1,105
Views
54
CrossRef citations to date
0
Altmetric
Articles

Fire as a Selective Agent for both Serotiny and Nonserotiny Over Space and Time

, , , &

References

  • Anonymous. 2018. Management of Commercial Harvesting of Protected Flora in Western Australia, 1 July 2018- 30 June 2023. Department of Biodiversity, Conservation and Attractions, Perth.
  • Barrett, L. G., He, T., Lamont, B. B., and Krauss, S. L. 2005. Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae). Mol. Ecol. 14: 4169–4179. doi:10.1111/j.1365-294X.2005.02726.x
  • Battersby, P. F., Wilmshurst, J. M., Curran, T. J., McGlone, M. S., and Perry, G. L. 2017. Exploring fire adaptation in a land with little fire: serotiny in Leptospermum scoparium (Myrtaceae). J. Biogeogr. 44: 1306–1318. doi:10.1111/jbi.12950
  • Benca, J. P., Duijnstee, I. A., and Looy, C. V. 2018 . UV-B-induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci. Adv. 4: e1700618. doi:10.1126/sciadv.1700618
  • Benkman, C. W., Parchman, T. L., Favis, A., and Siepielski, A. M. 2003. Reciprocal selection causes a coevolutionary arms race between crossbills and lodgepole pine. Am. Nat. 162: 182–194. doi:10.1086/376580
  • Bergman, N. M., Lenton, T. M., and Watson, A. J. 2004. COPSE: a new model of biogeochemical cycling over phanerozoic time. Am. J. Sci. 304: 397–437. doi:10.2475/ajs.304.5.397
  • Blokker, T., Bek, D., and Binns, T. 2015. Wildflower harvesting on the Agulhas Plain, South Africa: challenges in a fragmented industry. S Afr. J. Sci. 111: 1–7. doi:10.17159/sajs.2015/20140160
  • Borger, C. P. D., Walsh, M., Scott, J. K., and Powles, S. B. 2007. Tumbleweeds in the Western Australian cropping system: seed dispersal characteristics of Salsola australis. Weed Res. 47: 406–414. doi:10.1111/j.1365-3180.2007.00578.x
  • Brown, N. A. C., and Botha, P. A. 2004. Smoke seed germination studies and a guide to seed propagation of plants from the major families of the Cape Floristic Region, South Africa. S. Afri. J. Bot. 70: 559–581.
  • Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J. G., Vendramin, G. G., Verdú, M., and González-Martínez, S. C. 2014. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster). New Phytol. 201: 230–241. doi:10.1111/nph.12483
  • Buma, B., Brown, C. D., Donato, D. C., Fontaine, J. B., and Johnstone, J. F. 2013. The impacts of changing disturbance regimes on serotinous plant populations and communities. Bio Science 63: 866–876.
  • Calvo, L., Hernández, V., Valbuena, L., and Taboada, A. 2016. Provenance and seed mass determine seed tolerance to high temperatures associated to forest fires in Pinus pinaster. Ann. For. Sci. 73: 381–391. doi:10.1007/s13595-015-0527-0
  • Castellanos, M. C., González-Martínez, S. C., and Pausas, J. G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24: 5633–5642. doi:10.1111/mec.13421
  • Causley, C. L., Fowler, W. M., Lamont, B. B., and He, T. 2016. Fitness benefits of serotiny in fire- and drought-prone environments. Plant Ecol. 217: 773–779. doi:10.1007/s11258-015-0552-y
  • Clarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., and Knox, K. J. E. 2013 . Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197: 19–35. doi:10.1111/nph.12001
  • Cowling, R. M., and Lamont, B. B. 1987. Post-fire recruitment of four co-occurring Banksia species. J. Appl. Ecol. 24: 645–658. doi:10.2307/2403899
  • Cowling, R. M., and Lamont, B. 1985a. Variation in serotiny of three Banksia spp. along a climatic gradient. Austral Ecol. 10: 345–350. doi:10.1111/j.1442-9993.1985.tb00895.x
  • Cowling, R. M., and Lamont, B. 1985b. Seed release in Banksia: the role of wet-dry cycles. Austral Ecol. 10: 169–171. doi:10.1111/j.1442-9993.1985.tb00878.x
  • Cramer, M. D., and Midgley, J. J. 2009. Maintenance costs of serotiny do not explain weak serotiny. Austral Ecol. 34: 653–662. doi:10.1111/j.1442-9993.2009.01971.x
  • Crawford, A. D., Plummer, J. A., Probert, R. J., and Steadman, K. J. 2011. The influence of cone age on the relative longevity of Banksia seeds. Ann. Bot. 107: 303–309. doi:10.1093/aob/mcq236
  • Crisp, M. D., Cook, L. G., Bowman, D. M., Cosgrove, M., Isagi, Y., and Sakaguchi, S. 2019 . Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification. New Phytol. 221: 2308–2319. doi:10.1111/nph.15561
  • Daskalakou, E. N., and Thanos, C. A. 1996. Aleppo pine (Pinus halepensis) postfire regeneration: the role of canopy and soil seed banks. Int. J. Wildland Fire 6: 59–66. doi:10.1071/WF9960059
  • de Gouvenain, R. C., Midgley, J. J., and Merow, C. 2019. Serotiny in the South African shrub Protea repens is associated with gradients of precipitation, temperature, and fire intensity. Plant Ecol. 220: 97–109. doi:10.1007/s11258-018-00905-w
  • dos Santos, P., Matias, H., Deus, E., Águas, A., and Silva, J. S. 2015. Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecol. 216: 1611–1621. doi:10.1007/s11258-015-0544-y
  • Elliott, P. F. 1974. Evolutionary responses of plants to seed-eaters: pine squirrel predation on Lodgepole pine. Evolution 28: 221–231. doi:10.2307/2407323
  • Enright, N. J., and Lamont, B. B. 1992. Recruitment variability in the resprouting shrub Banksia attenuata and non-sprouting congeners in the northern sandplain heaths of south-western Australia. Acta Oecologica 13: 727–741.
  • Enright, N. J., and Lamont, B. B. 2006. Fire temperatures and follicle-opening requirements in ten Banksia species. Australian Journal of Ecol. 14: 107–113. doi:10.1111/j.1442-9993.1989.tb01012.x
  • Enright, N. J., Mosner, E., Miller, B. P., Johnson, N., and Lamont, B. B. 2007. Soil vs. canopy seed storage and plant species coexistence in species-rich Australian shrublands. Ecol. 88: 2292–2304. doi:10.1890/06-1343.1
  • Enright, N. J., Fontaine, J. B., Lamont, B. B., Miller, B. P., and Westcott, V. C. 2014. Resistance and resilience to changing climate and fire regime depend on plant functional traits. J. Ecol. 102: 1572–1581. doi:10.1111/1365-2745.12306
  • Enright, N. J., Marsula, R., Lamont, B. B., and Wissel, C. 1998a. The ecological significance of canopy seed storage in fire-prone environments: a model for nonsprouting shrubs. J. Ecol. 86: 946–959. doi:10.1046/j.1365-2745.1998.00312.x
  • Enright, N. J., Marsula, R., Lamont, B. B., and Wissel, C. 1998b. The ecological significance of canopy seed storage in fire-prone environments: a model for resprouting shrubs. J. Ecol. 86: 960–973. doi:10.1046/j.1365-2745.1998.00311.x
  • Esler, K., Jacobsen, A. J., and Pratt, R. B. 2018. The Biology of Mediterranean Type Ecosystems. Oxford University Press, Oxford, UK.
  • Feduck, M., Henry, P., Winder, R., Dunn, D., Alfaro, R. I., and Hawkes, B. 2015. The genetic basis of cone serotiny in Pinus contorta as a function of mixed-severity and stand-replacement fire regimes. BioRxiv. doi:10.1101/023267
  • Gauthier, S., Bergeron, Y., and Simon, J. P. 1996. Effects of fire regime on the serotiny level of jack pine. J. Ecol. 84: 539–548. doi:10.2307/2261476
  • George, A. S. 1981. The genus Banksia L.f. (Proteaceae). Nuytsia 3: 239–473.
  • Givnish, T. J. 1981. Serotiny, geography, and fire in the pine barrens of New Jersey. Evolution 35: 101–123. doi:10.1111/j.1558-5646.1981.tb04862.x
  • Goubitz, S., Werger, M. J. A., and Ne’eman, G. 2003. Germination response to fire-related factors of seeds from nonserotinous and serotinous cones. Plant Ecol. 169: 195–204. doi:10.1023/A:1026036332277
  • Goubitz, S., Nathan, R., Roitemberg, R., Shmida, A., and Ne’eman, G. 2004. Canopy seed bank structure in relation to: fire, tree size and density. Plant Ecol. 173: 191–201. doi:10.1023/B:VEGE.0000029324.40801.74
  • Groom, P. K., and Lamont, B. B. 1997. Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecol. 22: 352–355. doi:10.1111/j.1442-9993.1997.tb00682.x
  • Groom, P. K., and Lamont, B. B. 2010. Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant Soil 334: 61–72. doi:10.1007/s11104-009-0135-6
  • Groom, P. K., and Lamont, B. B. 2011. Regional and local effects on reproductive allocation in epicormic and lignotuberous populations of Banksia menziesii. Plant Ecol. 212: 2003–2011. doi:10.1007/s11258-011-9935-x
  • Groom, P. K., and Lamont, B. B. 2015. Plant Life of Southwestern Australia: Adaptations for Survival. De Gruyter Open, Warsaw, Poland.
  • Habrouk, A., Retana, J., and Espelta, J. M. 1999. Role of heat tolerance and cone protection of seeds in the response of three pine species to wildfires. Plant Ecol. 145: 91–99. doi:10.1023/A:1009851614885
  • Hanley, M. E., and Lamont, B. B. 2000. Heat pre-treatment and the germination of soil- and canopy-stored seeds of Western Australian species. Acta Oecologica 21: 315–321. doi:10.1016/S1146-609X(00)01087-0
  • Hanley, M. E., and Lamont, B. B. 2001. Herbivory, serotiny and seedling defence in Western Australian Proteaceae. Oecologia 126: 409–417. doi:10.1007/s004420000538
  • Hanley, M. E., Lamont, B. B., and Armbruster, S. W. 2009 . Pollination and plant defence traits co-vary in Western Australian Hakeas. New Phytol. 182: 251–260. doi:10.1111/j.1469-8137.2008.02709.x
  • Harris, W. 2002. Variation of inherent seed capsule splitting in populations of Leptospermum scoparium (Myrtaceae) in New Zealand. NZ J. Botan. 40: 405–417. doi:10.1080/0028825X.2002.9512802
  • He, T., Belcher, C. M., Lamont, B. B., and Lim, S. L. 2016. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104: 352–363. doi:10.1111/1365-2745.12513
  • He, T., Lamont, B. B., and Downes, K. S. 2011. Banksia born to burn. New Phytol. 191: 184–196. doi:10.1111/j.1469-8137.2011.03663.x
  • He, T., and Lamont, B. B. 2018. Fire as a potent mutagenic agent among plants. Crit. Rev. Plant Sci. 37: 1–14. doi:10.1080/07352689.2018.1453981
  • He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W., and Lamont, B. B. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751–759. doi:10.1111/j.1469-8137.2012.04079.x
  • Heinselman, M. L., 1981. Fire and succession in the conifer forests of northern North America. In Forest Succession; West, D. C., Shugart, H. H., and Botkin, D. B., Eds. Springer: New York, NY, pp 374–405.
  • Hernández-Serrano, A., Verdú, M., González-Martínez, S. C., and Pausas, J. G. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349–2356. doi:10.3732/ajb.1300182
  • Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S. C., and Pausas, J. G. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Ann. Bot. 114: 571–577. doi:10.1093/aob/mcu142
  • Herrera, C. M. 2017. The ecology of subindividual variability in plants: patterns, processes, and prospects. Web Ecol. 17: 51–64. doi:10.5194/we-17-51-2017
  • Hudson, A. R., Ayre, D. J., and Ooi, M. K. 2015. Physical dormancy in a changing climate. Seed Sci. Res. 25: 66–81. doi:10.1017/S0960258514000403
  • Huss, J. C., Fratzl, P., Dunlop, J. W., Merritt, D. J., Miller, B. P., and Eder, M. 2019. Protecting offspring against fire: lessons from Banksia seed pods. Front. Plant Sci. 10: 283. doi:10.3389/fpls.2019.00283
  • Huss, J. C., Schoeppler, V., Merritt, D. J., Best, C., Maire, E., Adrien, J., Spaeker, O., Janssen, N., Gladisch, J., Gierlinger, N., Miller, B. P., Fratzl, P., and Eder, M. 2018. Climate-dependent heat-triggered opening mechanism of Banksia seed pods. Adv. Sci. 5: 1700572. doi:10.1002/advs.201700572
  • Judd, T. 1994. Do small myrtaceous seed-capsules displayspecialized insulating characteristics which protect seed during fire? Ann. Bot. 73: 33–38. doi:10.1006/anbo.1994.1004
  • Keeley, J. E., Fotheringham, C. J., and Morais, M. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284: 1829–1832. doi:10.1126/science.284.5421.1829
  • Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., and Bradstock, R. A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406–411. doi:10.1016/j.tplants.2011.04.002
  • Keeley, J. E., and Zedler, P. H. 1998. Evolution of life histories in Pinus. In Ecology and Biogeography of Pinus; Richardson, D. M., Ed. Cambridge University Press: Cambridge, UK.
  • Krauss, S. L., He, T., Barrett, L. G., Lamont, B. B., Enright, N. J., Miller, B. P., and Hanley, M. E. 2009. Contrasting impacts of pollen and seed dispersal on spatial genetic structure in the bird-pollinated Banksia hookeriana. Heredity. 102: 274–285. doi:10.1038/hdy.2008.118
  • Ladd, P. G., Midgley, J. J., and Nield, A. P. 2013. Serotiny in southern hemisphere conifers. Aust. J. Bot. 61: 486–496. doi:10.1071/BT13150
  • Lamont, B. B. 1988. Sexual versus vegetative reproduction in Banksia elegans. Botanical Gazette 149: 370–375. doi:10.1086/337728
  • Lamont, B. B. 1991. Canopy seed storage and release: what’s in a name? Oikos 60: 266–268. doi:10.2307/3544876
  • Lamont, B. B. 2020. Evaluation of seven indices of on-plant seed storage (serotiny) shows that the linear slope is best. J. Ecol. 108.
  • Lamont, B. B., and Barker, M. J. 1988. Seed bank dynamics of a serotinous, fire-sensitive Banksia species. Aust. J. Bot. 36: 193–203. doi:10.1071/BT9880193
  • Lamont, B. B., Connell, S., and Bergl, S. M. 1991. Seed support and population dynamics of Banksia cuneata: the role of time, fire and moisture. Bot. Gaz. 152: 114–122. doi:10.1086/337870
  • Lamont, B. B., and Cowling, R. M. 1984. Flammable infructescences in Banksia: a fruit-opening mechanism. Austral Ecol. 9: 295–296. doi:10.1111/j.1442-9993.1984.tb01366.x
  • Lamont, B. B., El-Ahmir, S. M., Lim, S. L., Groom, P. K., and He, T. 2017. Contribution of transition and stabilization processes to speciation is a function of the ancestral trait state and selective environment in Hakea. BioRxiv doi:10.1101/207373
  • Lamont, B. B., and Enright, N. J. 2000. Adaptive advantages of aerial seed supports. Plant Species Biol. 15: 157–166. doi:10.1046/j.1442-1984.2000.00036.x
  • Lamont, B. B., Enright, N. J., Witkowski, E. T. F., and Groeneveld, J. 2007. Conservation biology of banksias: insights from natural history to simulation modelling. Aust. J. Bot. 55: 280–292. doi:10.1071/BT06024
  • Lamont, B. B., and Groom, P. K. 2013. Seeds as a source of carbon, nitrogen, and phosphorus for seedling establishment in temperate regions: a synthesis. Am. J. Plant Sci. 04: 30–40. doi:10.4236/ajps.2013.45A005
  • Lamont, B. B., and Groom, P. K. 1998. Seed and seedling biology of the woody-fruited Proteaceae. Aust. J. Bot. 46: 387–406. doi:10.1071/BT96135
  • Lamont, B. B., Hanley, M. E., Groom, P. K., and He, T. 2016. Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defence in Hakea. Perspectives in Plant Ecol. Evol. System. 21: 55–77. doi:10.1016/j.ppees.2016.05.002
  • Lamont, B. B., and He, T. 2012 . Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous. BMC Evol. Biol. 12: 223. doi:10.1186/1471-2148-12-223
  • Lamont, B. B., and He, T. 2017. When did a Mediterranean-type climate originate in southwestern Australia? Global Planet Change 156: 46–58. doi:10.1016/j.gloplacha.2017.08.004
  • Lamont, B. B., He, T., and Downes, K. S. 2013. Adaptive responses to directional trait selection in the Miocene enabled Cape proteas to colonize the savanna grasslands. Evol. Ecol. 27: 1099–1115. doi:10.1007/s10682-013-9645-z
  • Lamont, B. B., He, T. and Lim, S. L. 2016. Hakea, the world’s most sclerophyllous genus, arose in southwest Australian heathland and diversified throughout Australia over the last 12 million years. Aust. J. Bot. 64: 77–88. doi:10.1071/BT15134
  • Lamont, B. B., He, T. and Pausas, J. G. 2017. African geoxyles evolved in response to fire, frost came later. Evol. Ecol. 31: 603–617. doi:10.1007/s10682-017-9905-4
  • Lamont, B. B., He, T., and Yan, Z. 2019a. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. Camb. Philos. Soc. 94: 903–928. doi:10.1111/brv.12483
  • Lamont, B. B., He, T., and Yan, Z. 2019b. Fire as a pre-emptive evolutionary trigger among seed plants. Perspectives in Plant Ecol., Evolution and Systematics 36: 13–23. doi:10.1016/j.ppees.2018.12.001
  • Lamont, B. B., Klinkhamer, P. G., and Witkowski, E. T. F. 1993. Population fragmentation may reduce fertility to zero in Banksia goodii – a demonstration of the Allee effect. Oecologia 94: 446–450. doi:10.1007/BF00317122
  • Lamont, B. B., Le Maitre, D., Cowling, R. M., and Enright, N. J. 1991. Canopy seed storage in woody plants. Bot. Rev. 57: 277–317. doi:10.1007/BF02858770
  • Lamont, B. B., Marsula, R., Enright, N. J., and Witkowski, E. T. F. 2001. Conservation requirements of an exploited wildflower: modelling the effects of growing conditions, plant age and picking intensity. Biol. Conserv. 99: 157–168. doi:10.1016/S0006-3207(00)00164-6
  • Lamont, B. B., Rees, R., Witkowski, E. T. F., and Whitten, V. 1994. Comparative size, fecundity and ecophysiology of roadside plants of Banksia hookeriana. J. Appl. Ecol. 31: 137–144. doi:10.2307/2404606
  • Lamont, B. B., Whitten, V. A., Witkowski, E. T. F., Rees, R. G., and Enright, N. J. 1994. Regional and local (road verge) effects on size and fecundity in Banksia menziesii. Australian Journal of Ecol. 19: 197–205. doi:10.1111/j.1442-9993.1994.tb00483.x
  • Lamont, B. B., and Wiens, D. 2003. Are seed set and speciation always low among species that resprout after fire, and why? Evolutionary Ecol. 17: 277–292. doi:10.1023/A:1025535223021
  • Lamont, B. B., and Witkowski, E. T. F. 1995. A test for lottery recruitment among four Banksia species based on their demography and biological attributes. Oecologia 101: 299–308. doi:10.1007/BF00328815
  • Lamont, B. B., Witkowski, E. T. F., and Enright, N. J. 1993. Post-fire litter microsites: safe for seeds, unsafe for seedlings. Ecol. 74: 501–512. doi:10.2307/1939311
  • Ledig, F. T., and Little, S. 1979. Pitch pine (Pinus rigida Mill.): ecology, physiology, and genetics. Pages 347-371. in R. T. Forman, editor. Pine Barrens: Ecosystems and Landscape. Academic Press, New York.
  • Lev-Yadun, S., and Ne’eman, G. 2013. Bimodal colour pattern of individual Pinus halepensis Mill. seeds: a new type of crypsis. Biol. J. Linn. Soc. Lond. 109: 271–278. doi:10.1111/bij.12047
  • Li, R., Chen, L., Wu, Y., Zhang, R., Baskin, C. C., Baskin, J. M., and Hu, X. 2017. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Front. Plant Sci. 8: 1411. doi:10.3389/fpls.2017.01411
  • Lind, M. I., and Spagopoulou, F. 2018. Evolutionary consequences of epigenetic inheritance. Heredity. 121: 205–209. doi:10.1038/s41437-018-0113-y
  • Long, R. L., Gorecki, M. J., Renton, M., Scott, J. K., Colville, L., Goggin, D. E., Commander, L. E., Westcott, D. A., Cherry, H., and Finch-Savage, W. E. 2015. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 90: 31–59. doi:10.1111/brv.12095
  • Lovreglio, R., Salvatore, R., Giaquinto, P., and Leone, V. 2007. Thermal treatments and germination response over time of seeds from serotinous and non serotinous cones of Pinus halepensis Mill. In Proceedings of the International Workshop MEDPINE 3: Conservation, Regeneration and Restoration of Mediterranean Pines and Their Ecosystems. Leone, V. and Lovreglio, R., Eds. CIHEAM: Bari, Italy. pp 155–166.
  • Lowe, G. D. 2013. Geologic History of the Giant Sequoia and the Coast Redwood. (NARG Special Publication No. 1, Second printing, revised.) North America Research Group (Paleontology), Beaverton, OR.
  • Martínez-Berdeja, A., Ezcurra, E., and Torres, M. 2015. Morphological variability in propagules of a desert annual as a function of rainfall patterns at different temporal and spatial scales. Funct. Ecol. 29: 1260–1267. doi:10.1111/1365-2435.12437
  • Martín-Sanz, R. C., Santos-del-Blanco, L., Notivol, E., Chambel, M. R., San-Martín, R., and Climent, J. 2016. Disentangling plasticity of serotiny, a key adaptive trait in a Mediterranean conifer. Am. J. Bot. 103: 1582–1591. doi:10.3732/ajb.1600199
  • Merwin, L., He, T., Lamont, B. B., Enright, N. J., and Krauss, S. L. 2012. Low rate of between-population seed dispersal restricts genetic connectivity and metapopulation dynamics in a clonal shrub. PLoS One 7: e50974. doi:10.1371/journal.pone.0050974
  • Midgley, J. J. in press. Cryptic serotinous Proteaceae seeds reduce detection by avian predators on post-fire soils. Funct. Ecol.
  • Midgley, J. J., Cowling, R. M., and Lamont, B. B. 1991. Relationship of follicle size and seed size in Hakea (Proteaceae); isometry, allometry and adaptation. S Afr. J. Bot. 57: 107–110. doi:10.1016/S0254-6299(16)30968-1
  • Moya, D., Espelta, J., Lopez-Serrano, F., Eugenio, M., and Heras, J. D. 2008. Natural post-fire dynamics and serotiny in 10-year-old Pinus halepensis Mill. stands along a geographic gradient. Int. J. Wildland Fire 17: 287–292. doi:10.1071/WF06121
  • Nathan, R., Safriel, U. N., Noy-Meir, I., and Schiller, G. 1999. Seed release without fire in Pinus halepensis, a Mediterranean serotinous wind-dispersed tree. J. Ecol. 87: 659–669. doi:10.1046/j.1365-2745.1999.00382.x
  • Ne’eman, G., Goubitz, S., and Nathan, R. 2004. Reproductive traits of Pinus halepensis in the light of fire – a critical review. Plant Ecol. 171: 69–79. doi:10.1023/B:VEGE.0000029380.04821.99
  • Nock, C. J., Baten, A., Barkla, B. J., Furtado, A., Henry, R. J., and King, G. J. 2016. Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae). BMC Genomics. 17: 937. doi:10.1186/s12864-016-3272-3
  • Pachauri, R. K., and Meyer, L. A. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p 151.
  • Pannell, J. R., and Myerscough, P. J. 1993. Canopy-stored seed supports of Allocasuarina distyla and A. nana in relation to time since fire. Aust. J. Bot. 41: 1–9. doi:10.1071/BT9930001
  • Parchman, T. L., Gompert, Z., Mudge, J., Schilkey, F. D., Benkman, C. W., and Buerkle, C. A. 2012. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 21: 2991–3005. doi:10.1111/j.1365-294X.2012.05513.x
  • Parmesan, C., and Hanley, M. E. 2015. Plants and climate change: complexities and surprises. Ann. Bot. 116: 849–864. doi:10.1093/aob/mcv169
  • Pausas, J. G. 2004. Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin). Climate Change 63: 337–350. doi:10.1023/B:CLIM.0000018508.94901.9c
  • Pausas, J. G. 2015a. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318–324. doi:10.1016/j.tplants.2015.03.001
  • Pausas, J. G. 2015b. Bark thickness and fire regime. Funct. Ecol. 29: 315–327. doi:10.1111/1365-2435.12372
  • Pausas, J. G., Bradstock, R. A., Keith, D. A., and Keeley, J. E. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085–1100. doi:10.1890/02-4094
  • Pausas, J. G., and Keeley, J. E. 2014 . Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 204: 55–65. doi:10.1111/nph.12921
  • Pausas, J. G., and Lamont, B. B. 2018. Ecology and biogeography in 3D: the case of the Australian Proteaceae. J. Biogeogr. 45: 1469–1477. doi:10.1111/jbi.13348
  • Pausas, J. G., Lamont, B. B., Paula, S., Appezzato-da-Glória, B., and Fidelis, A. 2018 . Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217: 1435–1448. doi:10.1111/nph.14982
  • Raffaele, E., Nuñez, M. A., Eneström, J., and Blackhall, M. 2016. Fire as mediator of pine invasion: evidence from Patagonia. Biol. Invasions 18: 597–601. doi:10.1007/s10530-015-1038-5
  • Rebelo, G., and Holmes, P. M. 1988. Commercial exploitation of Brunia albiflora (Brunaceae) in South Africa. Biol. Conserv. 45: 195–207. doi:10.1016/0006-3207(88)90139-5
  • Rebelo, T. 2001. Proteas: A Field Guide to the Proteas of Southern Africa, 2nd ed. Fernwood Press, Cape Town, South Africa.
  • Regan, H. M., Crookston, J. B., Swab, R., Franklin, J., and Lawson, D. M. 2010 . Habitat fragmentation and altered fire regime create trade-offs for an obligate seeding shrub. Ecology 91: 1114–1123. doi:10.1890/09-0287.1
  • Salvatore, R., Moya, D., Pulido, L., Lovreglio, R., López-Serrano, F. R., De las Heras, J., and Leone, V. 2010. Advances on anatomy and morphology of Aleppo pine serotinous seeds. New For. 39: 329–341. doi:10.1007/s11056-009-9174-3
  • Santini, B. A., and Martorell, C. 2013. Does retained-seed priming drive the evolution of serotiny in drylands? An assessment using the cactus Mammillaria hernandezii. Am. J. Bot. 100: 365–373. doi:10.3732/ajb.1200106
  • Saracino, A., D’Alessandro, C. M., and Borghetti, M. 2004. Seed colour and post-fire bird predation in a Mediterranean pine forest. Acta Oecologica 26: 191–196. doi:10.1016/j.actao.2004.05.002
  • Saracino, A., Pacella, R., Leone, V., and Borghetti, M. 1997. Seed dispersal and changing seed characteristics in a Pinus halepensis Mill. forest after fire. Plant Ecol. 130: 13–19. doi:10.1023/A:1009765129920
  • Schwilk, D. W., and Ackerly, D. D. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94: 326–336. doi:10.1034/j.1600-0706.2001.940213.x
  • Siepielski, A. M., and Benkman, C. W. 2004. Interactions among moths, crossbills, squirrels, and Lodgepole pine in a geographic selection mosaic. Evolution 58: 95–101. doi:10.1111/j.0014-3820.2004.tb01576.x
  • Silva, G. H., José, A. C., Faria, J. M. R., and Pereira, W. V. S. 2017. Aspects of Peltophorum dubium Sprengel (Taubert) seeds in an aerial seed bank. J. Seed Sci. 39: 32–40. doi:10.1590/2317-1545v39n1168605
  • Susko, D. J., and Lovett-Doust, L. 2000. Patterns of seed mass variation and their effects on seedling traits in Alliaria petiolata. Am. J. Bot. 87: 56–66. doi:10.2307/2656685
  • Syphard, A. D., Clarke, K. C., and Franklin, J. 2007. Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecol. 22: 431–445. doi:10.1007/s10980-006-9025-y
  • Talluto, M. V., and Benkman, C. W. 2013. Landscape-scale eco-evolutionary dynamics: selection by seed predators and fire determine a major reproductive strategy. Ecology 94: 1307–1316. doi:10.1890/12-2058.1
  • Talluto, M. V., and Benkman, C. W. 2014. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer. Proc. Natl. Acad. Sci. USA. 111: 9543–9548. doi:10.1073/pnas.1400944111
  • Tangney, R., Merritt, D. J., Fontaine, J. B., and Miller, B. P. 2019. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. J. Ecol. 107: 1093–1105. doi:10.1111/1365-2745.13095
  • Tapias, R., Gil, L., Fuentes-Utrilla, P., and Pardos, J. A. 2001. Canopy seed banks in Mediterranean pines of southeastern Spain: a comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J. Ecol. 89: 629–638. doi:10.1046/j.1365-2745.2001.00575.x
  • Teich, A.H. 1970. Cone serotiny and inbreeding in natural populations of Pinus Banksiana and Pinus contorta. Can. J. Bot. 48: 1805–1809. doi:10.1139/b70-265
  • Tonnabel, J., Van Dooren, T. J., Midgley, J., Haccou, P., Mignot, A., Ronce, O., and Olivieri, I. 2012. Optimal resource allocation in a serotinous non-resprouting plant species under different fire regimes. J. Ecol. 100: 1464–1474. doi:10.1111/j.1365-2745.2012.02023.x
  • Treurnicht, M. 2017. Spatial variation in sensitivity of serotinous Proteaceae to wildflower harvesting inferred from large-scale demographic data in the Cape Floristic Region. Proceedings Fynbos Forum, University of Cape Town, Cape Town, South Africa.
  • Treurnicht, M., Pagel, J., Esler, K. J., Schutte-Vlok, A., Nottebrock, H., Kraaij, T., Rebelo, A. G., and Schurr, F. M. 2016. Environmental drivers of demographic variation across the global geographical range of 26 plant species. J. Ecol. 104: 331–342. doi:10.1111/1365-2745.12508
  • Van Deventer, G., Bek, D., and Ashwell, A. 2016. Field Guide for Wild Flower Harvesting. Coventry University Press, Coventry, UK. doi:10.13140/RG.2.1.4654.4248
  • Vincenzi, S., and Piotti, A. 2014. Evolution of serotiny in maritime pine (Pinus pinaster) in the light of increasing frequency of fires. Plant Ecol. 215: 689–701. doi:10.1007/s11258-014-0342-y
  • White, N. E., Phillips, M. J., Gilbert, M. T. P., Alfaro-Núñez, A., Willerslev, E. E., Mawson, P. R., Spencer, P. B. S., and Bunce, M. 2011. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Mol. Phylogenet. Evol. 59: 615–622. doi:10.1016/j.ympev.2011.03.011
  • Zachos, J. C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283. doi:10.1038/nature06588
  • Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., Hemmings, F., Leishman, M. R., Oleksyn, J., Soltis, P. S., Swenson, N. G., Warman, L., and Beaulieu, J. M. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89–92. doi:10.1038/nature12872

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.