430
Views
0
CrossRef citations to date
0
Altmetric
Articles

Functional Versatility of Multi-Protein Mediator Complex in Plant Growth and Development

, , , &

References

  • Agrawal, R., Jiří, F., and Thakur, J. K. 2021. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. J. Exp. Bot. 72: 224–240. doi:10.1093/jxb/eraa439
  • Agrawal, R., Sharma, M., Dwivedi, N., Maji, S., Thakur, P., Junaid, A., Fajkus, J., Laxmi, A., and Thakur, J. K. 2022. MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis. Plant Physiol. 189: 2259–2280. doi:10.1093/plphys/kiac220
  • Agrawal, R., Singh, A., Giri, J., Magyar, Z., and Thakur, J. K. 2023. MEDIATOR SUBUNIT17 is required for transcriptional optimization of root system architecture in Arabidopsis. Plant Physiol. kiad129. doi:10.1093/plphys/kiad129
  • Aguilar, X., Blomberg, J., Brännström, K., Olofsson, A., Schleucher, J., and Björklund, S. 2014. Interaction studies of the human and Arabidopsis thaliana Med25-ACID proteins with the herpes simplex virus VP16- and plant-specific Dreb2a transcription factors. PLOS One 9: e98575. doi:10.1371/journal.pone.0098575
  • Akoulitchev, S., Chuikov, S., and Reinberg, D. 2000. TFIIH is negatively regulated by cdk8-containing Mediator complexes. Nature 407: 102–106. doi:10.1038/35024111
  • Allen, B. L., and Taatjes, D. J. 2015. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16: 155–166. doi:10.1038/nrm3951
  • An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., Chen, R., Jiang, H., Wang, H., Chen, Q., and Li, C. 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. U.S.A. 114: E8930–E8939. doi:10.1073/pnas.1710885114
  • Anandhakumar, J., Moustafa, Y. W., Chowdhary, S., Kainth, A. S., and Gross, D. S. 2016. Evidence for multiple Mediator complexes in yeast independently recruited by activated heat shock factor. Mol. Cell. Biol. 36: 1943–1960. doi:10.1128/MCB.00005-16
  • Anderson, N. A., Bonawitz, N. D., Nyffeler, K., and Chapple, C. 2015. Loss of ferulate 5-hydroxylase leads to Mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in Arabidopsis. Plant Physiol. 169: 1557–1567. doi:10.1104/pp.15.00294
  • Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E. R., Qian, Q., Kitano, H., and Matsuoka, M. 2005. Cytokinin oxidase regulates rice grain production. Science 309: 741–745. doi:10.1126/science.1113373
  • Asturias, F. J., Jiang, Y. W., Myers, L. C., Gustafsson, C. M., and Kornberg, R. D. 1999. Conserved structures of Mediator and RNA polymerase II holoenzyme. Science 283: 985–987. doi:10.1126/science.283.5404.985
  • Autran, D., Jonak, C., Belcram, K., Beemster, G. T., Kronenberger, J., Grandjean, O., Inzé, D., and Traas, J. 2002. Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J. 21: 6036–6049. doi:10.1093/emboj/cdf614
  • Bäckström, S., Elfving, N., Nilsson, R., Wingsle, G., and Björklund, S. 2007. Purification of a plant Mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell. 26: 717–729. doi:10.1016/j.molcel.2007.05.007
  • Bai, G., Li, Y., Yang, D. H., Pang, T., Fan, Z. Y., Shu, J. E., Fei, M., Xiao, B., Wang, Z. Y., and Xie, H. 2021. The Nicotiana tabacum Mediator subunit MED25 regulates nicotine biosynthesis through interacting with the basic helix-loop-helix (bHLH) transcription factor NtMYC2s. bioRxiv. doi:10.1101/2021.05.24.445359
  • Bai, M. Y., Zhang, L. Y., Gampala, S. S., Zhu, S. W., Song, W. Y., Chong, K., and Wang, Z. Y. 2007. Functions of OsBZR1 and 14‐3‐3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. U.S.A. 104: 13839–13844. doi:10.1073/pnas.0706386104
  • Baloban, M., Vanstraelen, M., Tarayre, S., Reuzeau, C., Cultrone, A., Mergaert, P., and Kondorosi, E. 2013. Complementary and dose-dependent action of AtCCS52A isoforms in endoreduplication and plant size control. New Phytol. 198: 1049–1059. doi:10.1111/nph.12216
  • Banyai, G., Lopez, M. D., Szilagyi, Z., and Gustafsson, C. M. 2014. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast. Mol. Cell. Biol. 34: 4008–4018. doi:10.1128/MCB.00819-14
  • Barneche, F., Steinmetz, F., and Echeverrı́a, M. 2000. Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. J. Biol. Chem. 275: 27212–27220. doi:10.1016/S0021-9258(19)61499-7
  • Barrero, J. M., Piqueras, P., González-Guzmán, M., Serrano, R., Rodríguez, P. L., Ponce, M. R., and Micol, J. L. 2005. A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J. Exp. Bot. 56: 2071–2083. doi:10.1093/jxb/eri206
  • Baud, S., Boutin, J. P., Miquel, M., Lepiniec, L., and Rochat, C. 2002. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 40: 151–160. doi:10.1016/S0981-9428(01)01350-X
  • Bäurle, I., and Dean, C. 2006. The timing of developmental transitions in plants. Cell 125: 655–664. doi:10.1016/j.cell.2006.05.005
  • Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602. doi:10.1016/s0092-8674(03)00924-3
  • Berger, S., Bell, E., and Mullet, J. E. 1996. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol. 111: 525–531. doi:10.1104/pp.111.2.525
  • Bernecky, C., Grob, P., Ebmeier, C. C., Nogales, E., and Taatjes, D. J. 2011. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLOS Biol. 9: e1000603. doi:10.1371/journal.pbio.1000603
  • Biała, W., and Jasiński, M. 2018. The phenylpropanoid case–it is transport that matters. Front. Plant Sci. 9: 1610. doi:10.3389/fpls.2018.01610
  • Björklund, S., and Gustafsson, C. M. 2005. The yeast Mediator complex and its regulation. Trends Biochem. Sci. 30: 240–244. doi:10.1016/j.tibs.2005.03.008
  • Bonawitz, N. D., Kim, J. I., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S., Ladisch, M., and Chapple, C. 2014. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509: 376–380. doi:10.1038/nature13084
  • Bonawitz, N. D., Soltau, W. L., Blatchley, M. R., Powers, B. L., Hurlock, A. K., Seals, L. A., Weng, J. K., Stout, J., and Chapple, C. 2012. The REF4 and RFR1, subunits of the transcriptional coregulatory complex Mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J. Biol. Chem. 287: 5434–5445. doi:10.1074/jbc.M111.312298
  • Booker, K. S., Schwarz, J., Garrett, M. B., and Jones, A. M. 2010. Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by the heterotrimeric G protein complex. PLOS One 5: e12833. doi:10.1371/journal.pone.0012833
  • Bossi, F., Cordoba, E., Dupré, P., Mendoza, M. S., Román, C. S., and León, P. 2009. The Arabidopsis ABA‐INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J. 59: 359–374. doi:10.1111/j.1365-313X.2009.03877.x
  • Bourbon, H. M. 2008. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional Mediator complex. Nucleic Acids Res. 36: 3993–4008. doi:10.1093/nar/gkn349
  • Brant, E. J., and Budak, H. 2018. Plant small non-coding RNAs and their roles in biotic stresses. Front. Plant Sci. 9: 1038. doi:10.3389/fpls.2018.01038
  • Breuer, C., Morohashi, K., Kawamura, A., Takahashi, N., Ishida, T., Umeda, M., Grotewold, E., and Sugimoto, K. 2012. Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth. EMBO J. 31: 4488–4501. doi:10.1038/emboj.2012.294
  • Broun, P., Poindexter, P., Osborne, E., Jiang, C., and Riechmann, J. 2004. WIN1, a transcriptional activator of cuticular wax accumulation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 101: 4706–4711. doi:10.1073/pnas.0305574101
  • Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., and Stepanova, A. N. 2018. Local auxin biosynthesis is a key regulator of plant development. Dev. Cell 47: 306–318.e5. doi:10.1016/j.devcel.2018.09.022
  • Buendía-Monreal, M., and Gillmor, C. S. 2017. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis Mediator. Dev. Biol. 423: 19–23. doi:10.1016/j.ydbio.2017.01.007
  • Canet, J. V., Dobón, A., and Tornero, P. 2012. Non-recognition-of-BTH4, an Arabidopsis Mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24: 4220–4235. doi:10.1105/tpc.112.103028
  • Casamassimi, A., and Ciccodicola, A. 2019. Transcriptional regulation: molecules, involved mechanisms, and misregulation. Int. J. Mol. Sci. 20: 1281. doi:10.3390/ijms20061281
  • Cerdán, P. D., and Chory, J. 2003. Regulation of flowering time by light quality. Nature 423: 881–885. doi:10.1038/nature01636
  • Çevik, V., Kidd, B. N., Zhang, P., Hill, C., Kiddle, S., Denby, K. J., Holub, E. B., Cahill, D. M., Manners, J. M., Schenk, P. M., Beynon, J., and Kazan, K. 2012. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol. 160: 541–555. doi:10.1104/pp.112.202697
  • Chadick, J. Z., and Asturias, F. J. 2005. Structure of eukaryotic Mediator complexes. Trends Biochem. Sci. 30: 264–271. doi:10.1016/j.tibs.2005.03.001
  • Chebotar, G. O., and Chebotar, S. V. 2011. Gibberellin-signaling pathways in plants. Cytol. Genet. 45: 259–268. doi:10.3103/S0095452711040037
  • Chekanova, J. A. 2015. Long non-coding RNAs and their functions in plants. Curr. Opin. Plant Biol. 27: 207–216. doi:10.1016/j.pbi.2015.08.003
  • Chen, X. 2009. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 25: 21–44. doi:10.1146/annurev.cellbio.042308.113417
  • Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., Sun, J., and Li, C. 2012. The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24: 2898–2916. doi:10.1105/tpc.112.098277
  • Chen, Y. H., Li, H. J., Shi, D. Q., Yuan, L., Liu, J., Sreenivasan, R., Baskar, R., Grossniklaus, U., and Yang, W. C. 2007. The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19: 3563–3577. doi:10.1105/tpc.107.053967
  • Chen, X., Qi, S., Zhang, D., Li, Y., An, N., Zhao, C., Zhao, J., Shah, K., Han, M., and Xing, L. 2018. Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering ‘Qinguan’ and weakly flowering ‘Nagafu no. 2’ apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biol. 18: 370. doi:10.1186/s12870-018-1555-3
  • Chen, J., Yang, S., Fan, B., Zhu, C., and Chen, Z. 2022. The Mediator complex: a central coordinator of plant adaptive responses to environmental stresses. Int. J. Mol. Sci. 23: 6170. doi:10.3390/ijms23116170
  • Choi, B. S., Kim, Y. J., Markkandan, K., Koo, Y. J., Song, J. T., and Seo, H. S. 2018. GW2 functions as an E3 ubiquitin ligase for rice expansin-like 1. Int. J. Mol. Sci. 19: 1904. doi:10.3390/ijms19071904
  • Clay, N. K., and Nelson, T. 2005. The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf. Plant Cell 17: 1994–2008. doi:10.1105/tpc.105.032771
  • Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T., and Conaway, J. W. 2005. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30: 250–255. doi:10.1016/j.tibs.2005.03.002
  • Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651–679. doi:10.1146/annurev-arplant-042809-112122
  • Daniels, D. L., Ford, M., Schwinn, M. K., Benink, H., Galbraith, M. D., Amunugama, R., Jones, R., Allen, D., Okazaki, N., Yamakawa, H., Miki, F., Nagase, T., Espinosa, J. M., and Urh, M. 2013. Mutual exclusivity of MED12/MED12L, MED13/13L, and CDK8/19 paralogs revealed within the CDK-mediator kinase module. J. Proteomics Bioinform. S2: 004.
  • Davière, J. M., and Achard, P. 2013. Gibberellin signaling in plants. Development 140: 1147–1151. doi:10.1242/dev.087650
  • Davis, J. A., Takagi, Y., Kornberg, R. D., and Asturias, F. A. 2002. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell. 10: 409–415. doi:10.1016/s1097-2765(02)00598-1
  • Davoine, C., Abreu, I. N., Khajeh, K., Blomberg, J., Kidd, B. N., Kazan, K., Schenk, P. M., Gerber, L., Nilsson, O., Moritz, T., and Björklund, S. 2017. Functional metabolomics as a tool to analyze Mediator function and structure in plants. PLOS One. 12: e0179640. doi:10.1371/journal.pone.0179640
  • Deng, L., Yang, T., Li, Q., Chang, Z., Sun, C., Jiang, H., Meng, X., Huang, T., Li, C. B., Zhong, S., and Li, C. 2022. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. Plant Cell. 35: 1038–1057. doi:10.1093/plcell/koac349
  • Deveshwar, P., Prusty, A., Sharma, S., and Tyagi, A. K. 2020. Phytohormone-mediated molecular mechanisms involving multiple genes and QTL govern grain number in rice. Front. Genet. 11: 586462. doi:10.3389/fgene.2020.586462
  • Dhawan, R., Luo, H., Foerster, A. M., AbuQamar, S., Du, H. N., Briggs, S. D., Scheid, O. M., and Mengiste, T. 2009. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the Mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21: 1000–1019. doi:10.1105/tpc.108.062364
  • Doblin, M. S., Kurek, I., Jacob-Wilk, D., and Delmer, D. P. 2002. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43: 1407–1420. doi:10.1093/pcp/pcf164
  • Dolan, W. L., and Chapple, C. 2017. Conservation and divergence of Mediator structure and function: insights from plants. Plant Cell Physiol. 58: 4–21. doi:10.1093/pcp/pcw176
  • Dolan, W. L., and Chapple, C. 2018. Transcriptome analysis of four Arabidopsis thaliana Mediator tail mutants reveals overlapping and unique functions in gene regulation. G3 (Bethesda) 8: 3093–3108. doi:10.1534/g3.118.200573
  • Dolan, W. L., Dilkes, B. P., Stout, J. M., Bonawitz, N. D., and Chapple, C. 2017. Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis. Plant Cell 29: 3269–3285. doi:10.1105/tpc.17.00282
  • Dotto, M., and Casati, P. 2017. Developmental reprogramming by UV-B radiation in plants. Plant Sci. 264: 96–101. doi:10.1016/j.plantsci.2017.09.006
  • Du, F., Guan, C., and Jiao, Y. 2018. Molecular mechanisms of leaf morphogenesis. Mol. Plant 11: 1117–1134. doi:10.1016/j.molp.2018.06.006
  • Du, Y., and Scheres, B. 2018. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 69: 155–167. doi:10.1093/jxb/erx223
  • Dwivedi, N., Maji, S., Waseem, M., Thakur, P., Kumar, V., Parida, S. K., and Thakur, J. K. 2019. The Mediator subunit OsMED15a is a transcriptional co-regulator of seed size/weight–modulating genes in rice. Biochim. Biophys. Acta Gene Regul. Mech. 1862: 194432. doi:10.1016/j.bbagrm.2019.194432
  • Elfving, N., Davoine, C., Benlloch, R., Blomberg, J., Brännström, K., Müller, D., Nilsson, A., Ulfstedt, M., Ronne, H., Wingsle, G., Nilsson, O., and Björklund, S. 2011. The Arabidopsis thaliana Med25 Mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. U.S.A. 108: 8245–8250. doi:10.1073/pnas.1002981108
  • Elmlund, H., Baraznenok, V., Lindahl, M., Samuelsen, C. O., Koeck, P. J., Holmberg, S., Hebert, H., and Gustafsson, C. M. 2006. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl. Acad. Sci. U.S.A. 103: 15788–15793. doi:10.1073/pnas.0607483103
  • Endrizzi, K., Moussian, B., Haecker, A., Levin, J. Z., and Laux, T. 1996. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10: 967–979. doi:10.1046/j.1365-313x.1996.10060967.x
  • Franke, R., Hemm, M. R., Denault, J. W., Ruegger, M. O., Humphreys, J. M., and Chapple, C. 2002. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J. 30: 47–59. doi:10.1046/j.1365-313x.2002.01267.x
  • Franklin, K. A., and Whitelam, G. C. 2005. Phytochromes and shade-avoidance responses in plants. Ann. Bot. 96: 169–175. doi:10.1093/aob/mci165
  • Fujii, H., and Zhu, J. K. 2009. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. U.S.A. 106: 8380–8385. doi:10.1073/pnas.0903144106
  • Fulop, K., Tarayre, S., Kelemen, Z., Horváth, G., Kevei, Z., Nikovics, K., Bakó, L., Brown, S., Kondorosi, A., and Kondorosi, E. 2005. Arabidopsis anaphase-promoting complexes: Multiple activators and wide range of substrates might keep APC perpetually busy. Cell Cycle 4: 1084–1092.
  • Gallego-Giraldo, L., Escamilla-Trevino, L., Jackson, L. A., and Dixon, R. A. 2011a. Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc. Natl. Acad. Sci. U.S.A. 108: 20814–20819. doi:10.1073/pnas.1117873108
  • Gallego-Giraldo, L., Jikumaru, Y., Kamiya, Y., Tang, Y., and Dixon, R. A. 2011b. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol. 190: 627–639. doi:10.1111/j.1469-8137.2010.03621.x
  • Gillmor, C. S., Park, M. Y., Smith, M. R., Pepitone, R., Kerstetter, R. A., and Poethig, R. S. 2010. The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development 137: 113–122. doi:10.1242/dev.043174
  • Gillmor, C. S., Silva-Ortega, C. O., Willmann, M. R., Buendía-Monreal, M., and Poethig, R. S. 2014. The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions. Development 141: 4580–4589. doi:10.1242/dev.111229
  • Giustozzi, M., Freytes, S. N., Jaskolowski, A., Lichy, M., Mateos, J., Falcone Ferreyra, M. L., Rosano, G. L., Cerdán, P., and Casati, P. 2022. Arabidopsis Mediator subunit 17 connects transcription with DNA repair after UV‐B exposure. Plant J. 110: 1047–1067. doi:10.1111/tpj.15722
  • Gomes, G. L. B., and Scortecci, K. C. 2021. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biol. 23: 894–904. doi:10.1111/plb.13303
  • Gómez, J. F., Talle, B., and Wilson, Z. A. 2015. Anther and pollen development: a conserved developmental pathway. J. Integr. Plant Biol. 57: 876–891. doi:10.1111/jipb.12425
  • Gonzalez, D., Bowen, A. J., Carroll, T. S., and Conlan, R. S. 2007. The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and Mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol. Cell. Biol. 27: 5306–5315. doi:10.1128/MCB.01912-06
  • Gray, W. M. 2004. Hormonal regulation of plant growth and development. PLOS Biol. 2: e311. doi:10.1371/journal.pbio.0020311
  • Griffiths, G. 2020. Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem. 64: 501–512. doi:10.1042/EBC20190085
  • Guglielmi, B., Van Berkum, N. L., Klapholz, B., Bijma, T., Boube, M., Boschiero, C., Bourbon, H. M., Holstege, F. C., and Werner, M. 2004. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res. 32: 5379–5391. doi:10.1093/nar/gkh878
  • Guo, P., Chong, L., Wu, F., Hsu, C. C., Li, C., Zhu, J. K., and Zhu, Y. 2021. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. J. Integr. Plant Biol. 63: 802–815. doi:10.1111/jipb.13062
  • Hao, J., Wang, D., Wu, Y., Huang, K., Duan, P., Li, N., Xu, R., Zeng, D., Dong, G., Zhang, B., Zhang, L., Inzé, D., Qian, Q., and Li, Y. 2021. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol. Plant 14: 1266–1280. doi:10.1016/j.molp.2021.04.011
  • Haque, M. A., and Sakimin, S. Z. 2022. Planting arrangement and effects of planting density on tropical fruit crops–a review. Horticulturae 8: 485. doi:10.3390/horticulturae8060485
  • Hasan, A. M., Vander Schoor, J. K., Hecht, V., and Weller, J. L. 2020. The CYCLIN-DEPENDENT KINASE module of the Mediator complex promotes flowering and reproductive development in pea. Plant Physiol. 182: 1375–1386. doi:10.1104/pp.19.01173
  • Hecht, V. L., Temperton, V. M., Nagel, K. A., Rascher, U., Pude, R., and Postma, J. A. 2019. Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number. Plant Soil 439: 179–200. doi:10.1007/s11104-018-3764-9
  • Hemsley, P. A., Hurst, C. H., Kaliyadasa, E., Lamb, R., Knight, M. R., De Cothi, E. A., Steele, J. F., and Knight, H. 2014. The Arabidopsis Mediator complex subunits MED16, MED14, and MED2 regulate Mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell 26: 465–484. doi:10.1105/tpc.113.117796
  • Hengartner, C. J., Myer, V. E., Liao, S. M., Wilson, C. J., Koh, S. S., and Young, R. A. 1998. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2: 43–53. doi:10.1016/s1097-2765(00)80112-4
  • Hernández-Madrigal, F., Ortiz-Castro, R., Ruiz-Herrera, L. F., Cervantes, C., López-Bucio, J., and Martínez-Trujillo, M. 2018. Temporal root responses in Arabidopsis thaliana L. to chromate reveal structural and regulatory mechanisms involving the SOLITARY ROOT/IAA14 repressor for maintenance of identity meristem genes. Plant Growth Regul. 86: 251–262. doi:10.1007/s10725-018-0425-1
  • Heyman, J., Cools, T., Canher, B., Shavialenka, S., Traas, J., Vercauteren, I., Van den Daele, H., Persiau, G., De Jaeger, G., Sugimoto, K., and De Veylder, L. 2016. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nat. Plants 2: 16165. doi:10.1038/nplants.2016.165
  • Hong, Z., Ueguchi‐Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., and Matsuoka, M. 2003. A rice brassinosteroid‐deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900–2910. doi:10.1105/tpc.014712
  • Hornitschek, P., Kohnen, M. V., Lorrain, S., Rougemont, J., Ljung, K., López‐Vidriero, I., Franco‐Zorrilla, J. M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., and Fankhauser, C. 2012. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71: 699–711. doi:10.1111/j.1365-313X.2012.05033.x
  • Hu, Z., Cools, T., and De Veylder, L. 2016. Mechanisms used by plants to cope with DNA damage. Annu. Rev. Plant Biol. 67: 439–462. doi:10.1146/annurev-arplant-043015-111902
  • Huang, L., Jones, A. M., Searle, I., Patel, K., Vogler, H., Hubner, N. C., and Baulcombe, D. C. 2009. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 16: 91–93. doi:10.1038/nsmb.1539
  • Huerta-Venegas, P. I., Raya-González, J., López-García, C. M., Barrera-Ortiz, S., Ruiz-Herrera, L. F., and López-Bucio, J. 2022. Mutation of MEDIATOR16 promotes plant biomass accumulation and root growth by modulating auxin signaling. Plant Sci. 314: 111117. doi:10.1016/j.plantsci.2021.111117
  • Huijser, P., and Schmid, M. 2011. The control of developmental phase transitions in plants. Development 138: 4117–4129. doi:10.1242/dev.063511
  • Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., and Coupland, G. 2016. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev. Cell 37: 254–266. doi:10.1016/j.devcel.2016.04.001
  • Imura, Y., Kobayashi, Y., Yamamoto, S., Furutani, M., Tasaka, M., Abe, M., and Araki, T. 2012. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol. 53: 287–303. doi:10.1093/pcp/pcs002
  • Iñigo, S., Alvarez, M. J., Strasser, B., Califano, A., and Cerdán, P. D. 2012a. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 69: 601–612. doi:10.1111/j.1365-313X.2011.04815.x
  • Iñigo, S., Giraldez, A. N., Chory, J., and Cerdán, P. D. 2012b. Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription. Plant Physiol. 160: 1662–1673. doi:10.1104/pp.112.205500
  • Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A., and Khan, M. I. R. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front. Plant Sci. 8: 475. doi:10.3389/fpls.2017.00475
  • Ito, J., Fukaki, H., Onoda, M., Li, L., Li, C., Tasaka, M., and Furutani, M. 2016. Auxin-dependent compositional change in Mediator in ARF7-and ARF19-mediated transcription. Proc. Natl. Acad. Sci. U.S.A. 113: 6562–6567. doi:10.1073/pnas.1600739113
  • Ito, J., Sono, T., Tasaka, M., and Furutani, M. 2011. MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. Plant Cell Physiol. 52: 539–552. doi:10.1093/pcp/pcr013
  • Jaskolowski, A., Iñigo, S., Arellano, S. M., Arias, L. A., Fiol, D. F., Sede, A. R., Oldra, M. B., Lorenzi, H., Muschietti, J. P., Pagnussat, G. C., and Cerdán, P. D. 2019. The MED30 subunit of Mediator complex is essential for early plant development and promotes flowering in Arabidopsis thaliana. Development 146: dev175224. doi:10.1242/dev.175224
  • Jiang, J., Yang, G., Xin, Y., Wang, Z., Yan, W., Chen, Z., Tang, X., and Xia, J. 2021. Overexpression of OsMed16 inhibits the growth of rice and causes spontaneous cell death. Genes 12: 656. doi:10.3390/genes12050656
  • Johnson, R. A., Conklin, P. A., Tjahjadi, M., Missirian, V., Toal, T., Brady, S. M., and Britt, A. B. 2018. SUPPRESSOR OF GAMMA RESPONSE1 links DNA damage response to organ regeneration. Plant Physiol. 176: 1665–1675. doi:10.1104/pp.17.01274
  • Johnson, M. A., Harper, J. F., and Palanivelu, R. 2019. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70: 809–837. doi:10.1146/annurev-arplant-050718-100133
  • Jung, J. K., and McCouch, S. 2013. Getting to the roots of it: genetic and hormonal control of root architecture. Front. Plant Sci. 4: 186. doi:10.3389/fpls.2013.00186
  • Kang, C. H., Feng, Y., Vikram, M., Jeong, I. S., Lee, J. R., Bahk, J. D., Yun, D. J., Lee, S. Y., and Koiwa, H. 2009. Arabidopsis thaliana PRP40s are RNA polymerase II C-terminal domain-associating proteins. Arch. Biochem. Biophys. 484: 30–38. doi:10.1016/j.abb.2009.01.004
  • Kang, J. S., Kim, S. H., Hwang, M. S., Han, S. J., Lee, Y. C., and Kim, Y. J. 2001. The structural and functional organization of the yeast Mediator complex. J. Biol. Chem. 276: 42003–42010. doi:10.1074/jbc.M105961200
  • Kannangara, R., Branigan, C., Liu, Y., Penfield, T., Rao, V., Mouille, G., Hofte, H., Pauly, M., Riechmann, J. L., and Broun, P. 2007. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19: 1278–1294. doi:10.1105/tpc.106.047076
  • Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermüller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H., and Gingeras, T. R. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316: 1484–1488. doi:10.1126/science.1138341
  • Kassavetis, G. A., Prakash, P., and Shim, E. 2010. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J. Biol. Chem. 285: 2695–2706. doi:10.1074/jbc.M109.074013
  • Kazan, K. 2017. The multitalented MEDIATOR25. Front. Plant Sci. 8: 999. doi:10.3389/fpls.2017.00999
  • Kerstetter, R. A., Bollman, K., Taylor, R. A., Bomblies, K., and Poethig, R. S. 2001. KANADI regulates organ polarity in Arabidopsis. Nature 411: 706–709. doi:10.1038/35079629
  • Kidd, B. N., Cahill, D. M., Manners, J. M., Schenk, P. M., and Kazan, K. 2011. Diverse roles of the Mediator complex in plants. Semin. Cell Dev. Biol. 22: 741–748. doi:10.1016/j.semcdb.2011.07.012
  • Kidd, B. N., Edgar, C. I., Kumar, K. K., Aitken, E. A., Schenk, P. M., Manners, J. M., and Kazan, K. 2009. The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21: 2237–2252. doi:10.1105/tpc.109.066910
  • Kieber, J. J., and Schaller, G. E. 2014. Cytokinins. Arabidopsis Book 12: e0168. doi:10.1199/tab.0168
  • Kim, Y. J., and Chen, X. 2011. The plant Mediator and its role in noncoding RNA production. Front. Biol. 6: 125–132. doi:10.1007/s11515-011-1133-7
  • Kim, J. I., Dolan, W. L., Anderson, N. A., and Chapple, C. 2015. Indole glucosinolate biosynthesis limits phenylpropanoid accumulation in Arabidopsis thaliana. Plant Cell 27: 1529–1546. doi:10.1105/tpc.15.00127
  • Kim, M. J., Jang, I. C., and Chua, N. H. 2016. The Mediator complex MED15 subunit mediates activation of downstream lipid-related genes by the WRINKLED1 transcription factor. Plant Physiol. 171: 1951–1964. doi:10.1104/pp.16.00664
  • Kim, Y. J., and Lis, J. T. 2005. Interactions between subunits of Drosophila Mediator and activator proteins. Trends Biochem. Sci. 30: 245–249. doi:10.1016/j.tibs.2005.03.010
  • Kim, P. M., Sboner, A., Xia, Y., and Gerstein, M. 2008. The role of disorder in interaction networks: a structural analysis. Mol. Syst. Biol. 4: 179. doi:10.1038/msb.2008.16
  • Kim, Y. J., Zheng, B., Yu, Y., Won, S. Y., Mo, B., and Chen, X. 2011. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 30: 814–822. doi:10.1038/emboj.2011.3
  • Kitagawa, M., and Jackson, D. 2019. Control of meristem size. Annu. Rev. Plant Biol. 70: 269–291. doi:10.1146/annurev-arplant-042817-040549
  • Knight, H., Thomson, A. J., and McWatters, H. G. 2008. SENSITIVE TO FREEZING6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol. 148: 293–303. doi:10.1104/pp.108.123901
  • Knoll, E. R., Zhu, Z. I., Sarkar, D., Landsman, D., and Morse, R. H. 2018. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife 7: e39633. doi:10.7554/eLife.39633
  • Knuesel, M. T., Meyer, K. D., Bernecky, C., and Taatjes, D. J. 2009. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23: 439–451. doi:10.1101/gad.1767009
  • Kobbe, D., Blanck, S., Demand, K., Focke, M., and Puchta, H. 2008. AtRECQ2, a RecQ helicase homologue from Arabidopsis thaliana, is able to disrupt various recombinogenic DNA structures in vitro. Plant J. 55: 397–405. doi:10.1111/j.0960-7412.2008.03511.x
  • Koizumi, K., Hayashi, T., and Gallagher, K. L. 2012a. SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis. Plant Signal. Behav. 7: 1573–1577. doi:10.4161/psb.22437
  • Koizumi, K., Hayashi, T., Wu, S., and Gallagher, K. L. 2012b. The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc. Natl. Acad. Sci. U.S.A. 109: 13010–13015. doi:10.1073/pnas.1205579109
  • Kong, L., and Chang, C. 2018. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f. sp. tritici by interfering with very-long-chain aldehyde biosynthesis. Plant Mol. Biol. 96: 165–178. doi:10.1007/s11103-017-0687-4
  • Kong, Q., Yuan, L., and Ma, W. 2019. WRINKLED1, a “Master Regulator” in transcriptional control of plant oil biosynthesis. Plants 8: 238. doi:10.3390/plants8070238
  • Kour, J., Kohli, S. K., Khanna, K., Bakshi, P., Sharma, P., Singh, A. D., Ibrahim, M., Devi, K., Sharma, N., Ohri, P., Skalicky, M., Brestic, M., Bhardwaj, R., Landi, M., and Sharma, A. 2021. Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress. Front. Plant Sci. 12: 608061. doi:10.3389/fpls.2021.608061
  • Kumar, K. R. R., Blomberg, J., and Björklund, S. 2018. The MED7 subunit paralogs of Mediator function redundantly in development of etiolated seedlings in Arabidopsis. Plant J. 96: 578–594. doi:10.1111/tpj.14052
  • Kumar, A., Yogendra, K., Karre, S., Kushalappa, A., Dion, Y., and Choo, T. 2016. WAX INDUCER1 (HvWIN1) transcription factor regulates free fatty acid biosynthetic genes to reinforce cuticle to resist Fusarium head blight in barley spikelets. J. Exp. Bot. 67: 4127–4139. doi:10.1093/jxb/erw187
  • Lai, Z., Schluttenhofer, C. M., Bhide, K., Shreve, J., Thimmapuram, J., Lee, S. Y., Yun, D. J., and Mengiste, T. 2014. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat. Commun. 5: 3064. doi:10.1038/ncomms4064
  • Lalanne, E., Michaelidis, C., Moore, J. M., Gagliano, W., Johnson, A., Patel, R., Howden, R., Vielle-Calzada, J. P., Grossniklaus, U., and Twell, D. 2004. Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167: 1975–1986. doi:10.1534/genetics.104.030270
  • Lammens, T., Boudolf, V., Kheibarshekan, L., Panagiotis Zalmas, L., Gaamouche, T., Maes, S., Vanstraelen, M., Kondorosi, E., La Thangue, N. B., Govaerts, W., Inzé, D., and Veylder, L. D. 2008. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc. Natl. Acad. Sci. U.S.A. 105: 14721–14726. doi:10.1073/pnas.0806510105
  • Larson-Rabin, Z., Li, Z., Masson, P. H., and Day, C. D. 2009. FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. Plant Physiol. 149: 874–884. doi:10.1104/pp.108.132449
  • Li, L., Ljung, K., Breton, G., Schmitz, R. J., Pruneda-Paz, J., Cowing-Zitron, C., Cole, B. J., Ivans, L. J., Pedmale, U. V., Jung, H. S., Ecker, J. R., Kay, S. A., and Chory, J. 2012. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26: 785–790. doi:10.1101/gad.187849.112
  • Li, J., Nagpal, P., Vitart, V., McMorris, T. C., and Chory, J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398–401. doi:10.1126/science.272.5260.398
  • Li, X., Yang, R., Gong, Y., and Chen, H. 2018. The Arabidopsis Mediator complex subunit MED19a is involved in ABI5-mediated ABA responses. J. Plant Biol. 61: 97–110. doi:10.1007/s12374-017-0277-7
  • Li, L., Ye, H., Guo, H., and Yin, Y. 2010. Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc. Natl. Acad. Sci. U.S.A. 107: 3918–3923. doi:10.1073/pnas.0909198107
  • Li, W., Yoshida, A., Takahashi, M., Maekawa, M., Kojima, M., Sakakibara, H., and Kyozuka, J. 2015b. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. Plant J. 81: 282–291. doi:10.1111/tpj.12725
  • Li, N., Zhang, D. S., Liu, H. S., Yin, C. S., Li, X. X., Liang, W. Q., Yuan, Z., Xu, B., Chu, H. W., Wang, J., Wen, T. Q., Huang, H., Luo, D., Ma, H., and Zhang, D. B. 2006. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell 18: 2999–3014. doi:10.1105/tpc.106.044107
  • Li, S., Zhao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhang, J., Wang, J., Sun, J., Liu, Z., Feng, Y. Q., Yuan, L., and Li, C. 2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. U.S.A. 110: 3167–3172. doi:10.1073/pnas.1300359110
  • Li, Y., Zheng, L., Corke, F., Smith, C., and Bevan, M. W. 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 22: 1331–1336. doi:10.1101/gad.463608
  • Li, H. J., Zhu, S. S., Zhang, M. X., Wang, T., Liang, L., Xue, Y., Shi, D. Q., Liu, J., and Yang, W. C. 2015a. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. Plant Cell 27: 2880–2893. doi:10.1105/tpc.15.00370
  • Liao, C. J., Lai, Z., Lee, S., Yun, D. J., and Mengiste, T. 2016. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin. Plant Cell 28: 1662–1681. doi:10.1105/tpc.16.00105
  • Lin, L., Du, M., Li, S., Sun, C., Wu, F., Deng, L., Chen, Q., and Li, C. 2022. Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. J. Integr. Plant Biol. 64: 871–883. doi:10.1111/jipb.13238
  • Lin, Z., Yan, J., Su, J., Liu, H., Hu, C., Li, G., Wang, F., and Lin, Y. 2019b. Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa). Funct. Plant Biol. 46: 857–868. doi:10.1071/FP18266
  • Lin, L., Zhao, Y., Liu, F., Chen, Q., and Qi, J. 2019a. Narrow leaf 1 (NAL1) regulates leaf shape by affecting cell expansion in rice (Oryza sativa L.). Biochem. Biophys. Res. Commun. 516: 957–962. doi:10.1016/j.bbrc.2019.06.142
  • Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., Genschik, P., and Bauer, P. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23: 1815–1829. doi:10.1105/tpc.111.084715
  • Liu, Z., Chen, G., Gao, F., Xu, R., Li, N., Zhang, Y., and Li, Y. 2019b. Transcriptional repression of the APC/C activator genes CCS52A1/A2 by the Mediator complex subunit MED16 controls endoreduplication and cell growth in Arabidopsis. Plant Cell 31: 1899–1912. doi:10.1105/tpc.18.00811
  • Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., Tian, P., Cheng, Z., Yu, X., Zhou, K., Zhang, X., Guo, X., Wang, J., Wang, H., and Wan, J. 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3: 17043. doi:10.1038/nplants.2017.43
  • Liu, Y., Du, M., Deng, L., Shen, J., Fang, M., Chen, Q., Lu, Y., Wang, Q., Li, C., and Zhai, Q. 2019a. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31: 106–127. doi:10.1105/tpc.18.00405
  • Liu, L., Shang-Guan, K., Zhang, B., Liu, X., Yan, M., Zhang, L., Shi, Y., Zhang, M., Qian, Q., Li, J., and Zhou, Y. 2013. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLOS Genet. 9: e1003704. doi:10.1371/journal.pgen.1003704
  • Liu, J., Wang, H., and Chua, N. H. 2015. Long noncoding RNA transcriptome of plants. Plant Biotechnol. J. 13: 319–328. doi:10.1111/pbi.12336
  • Liu, Y., Ye, W., Li, B., Zhou, X., Cui, Y., Running, M. P., and Liu, K. 2012. CCS52A2/FZR1, a cell cycle regulator, is an essential factor for shoot apical meristem maintenance in Arabidopsis thaliana. BMC Plant Biol. 12: 135. doi:10.1186/1471-2229-12-135
  • Lopez-Bucio, J., Ortiz-Castro, R., Ruíz-Herrera, L. F., Vargas-Juárez, C., Hernández-Madrigal, F., Carreón-Abud, Y., and Martínez-Trujillo, M. 2015. Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. Biometals 28: 353–365. doi:10.1007/s10534-015-9838-8
  • Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C., and Fankhauser, C. 2008. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53: 312–323. doi:10.1111/j.1365-313X.2007.03341.x
  • Ma, L., Bajic, V. B., and Zhang, Z. 2013. On the classification of long non-coding RNAs. RNA Biol. 10: 924–933. doi:10.4161/rna.24604
  • Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., and Nakamura, K. 2009. An AP2‐type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW‐box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 60: 476–487. doi:10.1111/j.1365-313X.2009.03967.x
  • Maji, S., Dahiya, P., Waseem, M., Dwivedi, N., Bhat, D. S., Dar, T. H., and Thakur, J. K. 2019. Interaction map of Arabidopsis Mediator complex expounding its topology. Nucleic Acids Res. 47: 3904–3920. doi:10.1093/nar/gkz122
  • Maji, S., Dwivedi, N., Thakur, P., Anjitha Krishna, P. R., Agrawal, R., Sinha, A. K., Khurana, J. P., and Thakur, J. K. 2021. Mediator Subunit, Med14, regulates pre-and post-fertilization developmental events in Arabidopsis. Cell Rep. doi:10.2139/ssrn.3782777
  • Malik, N., Agarwal, P., and Tyagi, A. 2017. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit. Rev. Biochem. Mol. Biol. 52: 475–502. doi:10.1080/10409238.2017.1325830
  • Malik, N., Dwivedi, N., Singh, A. K., Parida, S. K., Agarwal, P., Thakur, J. K., and Tyagi, A. K. 2016. An integrated genomic strategy delineates candidate Mediator genes regulating grain size and weight in rice. Sci. Rep. 6: 23253. doi:10.1038/srep23253
  • Malik, N., Ranjan, R., Parida, S. K., Agarwal, P., and Tyagi, A. K. 2020. Mediator subunit OsMED14_1 plays an important role in rice development. Plant J. 101: 1411–1429. doi:10.1111/tpj.14605
  • Malik, S., and Roeder, R. G. 2005. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30: 256–263. doi:10.1016/j.tibs.2005.03.009
  • Malik, S., and Roeder, R. G. 2010. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11: 761–772. doi:10.1038/nrg2901
  • Mao, X., Kim, J. I., Wheeler, M. T., Heintzelman, A. K., Weake, V. M., and Chapple, C. 2019a. Mutation of Mediator subunit CDK8 counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis MED5 mutant. New Phytol. 223: 233–245. doi:10.1111/nph.15741
  • Mao, X., Weake, V. M., and Chapple, C. 2019b. Mediator function in plant metabolism revealed by large-scale biology. J. Exp. Bot. 70: 5995–6003. doi:10.1093/jxb/erz372
  • Maruri-López, I., Aviles-Baltazar, N. Y., Buchala, A., and Serrano, M. 2019. Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci. 10: 423. doi:10.3389/fpls.2019.00423
  • Mase, K., and Tsukagoshi, H. 2021. Reactive oxygen species link gene regulatory networks during Arabidopsis root development. Front. Plant Sci. 12: 660274. doi:10.3389/fpls.2021.660274
  • Mathur, S., Vyas, S., Kapoor, S., and Tyagi, A. K. 2011. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol. 157: 1609–1627. doi:10.1104/pp.111.188300
  • Mayer, M. P., and Bukau, B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62: 670–684. doi:10.1007/s00018-004-4464-6
  • Mittler, G., Stühler, T., Santolin, L., Uhlmann, T., Kremmer, E., Lottspeich, F., Berti, L., and Meisterernst, M. 2003. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22: 6494–6504. doi:10.1093/emboj/cdg619
  • Mukundan, B., and Ansari, A. 2011. Novel role for Mediator complex subunit Srb5/Med18 in termination of transcription. J. Biol. Chem. 286: 37053–37057. doi:10.1074/jbc.C111.295915
  • Muñoz‐Parra, E., Pelagio‐Flores, R., Raya-González, J., Salmerón‐Barrera, G., Ruiz‐Herrera, L. F., Valencia‐Cantero, E., and López‐Bucio, J. 2017. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling. Plant Cell Environ. 40: 1887–1899. doi:10.1111/pce.12993
  • Myers, L. C., Gustafsson, C. M., Hayashibara, K. C., Brown, P. O., and Kornberg, R. D. 1999. Mediator protein mutations that selectively abolish activated transcription. Proc. Natl. Acad. Sci. U.S.A. 96: 67–72. doi:10.1073/pnas.96.1.67
  • Nagulapalli, M., Maji, S., Dwivedi, N., Dahiya, P., and Thakur, J. K. 2016. Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Res. 44: 1591–1612. doi:10.1093/nar/gkv1135
  • Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signalling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50: 1345–1363. doi:10.1093/pcp/pcp083
  • Nayar, S., Sharma, R., Tyagi, A. K., and Kapoor, S. 2013. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J. Exp. Bot. 64: 4239–4253. doi:10.1093/jxb/ert231
  • Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19: 118–130. doi:10.1105/tpc.106.047761
  • Ou, B., Yin, K.-Q., Liu, S.-N., Yang, Y., Gu, T., Wing Hui, J. M., Zhang, L., Miao, J., Kondou, Y., Matsui, M., Gu, H.-Y., and Qu, L.-J. 2011. A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation. Mol. Plant 4: 546–555. doi:10.1093/mp/ssr002
  • Pasrija, R., and Thakur, J. K. 2012. Analysis of differential expression of Mediator subunit genes in Arabidopsis. Plant Signal. Behav. 7: 1676–1686. doi:10.4161/psb.22438
  • Perez-Martin, F., Yuste‐Lisbona, F. J., Pineda, B., García‐Sogo, B., Olmo, I. D., de Dios Alche, J., Egea, I., Flores, F. B., Piñeiro, M., Jarillo, J. A., Angosto, T., Capel, J., Moreno, V., and Lozano, R. 2018. Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. Plant J. 96: 300–315. doi:10.1111/tpj.14031
  • Pitts, R. J., Cernac, A., and Estelle, M. 1998. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 16: 553–560. doi:10.1046/j.1365-313x.1998.00321.x
  • Poethig, R. S. 2003. Phase change and the regulation of developmental timing in plants. Science 301: 334–336. doi:10.1126/science.1085328
  • Qiao, S., Sun, S., Wang, L., Wu, Z., Li, C., Li, X., Wang, T., Leng, L., Tian, W., Lu, T., and Wang, X. 2017. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell 29: 292–309. doi:10.1105/tpc.16.00611
  • Radoeva, T., and Weijers, D. 2014. A roadmap to embryo identity in plants. Trends Plant Sci. 19: 709–716. doi:10.1016/j.tplants.2014.06.009
  • Raya-González, J., López-Bucio, J. S., Prado-Rodríguez, J. C., Ruiz-Herrera, L. F., Guevara-García, Á. A., and López-Bucio, J. 2017. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. Plant Mol. Biol. 95: 141–156. doi:10.1007/s11103-017-0647-z
  • Raya-González, J., Oropeza‐Aburto, A., López‐Bucio, J. S., Guevara‐García, Á. A., De Veylder, L., López‐Bucio, J., and Herrera‐Estrella, L. 2018. MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. Plant J. 96: 895–909. doi:10.1111/tpj.14114
  • Raya-González, J., Ortiz-Castro, R., Ruíz-Herrera, L. F., Kazan, K., and López-Bucio, J. 2014. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 regulates lateral root formation via auxin signaling in Arabidopsis. Plant Physiol. 165: 880–894. doi:10.1104/pp.114.239806
  • Reeves, W. M., and Hahn, S. 2003. Activator-independent functions of the yeast Mediator Sin4 complex in preinitiation complex formation and transcription reinitiation. Mol. Cell. Biol. 23: 349–358. doi:10.1128/MCB.23.1.349-358.2003
  • Ren, Y., Tian, X., Li, S., Mei, E., He, M., Tang, J., Xu, M., Li, X., Wang, Z., Li, C., and Bu, Q. 2020. Oryza sativa Mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice. J. Integr. Plant Biol. 62: 793–811. doi:10.1111/jipb.12914
  • Rickert, P., Seghezzi, W., Shanahan, F., Cho, H., and Lees, E. 1996. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12: 2631–2640.
  • Rival, P., Press, M. O., Bale, J., Grancharova, T., Undurraga, S. F., and Queitsch, C. 2014. The conserved PFT1 tandem repeat is crucial for proper flowering in Arabidopsis thaliana. Genetics 198: 747–754. doi:10.1534/genetics.114.167866
  • Rogers, E. D., and Benfey, P. N. 2015. Regulation of plant root system architecture: implications for crop advancement. Curr. Opin. Biotechnol. 32:93–98. doi:10.1016/j.copbio.2014.11.015
  • Roudier, F., Fernandez, A. G., Fujita, M., Himmelspach, R., Borner, G. H., Schindelman, G., Song, S., Baskin, T. I., Dupree, P., Wasteneys, G. O., and Benfey, P. N. 2005. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17: 1749–1763. doi:10.1105/tpc.105.031732
  • Ruegger, M., and Chapple, C. 2001. Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics 159: 1741–1749. doi:10.1093/genetics/159.4.1741
  • Ruiz-Aguilar, B., Raya-González, J., López‐Bucio, J. S., Reyes de la Cruz, H., Herrera‐Estrella, L., Ruiz‐Herrera, L. F., Martínez‐Trujillo, M., and López‐Bucio, J. 2020. Mutation of MEDIATOR18 and chromate trigger twinning of the primary root meristem in Arabidopsis. Plant Cell Environ. 43: 1989–1999. doi:10.1111/pce.13786
  • Sablowski, R. 2016. Coordination of plant cell growth and division: collective control or mutual agreement. Curr. Opin. Plant Biol. 34: 54–60. doi:10.1016/j.pbi.2016.09.004
  • Sablowski, R., and Carnier Dornelas, M. 2014. Interplay between cell growth and cell cycle in plants. J. Exp. Bot. 65: 2703–2714. doi:10.1093/jxb/ert354
  • Saini, H. S., and Lalonde, S. 1997. Injuries to reproductive development under water stress, and their consequences for crop productivity. J. Crop Prod. 1: 223–248. doi:10.1300/J144v01n01_10
  • Scheres, B., and Benfey, P. N. 1999. Asymmetric cell division in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 505–537. doi:10.1146/annurev.arplant.50.1.505
  • Schindelman, G., Morikami, A., Jung, J., Baskin, T. I., Carpita, N. C., Derbyshire, P., McCann, M. C., and Benfey, P. N. 2001. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 15: 1115–1127. doi:10.1101/gad.879101
  • Schnurr, J., Shockey, J., and Browse, J. 2004. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16: 629–642. doi:10.1105/tpc.017608
  • Seefried, W. F., Willmann, M. R., Clausen, R. L., and Jenik, P. D. 2014. Global regulation of embryonic patterning in Arabidopsis by microRNAs. Plant Physiol. 165: 670–687. doi:10.1104/pp.114.240846
  • Seo, J. S., Diloknawarit, P., Park, B. S., and Chua, N. H. 2019. ELF18‐INDUCED LONG NONCODING RNA 1 evicts fibrillarin from Mediator subunit to enhance PATHOGENESIS‐RELATED GENE 1 (PR1) expression. New Phytol. 221: 2067–2079. doi:10.1111/nph.15530
  • Seo, J. S., Sun, H. X., Park, B. S., Huang, C. H., Yeh, S. D., Jung, C., and Chua, N. H. 2017. ELF18-INDUCED LONG-NONCODING RNA associates with Mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell 29: 1024–1038. doi:10.1105/tpc.16.00886
  • Shah, K., An, N., Kamanova, S., Chen, L., Jia, P., Zhang, C., Mobeen Tahir, M., Han, M., Ding, Y., Ren, X., and Xing, L. 2021. Regulation of flowering time by improving leaf health markers and expansion by salicylic acid treatment: a new approach to induce flowering in Malus domestica. Front. Plant Sci. 12: 655974. doi:10.3389/fpls.2021.655974
  • Shah, K., Zhang, W., Zhou, H., Cheng, B., Zhang, Z., Yang, Z., Moale, C., Kamanova, S., Han, M., Ren, X., An, N., and Xing, L. 2022. Identification of MdMED family, key role of MdMED81, and salicylic acid at the right time of year triggers MdMED81 to induce flowering in Malus domestica. Sci. Hortic. 304: 111341. doi:10.1016/j.scienta.2022.111341
  • Shao, H., Xia, T., Wu, D., Chen, F., and Mi, G. 2018. Root growth and root system architecture of field-grown maize in response to high planting density. Plant Soil 430: 395–411. doi:10.1007/s11104-018-3720-8
  • Shirley, N. J., Aubert, M. K., Wilkinson, L. G., Bird, D. C., Lora, J., Yang, X., and Tucker, M. R. 2019. Translating auxin responses into ovules, seeds and yield: insight from Arabidopsis and the cereals. J. Integr. Plant Biol. 61: 310–336. doi:10.1111/jipb.12747
  • Shu, Z., Row, S., and Deng, W. M. 2018. Endoreplication: the good, the bad, and the ugly. Trends Cell Biol. 28: 465–474. doi:10.1016/j.tcb.2018.02.006
  • Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. 2004. Toward a systems approach to understanding plant cell walls. Science 306: 2206–2211. doi:10.1126/science.1102765
  • Sorek, N., Szemenyei, H., Sorek, H., Landers, A., Knight, H., Bauer, S., Wemmer, D. E., and Somerville, C. R. 2015. Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc. Natl. Acad. Sci. U.S.A. 112: 16048–16053. doi:10.1073/pnas.1521675112
  • Sozzani, R., Cui, H., Moreno-Risueno, M. A., Busch, W., Van Norman, J. M., Vernoux, T., Brady, S. M., Dewitte, W., Murray, J. A. H., and Benfey, P. N. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132. doi:10.1038/nature09143
  • Srivastava, R., Deng, Y., Shah, S., Rao, A. G., and Howell, S. H. 2013. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25: 1416–1429. doi:10.1105/tpc.113.110684
  • Staswick, P. E., Su, W., and Howell, S. H. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U.S.A. 89: 6837–6840. doi:10.1073/pnas.89.15.6837
  • Stewman, S. F., Jones-Rhoades, M., Bhimalapuram, P., Tchernookov, M., Preuss, D., and Dinner, A. R. 2010. Mechanistic insights from a quantitative analysis of pollen tube guidance. BMC Plant Biol. 10: 32. doi:10.1186/1471-2229-10-32
  • Stout, J., Romero-Severson, E., Ruegger, M. O., and Chapple, C. 2008. Semidominant mutations in Reduced Epidermal Fluorescence 4 reduce phenylpropanoid content in Arabidopsis. Genetics 178: 2237–2251. doi:10.1534/genetics.107.083881
  • Sugimoto-Shirasu, K., and Roberts, K. 2003. “Big it up”: endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 6: 544–553. doi:10.1016/j.pbi.2003.09.009
  • Sun, W., Han, H., Deng, L., Sun, C., Xu, Y., Lin, L., Ren, P., Zhao, J., Zhai, Q., and Li, C. 2020. Mediator subunit MED25 physically interacts with PHYTOCHROME INTERACTING FACTOR4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol. 184: 1549–1562. doi:10.1104/pp.20.00587
  • Sundaravelpandian, K., Chandrika, N. N., and Schmidt, W. 2013. PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol. 197: 151–161. doi:10.1111/nph.12000
  • Suzuki, G., Lucob-Agustin, N., Kashihara, K., Fujii, Y., Inukai, Y., and Gomi, K. 2021. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. Plant Sci. 306: 110853. doi:10.1016/j.plantsci.2021.110853
  • Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., Kato, H., and Iwasaki, Y. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17: 776–790. doi:10.1105/tpc.104.024950
  • Thakur, J. K., Agarwal, P., Parida, S., Bajaj, D., and Pasrija, R. 2013a. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis. Mol. Genet. Genomics 288: 329–346. doi:10.1007/s00438-013-0753-9
  • Thakur, J. K., Arthanari, H., Yang, F., Chau, K. H., Wagner, G., and Näär, A. M. 2009. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J. Biol. Chem. 284: 4422–4428. doi:10.1074/jbc.M808263200
  • Thakur, J. K., Yadav, A., and Yadav, G. 2013b. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res. 42: 2112–2125. doi:10.1093/nar/gkt1147
  • Tian, X., Li, X., Zhou, W., Ren, Y., Wang, Z., Liu, Z., Tang, J., Tong, H., Fang, J., and Bu, Q. 2017. Transcription factor OsWRKY53 positively regulates brassinosteroid signaling and plant architecture. Plant Physiol. 175: 1337–1349. doi:10.1104/pp.17.00946
  • Tian, P., Liu, J., Yan, B., Li, S., Lei, B., Shen, R., Lei, C., and Xu, M. 2022. OsBSK3 positively regulates grain length and weight by inhibiting the phosphatase activity of OsPPKL1. Plants 11: 1586. doi:10.3390/plants11121586
  • Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., and Chu, C. 2012. DWARF AND LOW‐TILLERING acts as a direct downstream target of a GSK3/SHAGGY‐like kinase to mediate brassinosteroid responses in rice. Plant Cell 24: 2562–2577. doi:10.1105/tpc.112.097394
  • Tóth-Petróczy, A., Oldfield, C. J., Simon, I., Takagi, Y., Dunker, A. K., Uversky, V. N., and Fuxreiter, M. 2008. Malleable machines in transcription regulation: the Mediator complex. PLOS Comput. Biol. 4: e1000243. doi:10.1371/journal.pcbi.1000243
  • Tsai, K. L., Tomomori-Sato, C., Sato, S., Conaway, R. C., Conaway, J. W., and Asturias, F. J. 2014. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex. Cell 157: 1430–1444. doi:10.1016/j.cell.2014.05.015
  • Tsutsui, T., Fukasawa, R., Shinmyouzu, K., Nakagawa, R., Tobe, K., Tanaka, A., and Ohkuma, Y. 2013. Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J. Biol. Chem. 288: 20955–20965. doi:10.1074/jbc.M113.486746
  • Tyler, B. M. 2007. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol. Plant Pathol. 8: 1–8. doi:10.1111/j.1364-3703.2006.00373.x
  • Uji, Y., Akimitsu, K., and Gomi, K. 2017. Identification of OsMYC2-regulated senescence-associated genes in rice. Planta 245: 1241–1246. doi:10.1007/s00425-017-2697-5
  • Vanstraelen, M., Baloban, M., Da Ines, O., Cultrone, A., Lammens, T., Boudolf, V., Brown, S. C., De Veylder, L., Mergaert, P., and Kondorosi, E. 2009. APC/CCCS52A complexes control meristem maintenance in the Arabidopsis root. Proc. Natl. Acad. Sci. U.S.A. 106: 11806–11811. doi:10.1073/pnas.0901193106
  • Verger, A., Baert, J.-L., Verreman, K., Dewitte, F., Ferreira, E., Lens, Z., de Launoit, Y., Villeret, V., and Monté, D. 2013. The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members. Nucleic Acids Res. 41: 4847–4859. doi:10.1093/nar/gkt199
  • Verger, A., Monté, D., and Villeret, V. 2019. Twenty years of Mediator complex structural studies. Biochem. Soc. Trans. 47: 399–410. doi:10.1042/BST20180608
  • Verma, A., Prakash, G., Ranjan, R., Tyagi, A. K., and Agarwal, P. 2020. Silencing of an ubiquitin ligase increases grain width and weight in indica rice. Front. Genet. 11: 600378. doi:10.3389/fgene.2020.600378
  • Wager, A., and Browse, J. 2012. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front. Plant Sci. 3: 41. doi:10.3389/fpls.2012.00041
  • Wang, J. W. 2014. Regulation of flowering time by the miR156-mediated age pathway. J. Exp. Bot. 65: 4723–4730. doi:10.1093/jxb/eru246
  • Wang, W., and Chen, X. 2004. HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis. Development 131: 3147–3156. doi:10.1242/dev.01187
  • Wang, J. W., Czech, B., and Weigel, D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138: 738–749. doi:10.1016/j.cell.2009.06.014
  • Wang, R., and Estelle, M. 2014. Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol. 21: 51–58. doi:10.1016/j.pbi.2014.06.006
  • Wang, X., Gao, X., Liu, Y., Fan, S., and Ma, Q. 2020. Progress of research on the regulatory pathway of the plant shade-avoidance syndrome. Front. Plant Sci. 11: 439. doi:10.3389/fpls.2020.00439
  • Wang, Y., Hu, Z., Zhang, J., Yu, X., Guo, J. E., Liang, H., Liao, C., and Chen, G. 2018. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Sci. Rep. 8: 3285. doi:10.1038/s41598-018-21679-1
  • Wang, H., Li, S., Li, Y. A., Xu, Y., Wang, Y., Zhang, R., Sun, W., Chen, Q., Wang, X. J., Li, C., and Zhao, J. 2019a. MED25 connects enhancer–promoter looping and MYC2-dependent activation of jasmonate signalling. Nat. Plants 5: 616–625. doi:10.1038/s41477-019-0441-9
  • Wang, Y., Liang, H., Chen, G., Liao, C., Wang, Y., Hu, Z., and Xie, Q. 2019b. Molecular and phylogenetic analyses of the Mediator subunit genes in Solanum lycopersicum. Front. Genet. 10: 1222. doi:10.3389/fgene.2019.01222
  • Wang, Y., Mostafa, S., Zeng, W., and Jin, B. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 22: 8568. doi:10.3390/ijms22168568
  • Wang, L., and Ruan, Y. L. 2013. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 4: 163. doi:10.3389/fpls.2013.00163
  • Wang, F., Wei, H., Tong, Z., Zhang, X., Yang, Z., Lan, T., Duan, Y., and Wu, W. 2011. Knockdown of NtMed8, a Med8-like gene, causes abnormal development of vegetative and floral organs in tobacco (Nicotiana tabacum L.). Plant Cell Rep. 30: 2117–2129. doi:10.1007/s00299-011-1118-7
  • Wang, C., Yao, J., Du, X., Zhang, Y., Sun, Y., Rollins, J. A., and Mou, Z. 2015. The Arabidopsis Mediator complex subunit16 is a key component of basal resistance against the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Physiol. 169: 856–872. doi:10.1104/pp.15.00351
  • Wasternack, C., and Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111: 1021–1058. doi:10.1093/aob/mct067
  • Wasternack, C., and Strnad, M. 2018. Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int. J. Mol. Sci. 19: 2539. doi:10.3390/ijms19092539
  • Wathugala, D. L., Hemsley, P. A., Moffat, C. S., Cremelie, P., Knight, M. R., and Knight, H. 2012. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol. 195: 217–230. doi:10.1111/j.1469-8137.2012.04138.x
  • Weiner, J. J., Peterson, F. C., Volkman, B. F., and Cutler, S. R. 2010. Structural and functional insights into core ABA signaling. Curr. Opin. Plant Biol. 13: 495–502. doi:10.1016/j.pbi.2010.09.007
  • Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., Lei, C., Zhang, X., Cheng, Z., Guo, X., Wang, J., Jiang, L., Zhai, H., and Wan, J. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18: 1199–1209. doi:10.1038/cr.2008.307
  • Werner, T., and Schmülling, T. 2009. Cytokinin action in plant development. Curr. Opin. Plant Biol. 12: 527–538. doi:10.1016/j.pbi.2009.07.002
  • Wierzbicki, A. T. 2012. The role of long non-coding RNA in transcriptional gene silencing. Curr. Opin. Plant Biol. 15: 517–522. doi:10.1016/j.pbi.2012.08.008
  • Wierzbicki, A. T., Blevins, T., and Swiezewski, S. 2021. Long noncoding RNAs in plants. Annu. Rev. Plant Biol. 72: 245–271. doi:10.1146/annurev-arplant-093020-035446
  • Wierzbicki, A. T., Haag, J. R., and Pikaard, C. S. 2008. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135: 635–648. doi:10.1016/j.cell.2008.09.035
  • Wilson, Z. A., and Zhang, D. B. 2009. From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60: 1479–1492. doi:10.1093/jxb/erp095
  • Wolf, S., Hématy, K., and Höfte, H. 2012. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63: 381–407. doi:10.1146/annurev-arplant-042811-105449
  • Wright, P. E., and Dyson, H. J. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16: 18–29. doi:10.1038/nrm3920
  • Wu, F., Deng, L., Zhai, Q., Zhao, J., Chen, Q., and Li, C. 2020. Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32: 429–448. doi:10.1105/tpc.19.00583
  • Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D., and Poethig, R. S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750–759. doi:10.1016/j.cell.2009.06.031
  • Wu, G., and Poethig, R. S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539–3547. doi:10.1242/dev.02521
  • Xie, M., Zhang, J., Tschaplinski, T. J., Tuskan, G. A., Chen, J. G., and Muchero, W. 2018. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front. Plant Sci. 9: 1427. doi:10.3389/fpls.2018.01427
  • Xu, R., and Li, Y. 2011. Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana. Development 138: 4545–4554. doi:10.1242/dev.071423
  • Xu, R., and Li, Y. 2012. The Mediator complex subunit 8 regulates organ size in Arabidopsis thaliana. Plant Signal. Behav. 7: 182–183. doi:10.4161/psb.18803
  • Xue, D., Guo, N., Zhang, X. L., Zhao, J. M., Bu, Y. P., Jiang, D. L., Wang, X. T., Wang, H. T., Guan, R. Z., and Xing, H. 2019. Genome-wide analysis reveals the role of Mediator complex in the soybean-Phytophthora sojae interaction. Int. J. Mol. Sci. 20: 4570. doi:10.3390/ijms20184570
  • Yamaguchi, A., Wu, M. F., Yang, L., Wu, G., Poethig, R. S., and Wagner, D. 2009. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 17: 268–278. doi:10.1016/j.devcel.2009.06.007
  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12: 1591–1605. doi:10.1105/tpc.12.9.1591
  • Yang, M., Hay, J., and Ruyechan, W. T. 2008. Varicella-zoster virus IE62 protein utilizes the human Mediator complex in promoter activation. J. Virol. 82: 12154–12163. doi:10.1128/JVI.01693-08
  • Yang, Y., Li, L., and Qu, L. J. 2016. Plant Mediator complex and its critical functions in transcription regulation. J. Integr. Plant Biol. 58: 106–118. doi:10.1111/jipb.12377
  • Yang, Y., Ou, B., Zhang, J., Si, W., Gu, H., Qin, G., and Qu, L. J. 2014. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. Plant J. 77: 838–851. doi:10.1111/tpj.12440
  • Yang, L., Xu, M., Koo, Y., He, J., and Poethig, R. S. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2: e00260. doi:10.7554/eLife.00260
  • Yao, T., Park, B. S., Mao, H. Z., Seo, J. S., Ohama, N., Li, Y., Yu, N., Mustafa, N. F., Huang, C. H., and Chua, N. H. 2019. Regulation of flowering time by SPL10/MED25 module in Arabidopsis. New Phytol. 224: 493–504. doi:10.1111/nph.15954
  • Yeh, S. Y., Chen, H. W., Ng, C. Y., Lin, C. Y., Tseng, T. H., Li, W. H., and Ku, M. S. 2015. Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice 8: 36. doi:10.1186/s12284-015-0070-5
  • Yin, L. L., and Xue, H. W. 2012. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24: 1049–1065. doi:10.1105/tpc.111.094854
  • You, Y., Zhai, Q., An, C., and Li, C. 2019. LEUNIG_HOMOLOG mediates MYC2-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31: 2187–2205. doi:10.1105/tpc.19.00115
  • Yu, S., Cao, L., Zhou, C. M., Zhang, T. Q., Lian, H., Sun, Y., Wu, J., Huang, J., Wang, G., and Wang, J. W. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2: e00269. doi:10.7554/eLife.00269
  • Yu, Y., Jia, T., and Chen, X. 2017. The ‘how’ and ‘where’ of plant microRNAs. New Phytol. 216: 1002–1017. doi:10.1111/nph.14834
  • Yuan, H., Xu, Z., Chen, W., Deng, C., Liu, Y., Yuan, M., Gao, P., Shi, H., Tu, B., Li, T., Kang, L., Ma, B., Wang, Y., Wang, J., Chen, X., Li, S., and Qin, P. 2022. OsBSK2, a putative brassinosteroid-signalling kinase, positively controls grain size in rice. J. Exp. Bot. 73: 5529–5542. doi:10.1093/jxb/erac222
  • Yuan, T. T., Xu, H. H., Zhang, K. X., Guo, T. T., and Lu, Y. T. 2014. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ. 37: 1338–1350. doi:10.1111/pce.12233
  • Zhai, Q., and Li, C. 2019. The plant Mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70: 3415–3424. doi:10.1093/jxb/erz233
  • Zhang, C., Bai, M. Y., and Chong, K. 2014a. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep. 33: 683–696. doi:10.1007/s00299-014-1578-7
  • Zhang, X., Gou, M., Guo, C., Yang, H., and Liu, C. J. 2015. Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation. Plant Physiol. 167: 337–350. doi:10.1104/pp.114.249136
  • Zhang, X., Gou, M., and Liu, C. J. 2013. Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25: 4994–5010. doi:10.1105/tpc.113.119644
  • Zhang, L., and Guo, C. 2020. The important function of Mediator complex in controlling the developmental transitions in plants. Int. J. Mol. Sci. 21: 2733. doi:10.3390/ijms21082733
  • Zhang, Y. C., Liao, J. Y., Li, Z. Y., Yu, Y., Zhang, J. P., Li, Q. F., Qu, L. H., Shu, W. S., and Chen, Y. Q. 2014c. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 15: 512. doi:10.1186/s13059-014-0512-1
  • Zhang, Y., Wu, H., Wang, N., Fan, H., Chen, C., Cui, Y., Liu, H., and Ling, H. Q. 2014b. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis. New Phytol. 203: 770–783. doi:10.1111/nph.12860
  • Zhang, X., Zhou, W., Chen, Q., Fang, M., Zheng, S., Scheres, B., and Li, C. 2018. Mediator subunit MED31 is required for radial patterning of Arabidopsis roots. Proc. Natl. Acad. Sci. U.S.A. 115: E5624–E5633. doi:10.1073/pnas.1800592115
  • Zheng, Z., Guan, H., Leal, F., Grey, P. H., and Oppenheimer, D. G. 2013. Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLOS One 8: e53924. doi:10.1371/journal.pone.0053924
  • Zhu, Y., Huang, P., Guo, P., Chong, L., Yu, G., Sun, X., Hu, T., Li, Y., Hsu, C. C., Tang, K., Zhou, Y., Zhao, C., Gao, W., Tao, A., Mengiste, T., and Zhu, J. K. 2020. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signalling and drought response in Arabidopsis. New Phytol. 228: 1573–1590. doi:10.1111/nph.16787
  • Zhu, Y., Schluttenhoffer, C. M., Wang, P., Fu, F., Thimmapuram, J., Zhu, J. K., Lee, S. Y., Yun, D. J., and Mengiste, T. 2014. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in Arabidopsis. Plant Cell 26: 4149–4170. doi:10.1105/tpc.114.128611
  • Zhu, Q. H., and Wang, M. B. 2012. Molecular functions of long non-coding RNAs in plants. Genes 3: 176–190. doi:10.3390/genes3010176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.