249
Views
0
CrossRef citations to date
0
Altmetric
Articles

An Overview of Carbon Sequestration in Agricultural Soils of Latin America and the Caribbean

ORCID Icon, ORCID Icon, , , &

References

  • Alba Mejía, J. E. 2015. Grasslands of South America. Investice do rozvoje Vzedavani. Ministerstvo školství, mládeže a tělovýchovy. Operační program Vzdělávání pro konkurenceschopnost, The Nature Conservancy. The European Social Fund, European Union.
  • Altieri, M. A., and Toledo, V. M. 2011. The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants. J. Peasant Stud. 38: 587–612.
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A.-K., Müller, C., Naresh Kumar, S., Nendel, C., O’Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Change. 5: 143–147.
  • Astier, M., Maass, J. M., Etchevers-Barra, J. D., Peña, J. J., and González, F. D. L. 2006. Short-term green manure and tillage management effects on maize yield and soil quality in an Andisol. Soil Tillage Res. 88: 153–159.
  • Bardgett, R. D., Freeman, C., and Ostle, N. J. 2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2: 805–814.
  • Batjes, N. H. 2000. Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South America. Geoderma 97: 135–144.
  • Benítez, P. C., and Obersteiner, M. 2006. Site identification for carbon sequestration in Latin America: A grid-based economic approach. For. Policy Econ. 8: 636–651.
  • Bravo-Medina, C., Marín, H., Marrero-Labrador, P., Ruiz, M. E., Torres-Navarrete, B., Navarrete-Alvarado, H., Durazno-Alvarado, G., and Changoluisa-Vargas, D. 2017. Evaluación de la sustentabilidad mediante indicadores en unidades de producción de la provincia de Napo. Amazonia Ecuatoriana. Bioagro. 29: 23–36.
  • Brunel, N., Meza, F., Ros, R., and Santibáñez, F. 2011. Effects of topsoil loss on wheat productivity in dryland zones of Chile. J. Soil Sci. Plant Nutr. 11: 129–137.
  • Buschiazzo, D. E., Panigatti, J. L., and Unger, P. W. 1998. Tillage effects on soil properties and crop production in the subhumid and semiarid Argentinean Pampas. Soil Tillage Res. 49: 105–116.
  • Bustamente, M. M. C., Corbeels, M., Scopel, E., and Roscoe, R. 2006. Soil carbon and sequestration potential in the Cerrado Region of Brazil. In Carbon Sequestration in Soils of Latin America; Lal, R., Cerri, C.C., Bernoux, M., Etchevers, J. and Cerri, C. E. P. New York: Haworth, pp 285–304.
  • Carvalho, J. L. N., Cerri, C. E. P., Feigl, B. J., Píccolo, M. C., Godinho, V. P., and Cerri, C. C. 2009. Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil Tillage Res. 103: 342–349.
  • Carvalho, J. L. N., Raucci, G. S., Cerri, C. E. P., Bernoux, M., Feigl, B. J., Wruck, F. J., and Cerri, C. C. 2010. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Tillage Res. 110: 175–186.
  • Cassman, K. G., Dobermann, A., and Walters, D. T. 2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO A J. Hum. Environ. 31: 132–140.
  • Cerri, C. E. P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M., Falloon, P., Powlson, D. S., Batjes, N. H., Milne, E., and Cerri, C. C. 2007. Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agric. Ecosyst. Environ. 122: 58–72.
  • CONAFOR. 2022. Inventario Nacional Forestal y de Suelos. https://snmf.cnf.gob.mx/infys/
  • Cotler, H., Martínez, M., and Etchevers, J. D. 2016. Carbono orgánico en suelos agrícolas de México: Investigación y políticas públicas. Terra Latinoam 34: 125–138.
  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19: 988–995.
  • Delgado, R., Eguino, H., and Lopes, A. 2021. Fiscal Policy and Climate Change: Recent Experiences of Finance Ministries in Latin America and the Caribbean.
  • Desbureaux, S., and Rodella, A.-S. 2019. Drought in the city: the economic impact of water scarcity in Latin American metropolitan areas. World Dev. 114: 13–27.
  • Díaz-Zorita, M., Buschiazzo, D. E., and Peinemann, N. 1999. Soil organic matter and wheat productivity in the semiarid Argentine Pampas. Agron. J. 91: 276–279.
  • Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J., and Loucks, C. J. 2014. Distribution mapping of world grassland types. J. Biogeogr. 41: 2003–2019.
  • Dogliotti, S., García, M. C., Peluffo, S., Dieste, J. P., Pedemonte, A. J., Bacigalupe, G. F., Scarlato, M., Alliaume, F., Alvarez, J., Chiappe, M., and Rossing, W. A. H. 2014. Co-innovation of family farm systems: a systems approach to sustainable agriculture. Agric. Syst 126: 76–86.
  • Eitzinger, A., Läderach, P., Rodriguez, B., Fisher, M., Beebe, S., Sonder, K., and Schmidt, A. 2017. Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model. Mitig. Adapt. Strateg. Glob. Chang. 22: 743–760.
  • FAO. 2007. The World Mangroves 1985–2005. Rome: FAO.
  • FAO. 2011. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) – Managing Systems at Risk. Rome: FAO.
  • FAO. 2019. World Fertilizer Trends and Outlook to 2022. Rome: FAO.
  • FAOSTAT. 2019. Land use indicators. https://www.fao.org/faostat/en/#search/FOREST.
  • Farage, P. K., Ardö, J., Olsson, L., Rienzi, E. A., Ball, A. S., and Pretty, J. N. 2007. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: a modelling approach. Soil Tillage Res. 94: 457–472.
  • Fierros-González, I., and López-Feldman, A. 2021. Farmers’ perception of climate change: a review of the literature for Latin America. Front. Environ. Sci. 9: 205.
  • Follett, R. F., Castellanos, J. Z., and Buenger, E. D. 2005. Carbon dynamics and sequestration in an irrigated Vertisol in Central Mexico. Soil Tillage Res. 83: 148–158.
  • Freibauer, A., Rounsevell, M. D. A., Smith, P., and Verhagen, J. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma 122: 1–23.
  • Gardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz Gaistardo, C., Encina Rojas, A., Jones, A., Krasilnikov, P., Mendonça Santos Brefin, M. L., and Montanarella, L. 2015. Soil atlas of Latin America and the Caribbean. Luxemburg: Publications Office of the European Union.
  • GCI 2021. Global Status of CCS 2021. https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Report_Global_CCS_Institute.pdf.
  • Geisseler, D., Lazicki, P. A., and Scow, K. M. 2016. Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Appl. Soil Ecol. 106: 1–10.
  • Govaerts, B., Sayre, K. D., and Deckers, J. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 87: 163–174.
  • Grottera, C., Pereira, A. O., and Rovere, E. L. L. 2017. Impacts of carbon pricing on income inequality in Brazil. Clim. Dev. 9: 80–93.
  • Groves, D. G., Syme, J., Molina-Pérez, E., Calvo, C., VíctorGallardo, L., Godinez, G., Quirós-Tortos, J., De León, F., Meza Murillo, A., Saavedra Gómez, V., and Vogt-Schilb, A. 2020. The Benefits and Costs of DEcarbonizing Costa Rica’s Economy: Informing the Implementation of Costa Rica’s National Decarbonization Plan under Uncertainty Costa Rica. Inter-American Development Bank.
  • Haldevang, M. D. 2021. Bloomberg US edition. https://www.bloomberg.com/news/features/2021-03-08/a-tree-planting-program-in-mexico-may-encourage-deforestation.
  • Hamidov, A., Helming, K., Bellocchi, G., Bojar, W., Dalgaard, T., Ghaley, B. B., Hoffmann, C., Holman, I., Holzkämper, A., Krzeminska, D., Kværnø, S. H., Lehtonen, H., Niedrist, G., Øygarden, L., Reidsma, P., Roggero, P. P., Rusu, T., Santos, C., Seddaiu, G., Skarbøvik, E., Ventrella, D., Żarski, J., and Schönhart, M. 2018. Impacts of climate change adaptation options on soil functions: a review of European case-studies. Land Degrad. Dev. 29: 2378–2389.
  • Hepburn, C., Adlen, E., Beddington, J., Carter, E.A., Fuss, S., Dowell, N. M., Minx, J.C., Smith, P., and Williams, C.K. 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575: 87–97.
  • Hu, Y., Zheng, Q., Zhang, S., Noll, L., and Wanek, W. 2018. Significant release and microbial utilization of amino sugars and d-amino acid enantiomers from microbial cell wall decomposition in soils. Soil Biol. Biochem. 123: 115–125.
  • IFA 2020. Fertilizer Outlook 2020 –2024. Paris: IFA.
  • Irizar, A. B., Milesi Delaye, L. A., and Andriulo, A. E. 2015. Projection of Soil Organic Carbon Reserves in the Argentine Rolling Pampa Under Different Agronomic Scenarios. Relationship of These Reserves With Some Soil Properties. Open Agric. J. 9: 30–41.
  • Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F. 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8: 593–599.
  • Jonathan, S., Tomislav, H., and J, F.G. 2017. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. 114: 9575–9580.
  • Junguo, L., Liangzhi, Y., Manouchehr, A., Michael, O., Mario, H. B. Z.A.J., and Hong, Y. 2010. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. 107: 8035–8040.
  • Kanyenji, G. M., Oluoch-Kosura, W., Onyango, C. M., and Ng’ang’a, S. K. 2020. Prospects and constraints in smallholder farmers’ adoption of multiple soil carbon enhancing practices in Western Kenya. Heliyon 6: e03226.
  • Kim, D.-G., Grieco, E., Bombelli, A., Hickman, J.E., and Sanz-Cobena, A. 2021. Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review. Food Sec. 13: 457–476.
  • Kochsiek, A.E., Knops, J.M.H., Walters, D.T., and Arkebauer, T.J. 2009. Impacts of management on decomposition and the litter-carbon balance in irrigated and rainfed no-till agricultural systems. Agric. For. Meteorol. 149: 1983–1993.
  • Kögel-Knabner, I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34: 139–162.
  • Kragt, M.E., Pannell, D.J., Robertson, M.J., and Thamo, T. 2012. Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia. Agric. Syst. 112: 27–37.
  • Lal, R. 2007. Carbon management in agricultural soils. Mitig. Adapt. Strat. Glob. Change 12: 303–322.
  • Lal, R. 2008. Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr. Cycl. Agroecosyst. 81: 113–127.
  • Lal, R. 2014. Societal value of soil carbon. J. Soil Water Conserv 69: 186A–192A.
  • Lal, R. 2020. Soil organic matter and water retention. Agron. J. 112: 3265–3277.
  • Lal, R., Mello, F. F. D. C., Damian, J. M., Cherubin, M. R., and Cerri, C. E. P. 2021. Soil Carbon Sequestration Through Adopting Sustainable Management Practices: Potential and Opportunity for The American Countries Costa Rica. Costa Rica: Instituto Interamericano de Cooperación para la Agricultura (IICA).
  • Lehmann, J., and Kleber, M. 2015. The contentious nature of soil organic matter. Nature 528: 60–68.
  • Liang, C., Amelung, W., Lehmann, J., and Kästner, M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 25: 3578–3590.
  • Liang, C., and Balser, T. C. 2012. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nat. Commun. 3: 1222.
  • Lobell, D. B., and Field, C. B. 2007. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2: 014002.
  • López-García, T. G., and Manzano, M. G. 2016. Vulnerabilidad climática y situación socioambiental: percepciones en una región semiárida del noreste de México. MYB. 22: 105–117.
  • Luo, Z., Liu, H., Li, W., Zhao, Q., Dai, J., Tian, L., and Dong, H. 2018. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. F. Crop. Res. 218: 150–157.
  • MAPA. 2018. Adição e mitigação de Gases de Efeito Fogão por tecnologias do Mapa Regional de Mitigação e Adaptação às Mudanças Climáticas (Plano ABC). Ministério da Agricultura, Pecuária e Abastecimento, Brasil.
  • MAPA. 2021. Plano Regional de Adaptação às Mudanças Climáticas e Baixas Emissões de Carbono na Agricultura, com vistas ao nível de Desenvolvimento Sustentável. Ministério da Agricultura, Pecuária e Abastecimento, Brasil.
  • Marín-Spiotta, E., Gruley, K.E., Crawford, J., Atkinson, E.E., Miesel, J.R., Greene, S., Cardona-Correa, C., and Spencer, R.G.M. 2014. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117: 279–297.
  • Martínez, E., Fuentes, J.-P., Pino, V., Silva, P., and Acevedo, E. 2013. Chemical and biological properties as affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll of Central Chile. Soil Tillage Res. 126: 238–245.
  • MAyDS. 2021. Cuarto Informe Bienal de Actualización de Argentina a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). Ministerio de Ambiente y Desarrollo Sostenible, Argentina.
  • Mekonnen, M. M., Pahlow, M., Aldaya, M. M., Zarate, E., and Hoestra, A. Y. 2014. Water Footprint Assessment for Latin America and the Caribbean: An Analysis of the Sustainability, Efficiency and Equitability of Water Consumption and Pollution. UNESCO-IHE Institute for Water Education, Delft, The Netherland.
  • Millar, N., Urrea, A., Kahmark, K., Shcherbak, I., Robertson, G. P., and Ortiz-Monasterio, I. 2018. Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agric. Ecosyst. Environ. 261: 125–132.
  • Miniambiente 2020. Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC). https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/documentos-oficiales-contribuciones-nacionalmente-determinadas/.
  • Murillo, L.G. 2017. Política nacional de cambio climático: documento para tomadores de decisiones. In Florián Buitrago, Maritza, Pabón Restrepo, Giovanni Andrés, Pérez Álvarez, Paulo Andrés, Rojas Laserna, Mariana, and Suárez Castaño, R. Bogotá, Colombia.
  • Nguema, A., Norton, G., Alwang, J., Taylor, D., Barrera, V., and Bertelsen, M. 2013. Farm-level economic impacts of conservation agriculture in Ecuador. Ex. Agric. 49: 134–147.
  • OECD/FAO. 2019. Perspectivas Agrícolas 2019–2028. OECD Publishing, Roma. Organización de las Naciones Unidas pada la alimentación y la Agricultura (FAO), París.
  • OECD. 2022. Agriculture indicators. https://data.oecd.org/searchresults/?hf=20&b=0&r=%2Bf%2Ftopics_en%2Fagriculture&q=export+market+share&l=en&s=score.
  • Oelbermann, M., Voroney, R. P., and Kass, D. C. L. 2004. Gliricidia sepium carbon inputs and soil carbon pools in a Costa Rican alley cropping system. Int. J. Agric. Sustain. 2: 33–42.
  • Olness, A., and Archer, D. 2005. Effect of organic carbon on available water in soil. Soil Sci. 170: 90–101.
  • Perales, A., Loli, O., Alegre, J., and Camarena, F. 2009. Indicadores de sustentabilidad del manejo de suelos en la producción de arveja (Pisum sativum L.). Ecol. Apl. 8: 47–52.
  • Pimiento Ortega, M. G. 2019. Análisis multitemporal del cambio de uso de suelo en el Páramo de Pisba jurisdicción del municipio de Tasco para el periodo 1990–2015. UPTC, Universidad Pedagógica y Tecnológica de Colombia, Colombia.
  • Poeplau, C., and Don, A. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ 200: 33–41.
  • Pozza, L.E., and Field, D.J. 2020. The science of Soil Security and Food Security. Soil Secur 1: 100002.
  • Ringius, L. 2002. Soil carbon sequestration and the CDM: opportunities and challenges for Africa. Clim. Change 54: 471–495.
  • Salcedo-Pérez, E., Galvis-Spinola, A., Hernández-Mendoza, T. M., Rodríguez-Macias, R., Zamora-Natera, F., Bugarin-Montoya, R., and Carrillo-González, R. 2007. La humedad aprovechable y su relación con la materia orgánica y superficie específica del suelo. Terra Latinoam 25: 419–425.
  • Samianego, J. L., Schmidt, K.-U., Carlino, H., Caratori, L., Carlino, M., Gogorza, A., Rodríguez Vagaría, A., and Vazquez Amábile, G. 2021. Current Understanding of the Potential Impact of Carbon Dioxide Removal Approaches on the Sustainable Development Goals in Selected Countries in Latin America and the Caribbean. Summary for Policy Makers. Carnegie Climate Governance Initative (C2G)/ Economic Commission for Latin America and the Caribbean (ECLAC).
  • Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M.F., Benson, L., Bukoski, J.J., Carnell, P., Cifuentes-Jara, M., and Donato, D. 2017a. Global Mangrove Soil Carbon: Dataset and Spatial Maps. Harvard Dataverse, V4.
  • Sanderman, J., Hengl, T., and Fiske, G.J. 2017b. Soil Carbon Profile Data from Paired Land Use Comparisons. Harvard Dataverse, V1.
  • Stolpe, N., Muñoz, C., Zagal, E., and Ovalle, C. 2008. Modeling soil carbon storage in the “Espinal” agroecosystem of central Chile. Arid L. Res. Manag. 22: 148–158.
  • Subak, S. 2000. Agricultural soil carbon accumulation in North America: considerations for climate policy. Glob. Environ. Chang. 10: 185–195.
  • Sy, V. D., Herold, M., Achard, F., Beuchle, R., Clevers, J. G. P. W., Lindquist, E., and Verchot, L. 2015. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10: 124004.
  • Tiscareño, M., Salinas, J. R., Uribe, S., Rosales, E., Báez, A. D., and Velázquez, J., and de, J. 2000. Mid-term effects of tillage on microbial biomass and nutrient distribution in vertisols and andisols under rain-fed corn production. Terra Latinoam 18: 349–359.
  • Treseder, K. K. 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11: 1111–1120.
  • Trinidad-Santos, A., and Velasco-Velasco, J. 2018. Importancia de la materia orgánica en el suelo. Agro Product 9: 52–58.
  • Trost, B., Prochnow, A., Drastig, K., Meyer-Aurich, A., Ellmer, F., and Baumecker, M. 2013. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 33: 733–749.
  • UN 2019. The Global Land Outlook, Latin America and the Caribbean Thematic Report. Bonn, Germany: UN.
  • USAID 2019. Analysis of tropical forests and biodiversity in Mexico: final report. International Business & Technical Consultants, Inc. (IBTCI) under the Integration, Collaboration, Monitoring & Evaluation activity (ICME) in Mexico (72052318M00001).
  • Verkler, T. L., Brye, K. R., Popp, J. H., Gbur, E. E., Chen, P., and Amuri, N. 2009. Soil properties, soybean response, and economic return as affected by residue and water management practices. J. Sustain. Agric 33: 716–744.
  • Wang, C., Liu, D., and Bai, E. 2018. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120: 126–133.
  • Warman, J., Zuñiga, J. I., and Cervera, M. 2021. Análisis de los impactos en las coberturas forestales y potencial de mitigación de las parcelas del programa Sembrando Vida implementadas en 2019. The World Resources Institute, Mexico.
  • Wen, A., Havens, K. L., Bloch, S. E., Shah, N., Higgins, D. A., Davis-Richardson, A. G., Sharon, J., Rezaei, F., Mohiti-Asli, M., Johnson, A., Abud, G., Ane, J.-M., Maeda, J., Infante, V., Gottlieb, S. S., Lorigan, J. G., Williams, L., Horton, A., McKellar, M., Soriano, D., Caron, Z., Elzinga, H., Graham, A., Clark, R., Mak, S.-M., Stupin, L., Robinson, A., Hubbard, N., Broglie, R., Tamsir, A., and Temme, K. 2021. Enabling biological nitrogen fixation for cereal crops in fertilized fields. ACS Synth. Biol. 10: 3264–3277.
  • WorldBank. 2017. https://data.worldbank.org/indicator/ER.H2O.FWAG.ZS?end=2017&locations=ZJ&start=2017&view=map (accessed Nov 3, 2022).
  • WorldBank. 2018. https://data.worldbank.org/indicator/ER.H2O.INTR.PC?locations=ZJ (accessed Sept 5, 2022).
  • WorldBank. 2020a. https://www.worldbank.org/en/topic/water-in-agriculture#1 (accessed Oct 3, 2022).
  • WorldBank. 2020b. World bank indicators. https://data.worldbank.org/indicator.
  • WorldBank. 2021. https://carbonpricingdashboard.worldbank.org/
  • Xu, X., Thornton, P.E., and Post, W.M. 2013. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr 22: 737–749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.