832
Views
22
CrossRef citations to date
0
Altmetric
Articles

Molecular Mechanisms Determining the Differential Accumulation of Carotenoids in Plant Species and Varieties

, , , &

References

  • Adami, M., De Franceschi, P., Brandi, F., Liverani, A., Giovannini, D., Rosati, C., Dondini, L., and Tartarini, S. 2013. Identifying a carotenoid cleavage dioxygenase (CCD4) gene controlling yellow/white fruit flesh color of peach. Plant Mol. Biol. Rep. 31: 1166–1175.
  • Ahrazem, O., Gómez-Gómez, L., Rodrigo, M. J., Avalos, J., and Limón, M. C. 2016. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. IJMS. 17: 1781
  • Ahrazem, O., Rubio-Moraga, A., López, R. C., and Gómez-Gómez, L. 2010. The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron's apocarotenoid precursors. J. Exp. Bot. 61: 105–119
  • Al-Babili, S., and Bouwmeester, H. J. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66: 161–186.
  • Alós, E., Rodrigo, M. J., and Zacarias, L. 2016. Manipulation of carotenoid content in plants to improve human health. Subcell. Biochem. 79: 311–343.
  • Ariizumi, T., Kishimoto, S., Kakami, R., Maoka, T., Hirakawa, H., Suzuki, Y., Ozeki, Y., Shirasawa, K., Bernillon, S., Okabe, Y., Moing, A., Asamizu, E., Rothan, C., Ohmiya, A., and Ezura, H. 2014. Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (Solanum lycopersicum). Plant J. 79: 453–465.
  • Auldridge, M. E., McCarty, D. R., and Klee, H. J. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9: 315–321.
  • Bang, H., Kim, S., Leskovar, D., and King, S. 2007. Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Mol. Breeding 20: 63–72.
  • Biacs, P. A., Daood, H. G., Pavisa, A., and Hajdu, F. 1989. Studies on the carotenoid pigments of paprika (Capsicum annuum L. var Sz-20). J. Agric. Food Chem. 37: 350–353.
  • Blas, A. L., Ming, R., Liu, Z., Veatch, O. J., Paull, R. E., Moore, P. H., and Yu, Q. 2010. Cloning of the papaya chromoplast-specific lycopene β-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol. 152: 2013–2022.
  • Bouvier, F., Dogbo, O., and Camara, B. 2003. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300: 2089–2091.
  • Britton, G., Liaaen-Jensen, S., and Pfander, H. 2004. Carotenoids Handbook. Birkhäuser, Basel, Switzerland.
  • Campbell, R., Ducreux, L. J. M., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., Bryan, G. J., Hedley, P. E., and Taylor, M. A. 2010. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiol. 154: 656–664.
  • Cazzonelli, C. I., Cuttriss, A. J., Cossetto, S. B., Pye, W., Crisp, P., Whelan, J., Finnegan, E. J., Turnbull, C., and Pogson, B. J. 2009. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell. 21: 39–53.
  • Chayut, N., Yuan, H., Ohali, S., Meir, A., Sa'ar, U., Tzuri, G., Zheng, Y., Mazourek, M., Gepstein, S., Zhou, X., Portnoy, V., Lewinsohn, E., Schaffer, A. A., Katzir, N., Fei, Z., Welsch, R., Li, L., Burger, J., and Tadmor, Y. 2017. Distinct mechanisms of the ORANGE protein in controlling carotenoid flux. Plant Physiol. 173: 376–389.
  • Chayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., Zheng, Y., Fei, Z., Lewinsohn, E., Katzir, N., Schaffer, A. A., Gepstein, S., Burger, J., Li, L., and Tadmor, Y. 2015. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biol. 15: 274.
  • Clotault, J., Peltier, D., Berruyer, R., Thomas, M., Briard, M., and Geoffriau, E. 2008. Expression of carotenoid biosynthesis genes during carrot root development. J. Exp. Bot. 59: 3563–3573.
  • Cookson, P. J., Kiano, J. W., Shipton, C. A., Fraser, P. D., Romer, S., Schuch, W., Bramley, P. M., and Pyke, K. A. 2003. Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217: 896–903.
  • Cunningham, F. X., Jr., and Gantt, E. 2001. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc. Natl. Acad. Sci. USA. 98: 2905–2910.
  • Cunningham, F. X., Jr., and Gantt, E. 2011. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell. 23: 3055–3069.
  • Davuluri, G. R., van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D. A., King, S. R., Palys, J., Uhlig, J., Bramley, P. M., Pennings, H. M. J., and Bowler, C. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23: 890–895.
  • Deruere, J., Bouvier, F., Steppuhn, J., Klein, A., Camara, B., and Kuntz, M. 1994. Structure and expression of two plant genes encoding chromoplast-specific proteins: occurrence of partially spliced transcripts. Biochem. Biophys. Res. Commun. 199: 1144–1150.
  • Ellison, S. L., Luby, C. H., Corak, K. E., Coe, K. M., Senalik, D., Iorizzo, M., Goldman, I. L., Simon, P. W., and Dawson, J. C. 2018. Carotenoid presence is associated with the Or gene in domesticated carrot. Genetics 210: 1497–1508.
  • Estévez, J. M., Cantero, A., Romero, C., Kawaide, H., Jiménez, L. F., Kuzuyama, T., Seto, H., Kamiya, Y., and León, P. 2000. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol. 124: 95–104.
  • Falchi, R., Vendramin, E., Zanon, L., Scalabrin, S., Cipriani, G., Verde, I., Vizzotto, G., and Morgante, M. 2013. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J. 76: 175–187.
  • Fray, R. G., and Grierson, D. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22: 589–602.
  • Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., Rubio-Moraga, A., Beyer, P., Gomez-Gomez, L., Al-Babili, S., and Giuliano, G. 2014. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc. Natl. Acad. Sci. USA. 111: 12246–12251.
  • Fu, X., Feng, C., Wang, C., Yin, X., Lu, P., Grierson, D., Xu, C., and Chen, K. 2014. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. J. Exp. Bot. 65: 4679–4689.
  • Fujisawa, M., Nakano, T., Shima, Y., and Ito, Y. 2013. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell. 25: 371–386.
  • Fukamatsu, Y., Tamura, T., Hihara, S., and Oda, K. 2013. Mutations in the CCD4 carotenoid cleavage dioxygenase gene of yellow-flesh peaches. Biosci. Biotechnol. Biochem. 77: 2514–2516.
  • Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., and Hirschberg, J. 2006. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell. 18: 1947–1960.
  • Galpaz, N., Wang, Q., Menda, N., Zamir, D., and Hirschberg, J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 53: 717–730.
  • Gao, L., Zhao, W., Qu, H., Wang, Q., and Zhao, L. 2016. The yellow-fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production as a result of a genetic lesion in ETHYLENE INSENSITIVE2. Theor. Appl. Genet. 129: 717–728.
  • Gao, Y., Wei, W., Zhao, X., Tan, X., Fan, Z., Zhang, Y., Jing, Y., Meng, L., Zhu, B., Zhu, H., Chen, J., Jiang, C., Grierson, D., Luo, Y., and Fu, D. 2018. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic. Res. 5: 75.
  • Gao, Y., Zhu, N., Zhu, X., Wu, M., Jiang, C., Grierson, D., Luo, Y., Shen, W., Zhong, S., Fu, D., and Qu, G. 2019. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Hortic. Res. 6: 39.
  • Giuliano, G., and Diretto, G. 2007. Of chromoplasts and chaperones. Trends Plant Sci. 12: 529–531.
  • Grassi, S., Piro, G., Lee, J. M., Zheng, Y., Fei, Z., Dalessandro, G., Giovannoni, J. J., and Lenucci, M. S. 2013. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics. 14: 781.
  • Ha, S., Kim, J., Park, J., Lee, S., and Cho, K. 2007. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 58: 3135–3144.
  • Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. P., Kandianis, C. B., Sowinski, S. G., Stapleton, A. E., Vallabhaneni, R., Williams, M., Wurtzel, E. T., Yan, J., and Buckler, E. S. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319: 330–333.
  • Howitt, C. A., and Pogson, B. J. 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant. Cell Environ. 29: 435–445.
  • Iorizzo, M., Ellison, S., Senalik, D., Zeng, P., Satapoomin, P., Huang, J., Bowman, M., Iovene, M., Sanseverino, W., Cavagnaro, P., Yildiz, M., Macko-Podgórni, A., Moranska, E., Grzebelus, E., Grzebelus, D., Ashrafi, H., Zheng, Z., Cheng, S., Spooner, D., Van Deynze, A., and Simon, P. 2016. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat. Genet. 48: 657–666.
  • Isaacson, T., Ronen, G., Zamir, D., and Hirschberg, J. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell. 14: 333–342.
  • Josse, E., Simkin, A. J., Gaffé, J., Labouré, A., Kuntz, M., and Carol, P. 2000. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol. 123: 1427–1436.
  • Kato, M., Matsumoto, H., Ikoma, Y., Okuda, H., and Yano, M. 2006. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J. Exp. Bot. 57: 2153–2164.
  • Kendrick, R. E., Kerckhoffs, L. H. J., Pundsnes, A. S., Van Tuinen, A., Koorneef, M., Nagatani, A., Terry, M. J., Tretyn, A., Cordonnier-Pratt, M.-M., Hauser, B., and Pratt, L.H. 1994. Photomorphogenic mutants of tomato. Euphytica 79: 227–234.
  • Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., Nahon, S., Shlomo, H., Chen, L., and Levin, I. 2007. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 145: 389–401.
  • Langenkämper, G., Manac'h, N., Broin, M., Cuiné, S., Becuwe, N., Kuntz, M., and Rey, P. 2001. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J. Exp. Bot. 52: 1545–1554.
  • Lefebvre, V., Kuntz, M., Camara, B., and Palloix, A. 1998. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol 36: 785–789.
  • Levin, I., Frankel, P., Gilboa, N., Tanny, S., and Lalazar, A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor. Appl. Genet. 106: 454–460.
  • Li, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., and Garvin, D. F. 2001. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 26: 59–67.
  • Li, S., Xu, H., Ju, Z., Cao, D., Zhu, H., Fu, D., Grierson, D., Qin, G., Luo, Y., and Zhu, B. 2018. The RIN-MC fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes. Plant Physiol. 176: 891–909.
  • Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., Chen, K., and Grierson, D. 2020. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol. 226: 460–475.
  • Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., and Levin, I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet. 108: 1574–1581.
  • Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C., and Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. USA. 101: 9897–9902.
  • Llorente, B., D'Andrea, L., Ruiz-Sola, M. A., Botterweg, E., Pulido, P., Andilla, J., Loza-Alvarez, P., and Rodriguez-Concepcion, M. 2016. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 85: 107–119.
  • Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O'Neill, J., and Li, L. 2008. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 59: 213–223.
  • Lu, P., Wang, C., Yin, T., Zhong, S., Grierson, D., Chen, K., and Xu, C. 2017. Cytological and molecular characterization of carotenoid accumulation in normal and high-lycopene mutant oranges. Sci. Rep. 7: 761.
  • Lu, P., Wang, S., Grierson, D., and Xu, C. 2019. Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. Planta 249: 257–270.
  • Lu, S., and Li, L. 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol. 50: 778–785.
  • Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O'Halloran, D. M., Cosman, K. M., Conlin, B. J., Paolillo, D. J., Garvin, D. F., Vrebalov, J., Kochian, L. V., Küpper, H., Earle, E. D., Cao, J., and Li, L. 2006. The cauliflower Or gene encodes a DnaJ Cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell. 18: 3594–3605.
  • Luan, Y., Wang, S., Wang, R., and Xu, C. 2020. Accumulation of red apocarotenoid β-citraurin in peel of a spontaneous mutant of huyou (Citrus changshanensis) and the effects of storage temperature and ethylene application. Food Chem. 309: 125705.
  • Ma, G., Zhang, L., Iida, K., Madono, Y., Yungyuen, W., Yahata, M., Yamawaki, K., and Kato, M. 2017. Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process. Food Chem. 234: 356–364.
  • Ma, G., Zhang, L., Matsuta, A., Matsutani, K., Yamawaki, K., Yahata, M., Wahyudi, A., Motohashi, R., and Kato, M. 2013. Enzymatic formation of β-citraurin from β-cryptoxanthin and zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Plant Physiol. 163: 682–695.
  • Ma, N., Feng, H., Meng, X., Li, D., Yang, D., Wu, C., and Meng, Q. 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol. 14: 351.
  • Mandel, M. A., Feldmann, K. A., Herrera-Estrella, L., Rocha-Sosa, M., and León, P. 1996. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9: 649–658.
  • Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A. J., King, G. J., Giovannoni, J. J., and Seymour, G. B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38: 948–952.
  • McQuinn, R. P., Giovannoni, J. J., and Pogson, B. J. 2015. More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling. Curr. Opin. Plant Biol. 27: 172–179.
  • Meng, Y., Wang, Z., Wang, Y., Wang, C., Zhu, B., Liu, H., Ji, W., Wen, J., Chu, C., Tadege, M., Niu, L., and Lin, H. 2019. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. Plant Cell. 31: 2751–2767.
  • Murillo, E., Giuffrida, D., Menchaca, D., Dugo, P., Torre, G., Meléndez-Martinez, A. J., and Mondello, L. 2013. Native carotenoids composition of some tropical fruits. Food Chem. 140: 825–836.
  • Mustilli, A. C., Fenzi, F., Ciliento, R., Alfano, F., and Bowler, C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell. 11: 145–157.
  • Neuman, H., Galpaz, N., Cunningham, F. X., Zamir, D., and Hirschberg, J. 2014. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J. 78: 80–93.
  • Nisar, N., Li, L., Lu, S., Khin, N. C., and Pogson, B. J. 2015. Carotenoid metabolism in plants. Mol. Plant. 8: 68–82.
  • Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., and Sumitomo, K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142: 1193–1201
  • Pankratov, I., McQuinn, R., Schwartz, J., Bar, E., Fei, Z., Lewinsohn, E., Zamir, D., Giovannoni, J. J., and Hirschberg, J. 2016. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. Plant J. 88: 82–94.
  • Paolillo, D. J., Garvin, D. F., and Parthasarathy, M. V. 2004. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma 224: 245–253.
  • Park, H., Kreunen, S. S., Cuttriss, A. J., DellaPenna, D., and Pogson, B. J. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell. 14: 321–332.
  • Pham, T. Q., Cormier, F., Farnworth, E., Tong, V. H., and Van Calsteren, M. 2000. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J. Agric. Food Chem. 48: 1455–1461.
  • Potrykus, I. 2015. From the concept of totipotency to biofortified cereals. Annu. Rev. Plant Biol. 66: 1–22.
  • Priya, R., and Siva, R. 2014. Phylogenetic analysis and evolutionary studies of plant carotenoid cleavage dioxygenase gene. Gene 548: 223–233.
  • Rodrigo, M. J., Alquézar, B., Alós, E., Medina, V., Carmona, L., Bruno, M., Al-Babili, S., and Zacarías, L. 2013. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. J. Exp. Bot. 64: 4461–4478.
  • Rodrigo, M. J., Lado, J., Alós, E., Alquézar, B., Dery, O., Hirschberg, J., and Zacarías, L. 2019. A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the “Pinalate” sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. BMC Plant Biol. 19: 465.
  • Rodrigo, M. J., Marcos, J. F., Alférez, F., Mallent, M. D., and Zacarías, L. 2003. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J. Exp. Bot. 54: 727–738.
  • Ronen, G., Carmel-Goren, L., Zamir, D., and Hirschberg, J. 2000. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA. 97: 11102–11107.
  • Ronen, G., Cohen, M., Zamir, D., and Hirschberg, J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 17: 341–351.
  • Sagawa, J. M., Stanley, L. E., LaFountain, A. M., Frank, H. A., Liu, C., and Yuan, Y. 2016. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol. 209: 1049–1057.
  • Schwartz, S. H., Qin, X., and Zeevaart, J. A. D. 2003. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131: 1591–1601.
  • Scossa, F., Roda, F., Tohge, T., Georgiev, M. I., and Fernie, A. R. 2019. The hot and the colorful: understanding the metabolism, genetics and evolution of consumer preferred metabolic traits in pepper and related species. Crit. Rev. Plant Sci 38: 339–381.
  • Shumskaya, M., Bradbury, L. M. T., Monaco, R. R., and Wurtzel, E. T. 2012. Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell. 24: 3725–3741.
  • Singh, D. K., and McNellis, T. W. 2011. Fibrillin protein function: the tip of the iceberg? Trends Plant Sci. 16: 432–441.
  • Stanley, L. E., Ding, B., Sun, W., Mou, F., Hill, C., Chen, S., and Yuan, Y. 2020. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflower (Mimulus). Plant Cell. 32: 1536–1555.
  • Sun, T., and Li, L. 2020. Toward the ‘golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci. 290: 110331.
  • Sun, T., Yuan, H., Cao, H., Yazdani, M., Tadmor, Y., and Li, L. 2018. Carotenoid metabolism in plants: the role of plastids. Mol. Plant. 11: 58–74.
  • Sun, T., Yuan, H., Chen, C., Kadirjan-Kalbach, D. K., Mazourek, M., and Osteryoung, K. W., Li, L. 2020. ORHis, a natural variant of OR, specifically interacts with plastid division factor ARC3 to regulate chromoplast number and carotenoid accumulation. Mol. Plant. 13: 864–878.
  • Toledo-Ortiz, G., Huq, E., and Rodríguez-Concepción, M. 2010. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA. 107: 11626–11631.
  • Tzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., Sa'ar, U., Baumkoler, F., Mazourek, M., Lewinsohn, E., Fei, Z., Schaffer, A. A., Li, L., Burger, J., Katzir, N., and Tadmor, Y. 2015. A ‘golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 82: 267–279.
  • Wang, S., Liu, J., Feng, Y., Niu, X., Giovannoni, J., and Liu, Y. 2008. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J. 55: 89–103.
  • Watkins, J. L., Li, M., McQuinn, R. P., Chan, K. X., McFarlane, H. E., Ermakova, M., Furbank, R. T., Mares, D., Dong, C., Chalmers, K. J., Sharp, P., Mather, D. E., and Pogson, B. J. 2019. A GDSL esterase/lipase catalyzes the esterification of lutein in bread wheat. Plant Cell. 31: 3092–3112.
  • Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., Chavarriaga, P., Ceballos, H., Tohme, J., and Beyer, P. 2010. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell. 22: 3348–3356.
  • Welsch, R., Zhou, X., Yuan, H., Álvarez, D., Sun, T., Schlossarek, D., Yang, Y., Shen, G., Zhang, H., Rodriguez-Concepcion, M., Thannhauser, T. W., and Li, L. 2018. Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Mol. Plant. 11: 149–162.
  • Xu, C., Fraser, P. D., Wang, W., and Bramley, P. M. 2006. Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. J. Agric. Food Chem. 54: 5474–5481.
  • Yan, J., Kandianis, C. B., Harjes, C. E., Bai, L., Kim, E., Yang, X., Skinner, D. J., Fu, Z., Mitchell, S., Li, Q., Fernandez, M. G. S., Zaharieva, M., Babu, R., Fu, Y., Palacios, N., Li, J., DellaPenna, D., Brutnell, T., Buckler, E. S., Warburton, M. L., and Rocheford, T. 2010. Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat. Genet. 42: 322–327.
  • Yuan, H., Owsiany, K., Sheeja, T. E., Zhou, X., Rodriguez, C., Li, Y., Welsch, R., Chayut, N., Yang, Y., Thannhauser, T. W., Parthasarathy, M. V., Xu, Q., Deng, X., Fei, Z., Schaffer, A., Katzir, N., Burger, J., Tadmor, Y., and Li, L. 2015. A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis. Plant Physiol. 169: 421–431.
  • Zhang, J., Guo, S., Ren, Y., Zhang, H., Gong, G., Zhou, M., Wang, G., Zong, M., He, H., Liu, F., and Xu, Y. 2017. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol. 213: 1208–1221.
  • Zhang, J., Sun, H., Guo, S., Ren, Y., Li, M., Wang, J., Zhang, H., Gong, G., and Xu, Y. 2020. Decreased protein abundance of lycopene β-cyclase contributes to red flesh in domesticated watermelon. Plant Physiol 182. In press.
  • Zheng, X., Zhu, K., Sun, Q., Zhang, W., Wang, X., Cao, H., Tan, M., Xie, Z., Zeng, Y., Ye, J., Chai, L., Xu, Q., Pan, Z., Xiao, S., Fraser, P. D., and Deng, X. 2019. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Mol. Plant. 12: 1294–1307.
  • Zhou, X., Welsch, R., Yang, Y., Álvarez, D., Riediger, M., Yuan, H., Fish, T., Liu, J., Thannhauser, T. W., and Li, L. 2015. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA. 112: 3558–3563.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.