameron Coates, R., and Gerwick, W. H. 2010. 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lynbgya. J. Phycol. 46: 591–601.
  • Engene, N., Choi, H., Esquenazi, E., Rottacker, E. C., Ellisman, M. H., Dorrestein, P. C., and Gerwick, W. H. 2011. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ. Microbiol. 13: 1601–1610.
  • Engene, N., Gunasekera, S. P., Gerwick, W. H., and Paul, V. J. 2013. Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. Appl. Environ. Microbiol. 79: 1882–1888.
  • Eren, A. M., Esen, Ö. C., Quince, C., Vineis, J. H., Morrison, H. G., Sogin, M. L., and Delmont, T. O. 2015. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 3: e1319.
  • Erkus, O., de Jager, V. C., Spus, M., van Alen-Boerrigter, I. J., van Rijswijck, I. M., Hazelwood, L., Janssen, P. W., van Hijum, S. A., Kleerebezem, M., and Smid, E. J. 2013. Multifactorial diversity sustains microbial community stability. ISME J. 7: 2126–2136.
  • Foster, R. A., and Zehr, J. P. 2019. Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu. Rev. Microbiol. 73: 435–456.
  • Fox, G. E., Wisotzkey, J. D., and Jurtshuk, P. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacter. 42: 166–170.
  • Frangeul, L., Quillardet, P., Castets, A.-M., Humbert, J.-F., Matthijs, H. C. P., Cortez, D., Tolonen, A., Zhang, C.-C., Gribaldo, S., Kehr, J.-C., Zilliges, Y., Ziemert, N., Becker, S., Talla, E., Latifi, A., Billault, A., Lepelletier, A., Dittmann, E., Bouchier, C., and de Marsac, N. T. 2008. Highly plastic genome of Microcystis aeruginosa PCC7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics. 9: 274.
  • Garcia-Pichel, F., Zehr, J. P., Bhattacharya, D., and Pakrasi, H. B. 2020. What’s in a name? The case of cyanobacteria. J. Phycol. 56: 1–5.
  • Geitler, L. 1932. Cyanophyceae. In Rabenhorst’s Kryptogamen Flora Von Deutschland, Ö Sterreich Und Der Schweiz, Vol. 14; Kolkwitz, R., Ed. Akademische Verlagsgesellschaft: Leipzig, pp 1–1196.
  • Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., de Peer, Y. V., Vandamme, P., Thompson, F. L., and Swings, J. 2005. Opinion: re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3: 733–739.
  • Gevers, D., Dawyndt, P., Vandamme, P., Willems, A., Vancanneyt, M., Swings, J., and De Vos, P. 2006. Stepping stones towards a new prokaryotic taxonomy. Philos. Trans. R. Soc. B. 361: 1911–1916.
  • Godhe, A., and Rynearson, T. 2017. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos. Trans. R. Soc. B. 372: 20160399.
  • Gomont, M. 1892. Monographie des Oscillariées (Nostocaceae homocystées). Ann. Sci. Nat. Ser. Botan. 15: 265–368.
  • González-Resendiz, L., Johansen, J. R., León-Tejera, H., Sánchez, L., Segal-Kischinevzky, C., Escobar-Sánchez, V., and Morales, M. 2019. A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertfilum (Cyanobacteria). J. Phycol. 55: 898–911.
  • Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E., and Desai, M. M. 2017. The dynamics of molecular evolution over 60,000 generations. Nature. 551: 45–50.
  • Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81–91.
  • Guan, X., Qin, S., Zhao, F., Zhang, X., and Tang, X. 2007. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int. J. Biol. Sci. 3: 434–445.
  • Gugger, M., and Hoffman, L. 2004. Polyphyly of true branching cyanobacteria (Stigonematales). Int. J. Syst. Evol. Microbiol. 54: 349–357.
  • Guiry, M. D., and Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org (accessed Jan 14, 2020).
  • Gürtler, V., and Stanisich, V. A. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology. 142: 3–16.
  • Hanage, W. P. 2013. Fuzzy species revisited. BMC Biol. 11: 41.
  • Harke, M. J., Davis, T. W., Watson, S. B., and Gobler, C. J. 2016. Nutrient controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys. Environ. Sci. Technol. 50: 604–615.
  • Hilton, J. A., Satinsky, B. M., Doherty, M., Zielinski, B., and Zehr, J. P. 2015. Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume. Isme J. 9: 1557–1569.
  • Hoffmann, L. 2005. Nomenclature of Cyanophyta/Cyanobacteria: round table on the unification of the nomenclature under the Botanical and Bacteriological Codes. Archiv._Algolstud. 117: 13–29.
  • Hotto, A. M., Satchwell, M., Berry, D. L., Gobler, C. J., and Boyer, G. L. 2008. Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae. 7: 671–681.
  • Huisman, J., Codd, G. A., Paerl, H. A., Ibelings, B. W., Verspagen, J. M. H., and Visser, P. M. 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16: 471–483.
  • Humbert, J.-F., Barbe, V., Latifi, A., Gugger, M., Calteau, A., Coursin, T., Lajus, A., Castelli, C., Oztas, S., Samson, G., Longin, C., Medigue, C., and Tandeau de Marsac, N. 2013. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLOS One. 8: e70747.
  • Ibelings, B. W., Backer, L. C., Kardinaal, W. E. A., and Chorus, I. 2014. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae. 40: 63–74.
  • Imai, H., Chang, K.-H., Kusaba, M., and Nakano, S.-I. 2008. Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J. Plankton. Res. 31: 171–178.
  • Jackrel, S. L., White, J. D., Evans, J. T., Buffin, K., Hayden, K., Sarnelle, O., and Denef, V. J. 2019. Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-forming Microcystis aeruginosa. Mol. Ecol. 28: 3994–4011.
  • Johansen, J. R., and Casamatta, D. A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Archiv._Algolstud. 117: 71–93.
  • Johansen, J. R., Kovacik, L., Casamatta, D. A., Iková, K. F., and Kaštovský, J. 2011. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedw. 92: 283–302.
  • Johansen, J. R., Hauer, T., and Kaštovský, J. 2019. The explosion of nomenclaturally invalid cyanobacterial genera: navigating two nomenclatural codes. Proceedings of the 21st Symposium of the International Association of Cyanophyte/Cyanobacteria Association, North Stradbroke Island, Australia.
  • Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S., and Chisholm, S. W. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 311: 1737–1740.
  • Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 388: 533–538.
  • Kashtan, N., Roggensack, S. E., Rodrigue, S., Thompson, J. W., Biller, S. J., Coe, A., Ding, H., Marttinen, P., Malmstrom, R. R., Stocker, R., Follows, M. J., Stepanauskas, R., and Chisholm, S. W. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 344: 416–420.
  • Keymer, D. P., and Boehm, A. B. 2011. Recombination shapes the structure of an environmental Vibrio cholerai population. Appl. Environ. Microbiol. 77: 537–544.
  • Kim, M., Oh, H. S., Park, S. C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identify and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346–351.
  • Knoll, A. H. 2003. The geological consequences of evolution. Geobiology. 1: 3–14.
  • Komárek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51: 346–353.
  • Komárek, J. 2018. Delimitation of the family Oscillatoriaceae (Cyanobacteria) according to the modern polyphasic approach (introductory review). Braz. J. Bot. 41: 449–456.
  • Komárek, J. 2020. Quo vadis, taxonomy of cyanobacteria (2019). Fottea, Olomouc 20: 104–110.
  • Komárek, J., and Anagnostidis, K. 1986. Modern approach to the classification system of the cyanophytes 2: Chroococcales. Algol. Stud. 43: 157–226.
  • Komárek, J., and Anagnostidis, K. 1989. Modern approach to the classification system of the cyanophytes 4: Nostocales. Algol. Stud. 56: 247–345.
  • Komárek, J., Kaštocksỳ, J., Mareš, J., and Johansen, J. R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacteria genera) 2014, using a polyphasic approach. Preslia. 86: 295–335.
  • Konstantinidis, K. T., Ramette, A., and Tiedje, J. M. 2006. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. B. 361: 1929–1940.
  • Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., and Nash, C. Z. 2005. The paleoproterozoic snowball earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA. 102: 11131–11136.
  • Kurmayer, R., and Gumpenberger, M. 2006. Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol. Ecol. 15: 3849–3861.
  • Kurmayer, R., Dittman, E., Fastner, J., and Chorus, I. 2002. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microbiol. Ecol. 43: 107–118.
  • Lakeman, M. B., von Dassow, P., and Cattolico, R. A. 2009. The strain concept in phytoplankton ecology. Harmful Algae. 8: 746–758.
  • Larsson, J., Nylander, J. A. A., and Bergman, B. 2011. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol. Biol. 11: 187.
  • Lassalle, F., Muller, D., and Nesme, X. 2015. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res. Microbiol. 166: 729–741.
  • Legrand, B., Le Jeune, A.-H., Colombet, J., Thouvenot, A., and Latour, D. 2017. Akinetes may be representative of past Nostocalean blooms: a case study of their benthic spatiotemporal distribution and potential for germination in a eutrophic lake. Appl. Environ. Microbiol. 83: e01571–17.
  • Lenski, R. E. 2017. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 11: 2181–2194.
  • Litchman, E., and Klausmeier, C. A. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39: 615–639.
  • Liu, H., Nolla, H. A., and Campbell, L. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microbiol. Ecol. 12: 39–47.
  • Lu, J., Zhu, B., Struewing, I., Xu, N., and Duan, S. 2019. Nitrogen-phosphorus associated metabolic activities during the development of a cyanobacterial bloom revealed by metatranscriptomics. Sci. Rep. 9: 2480.
  • Lynch, M., Ackerman, M. S., Gout, J.-F., Long, H., Sung, W., Thomas, W. K., and Foster, P. L. 2016. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17: 704–714.
  • Mayr, E. 1982. The Growth of the Biological Thought. The Belknap Press, Cambridge.
  • Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589–594.
  • Meissner, S., Steinhauser, D., and Dittmann, E. 2015. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environ. Microbiol. 17: 1497–1509.
  • Mishler, B. D., and Theriot, E. C. 2000. The phylogenetic species concept (sensu Mishler and Theriot): monophyly, apomorphy, and phylogenetic species concepts. In Species Concepts and Phylogenetic Theory, a Debate; Wheeler, Q. D. and Meier, R, Eds. Columbia University Press: New York, pp 44–54.
  • Mishra, A. K., Tiwari, D. N., and Rai, A. N. 2019. Cyanobacteria: From Basic Science to Applications. Academic Press, London, UK.
  • Moldovan, M. A., and Gelfand, M. S. 2018. Pangenomic definition of prokaryotic species and the phylogenetic structure of Prochlorococcus spp. Front. Microbiol. 9: 428.
  • Moore, L. R., and Chisholm, S. W. 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol. Oceanogr. 44: 628–638.
  • Morimoto, D., Kimura, S., Sako, Y., and Yoshida, T. 2018. Transcriptome analysis of a bloom-forming cyanobacterium Microcystis aeruginosa during Ma-LMM01 phage infection. Front. Microbiol. 9: 2.
  • Morimoto, D., Tominaga, K., Nishimura, Y., Yoshida, N., Kimura, S., Sako, Y., and Yoshida, T. 2019. Cooccurrence of broad- and narrow-host-range viruses infecting the bloom-forming toxic cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 85: e01170–19.
  • Morris, J. J., Lenski, R. E., and Zinser, E. R. 2012. The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 3: e00036–e00012.
  • Muraille, E. 2018. Diversity generator mechanisms are essential components of biological systems: the two queen hypothesis. Front. Microbiol. 9: 223.
  • Neilan, B. A. 1996. Detection and identification of cyanobacteria associated with toxic blooms: DNA amplification protocols. Phycologia. 35: 147–155.
  • Nowack, S., Olsen, M. T., Schaible, G. A., Becraft, E. D., Shen, G., Klapper, I., Bryant, D. A., and Ward, D. M. 2015. The molecular dimension of microbial species: 2. Synechococcus strains representative of putative ecotypes inhabiting different depths in the Mushroom Spring microbial mat exhibit different adaptive and acclimative responses to light. Front. Microbiol. 6: 626.
  • Nowell, R. W., Green, S., Laue, B. E., and Sharp, P. M. 2014. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol. Evol. 6: 1514–1529.
  • Olson, J. M., and Blankenship, R. E. 2004. Thinking about the evolution of photosynthesis. Photosynth. Res. 80: 373–386.
  • Oren, A. 2011. Cyanobacterial systematics and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy/International Journal of Systematic Bacteriology/. Int. J. Syst. Evol. Micriobiol. 61: 10–15.
  • Oren, A., and Ventura, S. 2017. The current status of cyanobacterial nomenclature under the “prokaryotic” and the “botanical” code. Antonie Van Leeuwenhoek. 110: 1257–1269.
  • Otsuka, S., Suda, S., Shibata, S., Oyaizu, H., Matsumoto, S., and Watanabe, M. M. 2001. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the Rules of the Bacteriological Code. Int. J. Syst. Evol. Microbiol. 51: 873–879.
  • Palinska, K. A., and Surosz, W. 2014. Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia. 740: 1–11.
  • Palmer, M., Venter, S. N., Coetzee, M. P. A., and Steenkamp, E. T. 2019. Prokaryotic species are sui generis evolutionary units. Syst. Appl. Microbiol. 42: 145–158.
  • Pancrace, C., Barny, M.-A., Ueoka, R., Calteau, A., Scalvenzi, T., Pédron, J., Barbe, V., Piel, J., Humbert, J.-F., and Gugger, M. 2017. Insights into the Planktothrix genus: genomic and metabolic comparison of benthic and planktic strains. Sci. Rep. 7: 41181.
  • Pantůček, R., Sedláček, I., Indráková, A., Vrbovská, V., Mašlaňová, I., Kovařovic, V., Švec, P., Králová, S., Krištofová, L., Kekláková, J., Petráš, P., and Doškař, J. 2018. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl. Environ. Microbiol. 84: e01746–17.
  • Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., and Hugenholtz, P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36: 10.
  • Pérez-Carrascal, O. M., Terrat, Y., Giani, A., Fortin, N., Greer, C. W., Tromas, N., and Shapiro, B. J. 2019. Coherence of Microcystis species revealed through population genomics. ISME J. 13: 2887–2900.
  • Pietrasiak, N., Osorio-Santos, K., Shalygin, S., Martin, M. P., and Johansen, J. R. 2019. When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. J. Phycol. 55: 976–996.
  • Polz, M. F., Alm, E. J., and Hanage, W. P. 2013. Horizontal gene transfer and the evolution of Bacterial and Archaeal population structure. Trends Genet. 29: 170–175.
  • Puddick, J., Wood, S. A., Hawes, I., and Hamilton, D. P. 2016. Fine-scale cryogenic sampling of planktonic microbial communities: application to toxic cyanobacterial blooms. Limnol. Oceanogr. Methods 14: 600–609.
  • Řeháková, K., Mareš, J., Lukešová, A., Zapomělová, E., Bernardová, K., and Hrouzek, P. 2014. Nodularia (Cyanobacteria, Nostocaceae): a phylogenetically uniform genus with variable phenotypes. Phytotaxa. 172: 235–246.
  • Richter, M., and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. PNAS. 106: 19126–19131.
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111: 1–61.
  • Rosselló-Mora, R., and Amann, R. 2001. The species concept for prokaryotes.FEMS Microbiol. Rev. 25: 39–67.
  • Saker, M. L., Neilan, B. A., and Griffiths, D. J. 1999. Two morphological forms of Cylindrospermopsis raciborskii (Cyanobacteria) isolated from Solomon Dam, Palm Island, Queensland. J. Phycol. 35: 599–606.
  • Sandrini, G., Jakupovic, D., Matthijs, H. C. P., and Huisman, J. 2015. Strains of the harmful cyanobacterium Microcystis aeruginosa differ in gene expression and activity of inorganic carbon uptake systems at elevated CO2 levels. Appl. Environ. Microbiol. 81: 7730–7739.
  • Sandrini, G., Ji, X., Verspagen, J. M. H., Tann, R. P., Slot, P. C., Luimstra, V. M., Schuurmans, J. M., Matthijs, H. C. P., and Huisman, J. 2016. Rapid adaptation of harmful cyanobacteria to rising CO2. Proc. Natl. Acad. Sci. USA. 113: 9315–9320.
  • Sandrini, G., Matthijs, H. C. P., Verspagen, J. M. H., Muyzer, G., and Huisman, J. 2014. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 8: 589–600.
  • Schirrmeister, B. E., de Vos, J. M., Antonelli, A., and Bagheri, H. C. 2013. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxygen Event. Proc. Natl. Acad. Sci. 110: 1791–1796.
  • Schmutzer, M., and Barraclough, T. G. 2019. The role of recombination, niche-specific gene pools and flexible genomes in the ecological speciation of bacteria. Ecol. Evol. 9: 4544–4556.
  • Schuurmans, J. M., Brinkmann, B. W., Makower, A. K., Dittmann, E., Huisman, J., and Matthijs, H. C. P. 2018. Microcystin interferes with defence against oxidative stress in harmful algae. Harmful Algae. 78: 47–55.
  • Sciuto, K. and Moro, I. 2016. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Mol. Phylogenet. Evol. 105: 15–35.
  • Seenayya, G. and Subba Raju, N. 1972. On the ecology and systematic position of the alga known as Anabaenopsis raciborskii (Wolosz.) Elenk. and a critical evaluation of the forms described under the genus Anabaenopsis. In Taxonomy and Biology of Blue-green Algae, Desikachery, T. V., Ed. University of Madras: Madras, India, pp. 52–57.
  • Shestakov, S. V., and Karbysheva, E. A. 2015. The role of viruses in the evolution of cyanobacteria. Biol. Bull. Rev. p5: 527–537.
  • Shi, T., and Falkowski, P. G. 2007. Genome evolution in cyanobacteria: the stable core and the variable shell. PNAS, 105: 7.
  • Shih, P. M., Wu, D., Latifi, A., Axen, S. D., Fewer, D. P., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N., Rippka, R., Herdman, M., Sivonen, K., Coursin, T., Laurent, T., Goodwin, L., Nolan, M., Davenport, K. W., Han, C. S., Rubin, E. M., Eisen, J. A., Woyke, T., Gugger, M., and Kerfeld, C. A. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. PNAS. 110: 1053–1058.
  • Soo, R. M., Hemp, J., and Hugenholtz, P. 2019. Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radic. Biol. Med. 140: 200–205.
  • Sriswasdi, S., Yang, C.-C., and Iwasaki, W. 2017. Generalist species drive microbial dispersion and evolution. Nat. Commun. 8: 1162.
  • Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished fold standards. Microbiol. Today. 33: 152–155.
  • Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic note; a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44: 846–849.
  • Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J., Trüper, H. G., Vauterin, L., Ward, A. C., and Whitman, W. B. 2002. Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043–1047.
  • Stal, L. J. 2015. Nitrogen fixation in cyanobacteria. In: eLS; John Wiley & Sons, Ltd.: Chichester.
  • Staley, J. T. 2006. The bacterial species dilemma and the genomic-phylogenetic species concept. Philos. Trans. R. Soc. B. 361: 1899–1909.
  • Steffen, M. M., Li, Z., Effler, T. C., Hauser, L. J., Boyer, G. L., and Wilhelm, S. W. 2012. Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. PLOS One. 7: e44002.
  • Stough, J. M. A., Tang, X., Krausfeldt, L. E., Steffen, M. M., Gao, G., Boyer, G. L., and Wilhelm, S. W. 2017. Molecular prediction of lytic vs lysogenic states for Microcystis phage: metatranscriptomic evidence of lysogeny during large bloom events. PLOS One. 12: e0184146.
  • Strotz, L. C., Simões, M., Girard, M. G., Breitkreuz, L., Kimmig, J., and Lieberman, B. S. 2018. Getting somewhere with the Red Queen: chasing a biologically modern definition of the hypothesis. Biol. Lett. 14: 20170734.
  • Stucken, K., John, U., Cembella, A., Murillo, A. A., Soto-Liebe, K., Fuentes-Valdés, J. J., Friedel, M., Plominsky, A. M., Vásquez, M., and Glöckner, G. 2010. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. PLOS One, 5: e9235.
  • Sukenik, A., Rücker, J., and Maldener, I. 2019. In Cyanobacteria, from basic science to applications; Mishra, A. K., Tiwari, D. N. and Rai, A. N., Eds. Academic Press: Elsevier, London, UK.
  • Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A. 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature. 400: 554–557.
  • Swingley, W. D., Blankenship, R. D., and Raymond, J. 2008. Integrating Markov Clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol. Biol. Evol. 25: 643–654.
  • Thomson-Laing, G., Puddick, J., Laroche, O., Fulton, S., Steiner, K., Heath, M. W., and Wood, S. A. 2020. Broad and fine scale variability in bacterial diversity and cyanotoxin quotas in benthic cyanobacterial mats. Front. Microbiol. 11: 129.
  • Tomitani, A., Knoll, A. H., Cavanaugh, C. M., and Ohno, T. 2006. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc. Natl. Acad. Sci. 103: 5442–5447.
  • Tonk, L., Bosch, K., Visser, P. M., and Huisman, J. 2007. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 46: 117–123.
  • Tripp, H. J., Bench, S. R., Turk, K. A., Foster, R. A., Desany, B. A., Niazi, F., Affourtit, J. P., and Zehr, J. P. 2010. Metabolic streamlining in an open-ocean nitrogen fixing cyanobacterium. Nat. Lett. 464: 90–94.
  • Uyeda, J. C., Harmon, L. J., and Blank, C. E. 2016. A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geological time. PLOS One. 11: e0162539.
  • Van Gremberghe, I., Leliaert, F., Mergeay, J., Vanormelingen, P., Van der Gucht, K., Debeer, A.-E., Lacerot, G., De Meester, L., and Vyverman, W. 2011. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLOS One. 6: e19561.
  • Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1: 1–30.
  • Van Wichelen, J., Vanormelingen, P., Codd, G. A., and Vyverman, W. 2016. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful Algae. 55: 97–111.
  • Vico, P., Bonilla, S., Cremella, B., Aubriot, L., Iriarte, A., and Piccini, C. 2020. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: integrating genomics, phylogenetic and toxicity data. Mol. Phylogenet. Evol. doi:10.1016/j.ympev.2020.106824.
  • Wang, J., Bai, P., Li, Q., Lin, Y., Huo, D., Ke, F., Zhang, Q., Li, T., and Zhao, J. 2019. Interaction between cyanophage MaMV-DC and eight Microcystis strains, revealed by genetic defense systems. Harmful Algae. 85: 101699.
  • Wang, Y.-W., Zhao, J., Li, J.-H., Li, S.-S., Zhang, L.-H., and Wu, M. 2010. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Curr. Microbiol. 62: 679–683.
  • Wayne, L., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Truper, H. H. 1987. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37: 463–464.
  • Weinbauer, M. G. and Rassoulzadegan, F. 2003. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6: 1–11.
  • Whitton, B. A. and Potts, M. 2000. The Ecology of Cyanobacteria. Kluwer, Dordrecht, The Netherlands.
  • Wiley, E. O., and Mayden, R. L. 2000. The evolutionary species concept. In Species Concepts and the Phylogenetic Theory a Debate; Wheeler, Q. D. and Meier, R., Eds. Columbia University Press: New York, pp 70–89.
  • Willis, A., Adams, M. P., Chuang, A. W., Orr, P. T., O’Brien, K. R., and Burford, M. A. 2015. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya et Subba Raju). Harmful Algae. 47: 27–34.
  • Willis, A., Chuang, A. W., Dyhrman, S., and Burford, M. A. 2019a. Differential expression of phosphorus acquisition genes in response to phosphorus stress in two Raphidiopsis raciborskii strains. Harmful Algae. 82: 19–25.
  • Willis, A., Chuang, A. W., Orr, P. T., Beardall, J., and Burford, M. A. 2019b. Subtropical freshwater phytoplankton show a greater response to increased temperature than to increased pCO2. Harmful Algae. 90: 101705.
  • Willis, A., Chuang, A., Woodhouse, J. N., Neilan, B. A., and Burford, M. A. 2016. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon. 119: 307–310.
  • Willis, A., Woodhouse, J. N., Ongley, S. E., Jex, A. R., Burford, M. A., and Neilan, B. A. 2018. Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains. Harmful Algae. 73: 157–166.
  • Wood, S. A., Jentzsch, K., Rueckert, A., Hamilton, D. P., and Cary, S. C. 2009 . Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiol. Ecol. 67: 252–260.
  • Xiao, M., Adams, M. P., Willis, A., Burford, M. A., and O’Brien, K. R. 2017a. Variation within and between cyanobacterial species and strains affects competition: implications for phytoplankton modeling. Harmful Algae. 69: 37–38.
  • Xiao, M., Li, M., and Reynolds, C. S. 2018. Colony formation in the cyanobacterium Microcystis. Biol. Rev. 93: 1399–1420.
  • Xiao, M., Willis, A., and Burford, M. A. 2017b. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae. 62: 84–93.
  • Yamaguchi, H., Suzuki, S., Osana, Y., and Kawachi, M. 2018. Complete genome sequence of Microcystis aeruginosa NIES-2491 and common genomic features of group G M. aeruginosa. J. Genomics. 6: 30–33.
  • Yoshida, T., Nagasaki, K., Takashima, Y., Shirai, Y., Tomaru, Y., Takao, Y., Sakamoto, S., Hiroishi, S., and Ogata, H. 2008. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. JB. 190: 1762–1772.
  • Zapomělová, E., Hrouzek, P., Řezanka, T., Jezberová, J., Řeháková, K., Hisem, D., and Komárková, J. 2011. Polyphasic characterization of Dolichospermum spp., and Sphaerospermopsis spp. (Nostocales, Cyanobacteria): morphology, 16S rRNA gene sequences and fatty acid and secondary metabolite profiles. J. Phycol. 47: 1152–1163.
  • Zehr, J. P. 2011. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19: 162–173.
  • Zhang, Y., and Sievert, S. M. 2014. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front. Microbiol. 5: 110.
  • Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F., and Papke, R. T. 2006. Phylogenetic analysis of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16: 1099–1108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.