352
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Significance of Florigen Activation Complex in Controlling Flowering in Rice

, , , , , & show all

References

  • Abe, M., Kosaka, S., Shibuta, M., Nagata, K., Uemura, T., Nakano, A., and Kaya, H. 2019. Transient activity of the florigen complex during the floral transition in Arabidopsis thaliana. Development 146:dev171504. doi:10.1242/dev.171504
  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. doi:10.1126/science.1115983
  • Andrés, F., Galbraith, D. W., Talón, M., and Domingo, C. 2009. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol. 151:681–690. doi:10.1104/pp.109.139097
  • An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., and Coupland, G. 2004. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626. doi:10.1242/dev.01231
  • Baek, I. S., Park, H. Y., You, M. K., Lee, J. H., and Kim, J. K. 2008. Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis. Mol. Cells. 26:368–372.
  • Bai, B., Zhao, J., Li, Y., Zhang, F., Zhou, J., Chen, F., and Xie, X. 2016. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Plant Sci. 247:25–34. doi:10.1016/j.plantsci.2016.02.017
  • Bian, X. F., Liu, X., Zhao, Z. G., Jiang, L., Gao, H., Zhang, Y. H., Zheng, M., Chen, L. M., Liu, S. J., Zhai, H. Q., and Wan, J. M. 2011. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep. 30:2243–2254. doi:10.1007/s00299-011-1129-4
  • Brambilla, V., Martignago, D., Goretti, D., Cerise, M., Somssich, M., de Rosa, M., Galbiati, F., Shrestha, R., Lazzaro, F., Simon, R., and Fornara, F. 2017. Antagonistic transcription factor complexes modulate the floral transition in rice. Plant Cell. 29:2801–2816. doi:10.1105/tpc.17.00645
  • Cai, M., Chen, S., Wu, M., Zheng, T., Zhou, L., Li, C., Zhang, H., Wang, J., Xu, X., Chai, J., Ren, Y., Guo, X., Zhang, X., Lei, C., Cheng, Z., Wang, J., Jiang, L., Zhai, H., Wang, H., Zhu, S., and Wan, J. 2019b. Early heading 7 interacts with DTH8, and regulates flowering time in rice. Plant Cell Rep. 38:521–532. doi:10.1007/s00299-019-02380-7
  • Cai, M., Zhu, S., Wu, M., Zheng, X., Wang, J., Zhou, L., Zheng, T., Cui, S., Zhou, S., Li, C., Zhang, H., Chai, J., Zhang, X., Jin, X., Cheng, Z., Zhang, X., Lei, C., Ren, Y., Lin, Q., Guo, X., Zhao, L., Wang, J., Zhao, Z., Jiang, L., Wang, H., and Wan, J. 2021. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice. Mol. Plant. 14:330–343. doi:10.1016/j.molp.2020.11.013
  • Cai, Y., Vega-Sánchez, M. E., Park, C. H., Bellizzi, M., Guo, Z., and Wang, G. L. 2014. RBS1, an RNA binding protein, interacts with SPIN1 and is involved in flowering time control in rice. PLoS One. 9:e87258. doi:10.1371/journal.pone.0087258
  • Cai, Y., Chen, X., Xie, K., Xing, Q., Wu, Y., Li, J., Du, C., Sun, Z., and Guo, Z. 2014. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS One. 9:e102529. doi:10.1371/journal.pone.0102529
  • Cai, Z., Zhang, Y., Tang, W., Chen, X., Lin, C., Liu, Y., Ye, Y., Wu, W., and Duan, Y. 2022. LUX ARRHYTHMO interacts with ELF3a and ELF4a to coordinate vegetative growth and photoperiodic flowering in rice. Front. Plant Sci. 13:853042. doi:10.3389/fpls.2022.853042
  • Chai, J., Zhu, S., Li, C., Wang, C., Cai, M., Zheng, X., Zhou, L., Zhang, H., Sheng, P., Wu, M., Jin, X., Cheng, Z., Zhang, X., Lei, C., Ren, Y., Lin, Q., Zhou, S., Guo, X., Wang, J., Zhao, Z., and Wan, J. 2021. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression. Plant Biotechnol. J. 19:300–310. doi:10.1111/pbi.13462
  • Chen, X., Lu, S., Wang, Y., Zhang, X., Lv, B., Luo, L., Xi, D., Shen, J., Ma, H., and Ming, F. 2015. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J. 82:302–314. doi:10.1111/tpj.12819
  • Cho, S. H., Lee, C. H., Gi, E., Yim, Y., Koh, H. J., Kang, K., and Paek, N. C. 2018. The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 chromatin remodeling factor epigenetically regulates genes involved in oxidative stress responses during leaf development. Front. Plant Sci. 9:364. doi:10.3389/fpls.2018.00364
  • Cho, L. H., Yoon, J., Wai, A. H., and An, G. 2018. Histone Deacetylase 701 (HDT701) induces flowering in rice by modulating expression of OsIDS1. Mol. Cells. 41:665–675. doi:10.14348/molcells.2018.0148
  • Choi, S., Lee, S., Kim, S., Lee, Y., Liu, C., Cao, X., and An, G. 2014. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol. 164:1326–1337. doi:10.1104/pp.113.228049
  • Collani, S., Neumann, M., Yant, L., and Schmid, M. 2019. FT modulates genome-wide DNA-binding of the bZIP transcription factor FD. Plant Physiol. 180:367–380. doi:10.1104/pp.18.01505
  • Conti, L., and Bradley, D. 2007. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778. doi:10.1093/pcp/pci151
  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. doi:10.1126/science.1141752
  • Dai, X., Ding, Y., Tan, L., Fu, Y., Liu, F., Zhu, Z., Sun, X., Sun, X., Gu, P., Cai, H., and Sun, C. 2012. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon). J. Integr. Plant Biol. 54:790–799. doi:10.1111/j.1744-7909.2012.01166.x
  • Danilevskaya, O. N., Meng, X., Hou, Z., Ananiev, E. V., and Simmons, C. R. 2008. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 146:250–264. doi:10.1104/pp.107.109538
  • Deng, L., Li, L., Zhang, S., Shen, J., Li, S., Hu, S., Peng, Q., Xiao, J., and Wu, C. 2017. Suppressor of rid1 (SID1) shares common targets with RID1 on florigen genes to initiate floral transition in rice. PLoS Genet. 13:e1006642. doi:10.1371/journal.pgen.1006642
  • Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18:926–936. doi:10.1101/gad.1189604
  • Du, A., Tian, W., Wei, M., Yan, W., He, H., Zhou, D., Huang, X., Li, S., and Ouyang, X. 2017. The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol. Plant. 10:948–961. doi:10.1016/j.molp.2017.05.006
  • Du, Y., He, W., Deng, C., Chen, X., Gou, L., Zhu, F., Guo, W., Zhang, J., and Wang, T. 2016. Flowering-Related RING Protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza Sativa). PLoS One. 11:e0150458. doi:10.1371/journal.pone.0150458
  • El Mannai, Y., Akabane, K., Hiratsu, K., Satoh-Nagasawa, N., and Wabiko, H. 2017. The NAC transcription factor gene OsY37 (ONAC011) promotes leaf senescence and accelerates heading time in rice. Ijms. 18:2165. doi:10.3390/ijms18102165
  • Endo, M., Tanigawa, Y., Murakami, T., Araki, T., and Nagatani, A. 2013. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc. Natl. Acad. Sci. U S A. 110:18017–18022. doi:10.1073/pnas.1310631110
  • Fang, M., Zhou, Z., Zhou, X., Yang, H., Li, M., and Li, H. 2019. Overexpression of OsFTL10 induces early flowering and improves drought tolerance in Oryza sativa L. Peer J 7:e6422. doi:10.7717/peerj.6422
  • Feng, Z., Zhang, L., Yang, C., Wu, T., Lv, J., Chen, Y., Liu, X., Liu, S., Jiang, L., and Wan, J. 2014. EF8 is involved in photoperiodic flowering pathway and chlorophyll biogenesis in rice. Plant Cell Rep. 33:2003–2014. doi:10.1007/s00299-014-1674-8
  • Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. 1999. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. Embo J. 18:4679–4688. doi:10.1093/emboj/18.17.4679
  • Fujino, K., Yamanouchi, U., Nonoue, Y., Obara, M., and Yano, M. 2019. Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice. Breed. Sci. 69:127–132. doi:10.1270/jsbbs.18060
  • Galbiati, F., Chiozzotto, R., Locatelli, F., Spada, A., Genga, A., and Fornara, F. 2016. Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice. Plant. Cell Environ. 39:1982–1993. doi:10.1111/pce.12760
  • Gao, H., Jin, M., Zheng, X.-M., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., Zhou, K., Sheng, P., Ma, J., Ma, W., Deng, H., Jiang, L., Liu, S., Wang, H., Wu, C., Yuan, L., and Wan, J. 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. USA. 111:16337–16342. doi:10.1073/pnas.1418204111
  • Gao, H., Zheng, X.-M., Fei, G., Chen, J., Jin, M., Ren, Y., Wu, W., Zhou, K., Sheng, P., Zhou, F., Jiang, L., Wang, J., Zhang, X., Guo, X., Wang, J.-L., Cheng, Z., Wu, C., Wang, H., and Wan, J.-M. 2013. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet. 9:e1003281. doi:10.1371/journal.pgen.1003281
  • Geng, Y., Zhang, P., Liu, Q., Wei, Z., Riaz, A., Chachar, S., and Gu, X. 2020. Rice homolog of Sin3-associated polypeptide 30, OsSFL1, mediates histone deacetylation to regulate flowering time during short days. Plant Biotechnol. J. 18:325–327. doi:10.1111/pbi.13235
  • Giaume, F., Bono, G. A., Martignago, D., Miao, Y., Vicentini, G., Toriba, T., Wang, R., Kong, D., Cerise, M., Chirivì, D., Biancucci, M., Khahani, B., Morandini, P., Tameling, W., Martinotti, M., Goretti, D., Coupland, G., Kater, M., Brambilla, V., Miki, D., Kyozuka, J., and Fornara, F. 2023. Two florigens and a florigen-like protein form a triple regulatory module at the shoot apical meristem to promote reproductive transitions in rice. Nat. Plants. 9:525–534. doi:10.1038/s41477-023-01383-3
  • Goretti, D., Silvestre, M., Collani, S., Langenecker, T., Méndez, C., Madueño, F., and Schmid, M. 2020. TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol. 182:2081–2095. doi:10.1104/pp.19.00867
  • Goslin, K., Zheng, B., Serrano-Mislata, A., Rae, L., Ryan, P. T., Kwaśniewska, K., Thomson, B., Ó'Maoiléidigh, D. S., Madueño, F., Wellmer, F., and Graciet, E. 2017. Transcription factor interplay between leafy and APETALA1/cauliflower during floral initiation. Plant Physiol. 174:1097–1109. doi:10.1104/pp.17.00098
  • Guo, S., Dai, S., Singh, P. K., Wang, H., Wang, Y., Tan, J. L. H., Wee, W., and Ito, T. 2018. A membrane-bound NAC-Like transcription factor OsNTL5 represses the flowering in Oryza sativa. Front. Plant Sci. 9:555. doi:10.3389/fpls.2018.00555
  • Guo, Y., Wu, Q., Xie, Z., Yu, B., Zeng, R., Min, Q., and Huang, J. 2020. OsFPFL4 is involved in the root and flower development by affecting auxin levels and ROS accumulation in rice (Oryza sativa). Rice 13:2. doi:10.1186/s12284-019-0364-0
  • Hajdu, A., Ádám, É., Sheerin, D. J., Dobos, O., Bernula, P., Hiltbrunner, A., Kozma-Bognár, L., and Nagy, F. 2015. High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. Plant J. 83:794–805. doi:10.1111/tpj.12926
  • Han, S. H., Yoo, S. C., Lee, B. D., An, G., and Paek, N. C. 2015. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Plant. Cell Environ. 38:2527–2540. doi:10.1111/pce.12549
  • Hanano, S., and Goto, K. 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell. 23:3172–3184. doi:10.1105/tpc.111.088641
  • Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722. doi:10.1038/nature01549
  • Hori, K., Ogiso-Tanaka, E., Matsubara, K., Yamanouchi, U., Ebana, K., and Yano, M. 2013. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76:36–46. doi:10.1111/tpj.12268
  • Hu, S., Dong, G., Xu, J., Su, Y., Shi, Z., Ye, W., Li, Y., Li, G., Zhang, B., Hu, J., Qian, Q., Zeng, D., and Guo, L. 2013. A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Rice 6:24. doi:10.1186/1939-8433-6-24
  • Huang, T., Böhlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696. doi:10.1126/science.1117768
  • Huang, Y., Han, Z., Cheng, N., Luo, M., Bai, X., and Xing, Y. 2019. Minor Effects of 11 Dof Family Genes Contribute to the Missing Heritability of Heading Date in Rice (Oryza sativa L.). Front. Plant Sci. 10:1739. doi:10.3389/fpls.2019.01739
  • Hu, Z., Yang, Z., Zhang, Y., Zhang, A., Lu, Q., Fang, Y., and Lu, C. 2022. Autophagy targets Hd1 for vacuolar degradation to regulate rice flowering. Mol. Plant. 15:1137–1156. doi:10.1016/j.molp.2022.05.006
  • Hwang, Y. H., Kim, S. K., Lee, K. C., Chung, Y. S., Lee, J. H., and Kim, J. K. 2016. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. Plant Cell Rep. 35:857–865. doi:10.1007/s00299-015-1927-1
  • Ishikawa, R., Aoki, M., Kurotani, K., Yokoi, S., Shinomura, T., Takano, M., and Shimamoto, K. 2011. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285:461–470. doi:10.1007/s00438-011-0621-4
  • Ishikawa, R., Shinomura, T., Takano, M., and Shimamoto, K. 2009. Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes Genet. Syst. 84:179–184. doi:10.1266/ggs.84.179
  • Itoh, H., Nonoue, Y., Yano, M., and Izawa, T. 2010. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat. Genet. 42:635–638. doi:10.1038/ng.606
  • Izawa, T., Oikawa, T., Tokutomi, S., Okuno, K., and Shimamoto, K. 2000. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J. 22:391–399. doi:10.1046/j.1365-313x.2000.00753.x
  • Jaeger, K. E., and Wigge, P. A. 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17:1050–1054. doi:10.1016/j.cub.2007.05.008
  • Jeong, H. J., Yang, J., Cho, L. H., and An, G. 2016. OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days. Plant Cell Rep. 35:905–920. doi:10.1007/s00299-015-1931-5
  • Jiang, P., Wang, S., Jiang, H., Cheng, B., Wu, K., and Ding, Y. 2018a. The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice. Plant Physiol. 176:2761–2771. doi:10.1104/pp.17.01749
  • Jiang, P., Wang, S., Zheng, H., Li, H., Zhang, F., Su, Y., Xu, Z., Lin, H., Qian, Q., and Ding, Y. 2018b. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. New Phytol. 219:422–435. doi:10.1111/nph.15122
  • Jin, J., Shi, J., Liu, B., Liu, Y., Huang, Y., Yu, Y., and Dong, A. 2015. MORF-RELATED GENE702, a reader protein of trimethylated histone H3 Lysine 4 and histone H3 Lysine 36, is involved in brassinosteroid-regulated growth and flowering time control in rice. Plant Physiol. 168:1275–1285. doi:10.1104/pp.114.255737
  • Kaneko-Suzuki, M., Kurihara-Ishikawa, R., Okushita-Terakawa, C., Kojima, C., Nagano-Fujiwara, M., Ohki, I., Tsuji, H., Shimamoto, K., and Taoka, K. I. 2018. TFL1-Like proteins in rice antagonize rice FT-Like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol. 59:458–468. doi:10.1093/pcp/pcy021
  • Ke, Y., Wu, M., Zhang, Q., Li, X., Xiao, J., and Wang, S. 2019. Hd3a and OsFD1 negatively regulate rice resistance to Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Biochem. Biophys. Res. Commun. 513:775–780. doi:10.1016/j.bbrc.2019.03.169
  • Kim, S. K., Park, H. Y., Jang, Y. H., Lee, K. C., Chung, Y. S., Lee, J. H., and Kim, J. K. 2016. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice. Planta 243:563–576. doi:10.1007/s00425-015-2426-x
  • Kim, S. K., Yun, C. H., Lee, J. H., Jang, Y. H., Park, H. Y., and Kim, J. K. 2008. OsCO3, a CONSTANS-like gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355–365. doi:10.1007/s00425-008-0742-0
  • Kim, S.-R., Torollo, G., Yoon, M.-R., Kwak, J., Lee, C.-K., Prahalada, G. D., Choi, I.-R., Yeo, U.-S., Jeong, O.-Y., Jena, K. K., and Lee, J.-S. 2018. Loss-of-function alleles of Heading date 1 (Hd1) are associated with adaptation of temperate Japonica rice plants to the tropical region. Front. Plant Sci. 9:1827. doi:10.3389/fpls.2018.01827
  • Kim, S. L., Lee, S., Kim, H. J., Nam, H. G., and An, G. 2007. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol. 145:1484–1494. doi:10.1104/pp.107.103291
  • Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. 2012. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell. 24:1848–1859. doi:10.1105/tpc.112.097105
  • Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43:1096–1105. doi:10.1093/pcp/pcf156
  • Komiya, R., Yokoi, S., and Shimamoto, K. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450. doi:10.1242/dev.040170
  • Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. 2008. Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774. doi:10.1242/dev.008631
  • Koo, B. H., Yoo, S. C., Park, J. W., Kwon, C. T., Lee, B. D., An, G., Zhang, Z., Li, J., Li, Z., and Paek, N. C. 2013. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol. Plant. 6:1877–1888. doi:10.1093/mp/sst088
  • Kwon, C. T., Koo, B. H., Kim, D., Yoo, S. C., and Paek, N. C. 2015. Casein kinases I and 2α phosphorylate Oryza sativa pseudo-response regulator 37 (OsPRR37) in photoperiodic flowering in rice. Mol. Cells. 38:81–88. doi:10.14348/molcells.2015.2254
  • Kwon, C. T., Yoo, S. C., Koo, B. H., Cho, S. H., Park, J. W., Zhang, Z., Li, J., Li, Z., and Paek, N. C. 2014. Natural variation in Early flowering 1 contributes to early flowering in japonica rice under long days. Plant. Cell Environ. 37:101–112. doi:10.1111/pce.12134
  • Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. 2000. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41:710–718. doi:10.1093/pcp/41.6.710
  • Lee, D. Y., and An, G. 2012. Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J. 69:445–461. doi:10.1111/j.1365-313X.2011.04804.x
  • Lee, D. Y., Lee, J., Moon, S., Park, S. Y., and An, G. 2007. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J. 49:64–78. doi:10.1111/j.1365-313X.2006.02941.x
  • Lee, J. H., Park, S. H., and Ahn, J. H. 2012. Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins. Plant Sci. 185–186:97–104. doi:10.1016/j.plantsci.2011.09.003
  • Lee, S. J., Kang, K., Lim, J. H., and Paek, N. C. 2022. Natural alleles of CIRCADIAN CLOCK ASSOCIATED1 contribute to rice cultivation by fine-tuning flowering time. Plant Physiol. 190:640–656. doi:10.1093/plphys/kiac296
  • Lee, S., Kim, J., Han, J. J., Han, M. J., and An, G. 2004. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 38:754–764. doi:10.1111/j.1365-313X.2004.02082.x
  • Lee, Y.-S., Jeong, D.-H., Lee, D.-Y., Yi, J., Ryu, C.-H., Kim, S. L., Jeong, H. J., Choi, S. C., Jin, P., Yang, J., Cho, L.-H., Choi, H., and An, G. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J. 63:18–30. doi:10.1111/j.1365-313X.2010.04226.x
  • Lee, Y. S., Lee, D. Y., Cho, L. H., and An, G. 2014. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31. doi:10.1186/s12284-014-0031-4
  • Lee, Y. S., Yi, J., and An, G. 2016. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant Mol. Biol. 91:413–427. doi:10.1007/s11103-016-0474-7
  • Liang, L., Zhang, Z., Cheng, N., Liu, H., Song, S., Hu, Y., Zhou, X., Zhang, J., and Xing, Y. 2021. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. Plant. Cell Environ. 44:842–855. doi:10.1111/pce.13987
  • Liu, B., Wei, G., Shi, J., Jin, J., Shen, T., Ni, T., Shen, W. H., Yu, Y., and Dong, A. 2016a. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytol. 210:577–588. doi:10.1111/nph.13768
  • Li, C., Lin, H., and Dubcovsky, J. 2015. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J. 84:70–82. doi:10.1111/tpj.12960
  • Liu, C., Qu, X., Zhou, Y., Song, G., Abiri, N., Xiao, Y., Liang, F., Jiang, D., Hu, Z., and Yang, D. 2018. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant. Cell Environ. 41:630–645. doi:10.1111/pce.13135
  • Liu, D., and Cai, X. 2013. OsRRMh, a Spen-like gene, plays an important role during the vegetative to reproductive transition in rice. J. Integr. Plant Biol. 55:876–887. doi:10.1111/jipb.12056
  • Liu, H., Gu, F., Dong, S., Liu, W., Wang, H., Chen, Z., and Wang, J. 2016b. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Biochem. Biophys. Res. Commun. 479:173–178. doi:10.1016/j.bbrc.2016.09.013
  • Liu, J., Li, W., Ning, Y., Shirsekar, G., Cai, Y., Wang, X., Dai, L., Wang, Z., Liu, W., and Wang, G. L. 2012. The U-Box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants. Plant Physiol. 160:28–37. doi:10.1104/pp.112.199430
  • Liu, K., Yu, Y., Dong, A., and Shen, W. H. 2017. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development. New Phytol. 215:609–623. doi:10.1111/nph.14596
  • Liu, X., Zhou, C., Zhao, Y., Zhou, S., Wang, W., and Zhou, D. X. 2014. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Front. Plant Sci. 5:591. doi:10.3389/fpls.2014.00591
  • Liu, X., Li, Z., Hou, Y., Wang, Y., Wang, H., Tong, X., Ao, H., and Zhang, J. 2019. Protein interactomic analysis of SAPKs and ABA-inducible bZIPs revealed key roles of SAPK10 in rice flowering. Ijms. 20:1427. doi:10.3390/ijms20061427
  • Li, C., Liu, X. J., Yan, Y., Alam, M. S., Liu, Z., Yang, Z. K., Tao, R. F., Yue, E. K., Duan, M. H., and Xu, J. H. 2022a. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). Plant Sci. 315:111145. doi:10.1016/j.plantsci.2021.111145
  • Li, K., Zhang, S., Tang, S., Zhang, J., Dong, H., Yang, S., Qu, H., Xuan, W., Gu, M., and Xu, G. 2022b. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. Plant Physiol. 189:1608–1624. doi:10.1093/plphys/kiac178
  • Li, Q., Yan, W., Chen, H., Tan, C., Han, Z., Yao, W., Li, G., Yuan, M., and Xing, Y. 2016a. Duplication of OsHAP family genes and their association with heading date in rice. J. Exp. Bot. 67:1759–1768. doi:10.1093/jxb/erv566
  • Li, S., Ying, Y., Secco, D., Wang, C., Narsai, R., Whelan, J., and Shou, H. 2017. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa. Plant. Cell Environ. 40:1487–1499. doi:10.1111/pce.12945
  • Li, S., Yue, W., Wang, M., Qiu, W., Zhou, L., and Shou, H. 2016b. Mutation of OsGIGANTEA leads to enhanced tolerance to polyethylene glycol-generated osmotic stress in rice. Front. Plant Sci. 7:465. doi:10.3389/fpls.2016.00465
  • Li, W., Han, Y., Tao, F., and Chong, K. 2011. Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J. Plant Physiol. 168:1837–1843. doi:10.1016/j.jplph.2011.05.020
  • Li, X., Tian, X., He, M., Liu, X., Li, Z., Tang, J., Mei, E., Xu, M., Liu, Y., Wang, Z., Guan, Q., Meng, W., Fang, J., Zhang, J., and Bu, Q. 2022c. bZIP71 delays flowering by suppressing Ehd1 expression in rice. J. Integr. Plant Biol. 64:1352–1363. doi:10.1111/jipb.13275
  • Luo, X., Yin, M., and He, Y. 2021. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Ijms. 23:466. doi:10.3390/ijms23010466
  • Lyu, F., Han, F., Ge, C. L., Mao, W. K., Chen, L., Hu, H. P., Chen, G. G., Ql, L., and Fang, C. 2023. OmicStudio. Software Ver.3.1.1. Hangzhou: LC-Bio. https://www.omicstudio.cn (accessed Jan 12, 2023).
  • Ma, H., Xu, S. P., Luo, D., Xu, Z. H., and Xue, H. W. 2004. OsPIPK 1, a rice phosphatidylinositol monophosphate kinase, regulates rice heading by modifying the expression of floral induction genes. Plant Mol. Biol. 54:295–310. doi:10.1023/B:PLAN.0000028796.14336.24
  • Matsubara, K., Ogiso-Tanaka, E., Hori, K., Ebana, K., Ando, T., and Yano, M. 2012. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 53:709–716. doi:10.1093/pcp/pcs028
  • Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z. X., Minobe, Y., and Yano, M. 2011. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J. 66:603–612. doi:10.1111/j.1365-313X.2011.04517.x
  • Matsubara, K., Yamanouchi, U., Wang, Z. X., Minobe, Y., Izawa, T., and Yano, M. 2008. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 148:1425–1435. doi:10.1104/pp.108.125542
  • Minh-Thu, P. T., Kim, J. S., Chae, S., Jun, K. M., Lee, G. S., Kim, D. E., Cheong, J. J., Song, S. I., Nahm, B. H., and Kim, Y. K. 2018. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. Mol. Cells. 41:781–798. doi:10.14348/molcells.2018.0203
  • Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T. 2005. Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci. Biotechnol. Biochem. 69:410–414. doi:10.1271/bbb.69.410
  • Nakamura, Y., Kato, T., Yamashino, T., Murakami, M., and Mizuno, T. 2007. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Biosci. Biotechnol. Biochem. 71:1183–1191. doi:10.1271/bbb.60643
  • Nan, H., Cao, D., Zhang, D., Li, Y., Lu, S., Tang, L., Yuan, X., Liu, B., and Kong, F. 2014. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One. 9:e97669. doi:10.1371/journal.pone.0097669
  • Nemoto, Y., Nonoue, Y., Yano, M., and Izawa, T. 2016. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J. 86:221–233. doi:10.1111/tpj.13168
  • Ogiso, E., Takahashi, Y., Sasaki, T., Yano, M., and Izawa, T. 2010. The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol. 152:808–820. doi:10.1104/pp.109.148908
  • Okada, R., Nemoto, Y., Endo-Higashi, N., and Izawa, T. 2017. Synthetic control of flowering in rice independent of the cultivation environment. Nat. Plants. 3:17039. doi:10.1038/nplants.2017.39
  • Osnato, M., Matias-Hernandez, L., Aguilar-Jaramillo, A. E., Kater, M. M., and Pelaz, S. 2020. Genes of the RAV family control heading date and carpel development in rice. Plant Physiol. 183:1663–1680. doi:10.1104/pp.20.00562
  • Osugi, A., Itoh, H., Ikeda-Kawakatsu, K., Takano, M., and Izawa, T. 2011. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol. 157:1128–1137. doi:10.1104/pp.111.181792
  • Park, S. J., Jiang, K., Tal, L., Yichie, Y., Gar, O., Zamir, D., Eshed, Y., and Lippman, Z. B. 2014. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 46:1337–1342. doi:10.1038/ng.3131
  • Park, S. J., Kim, S. L., Lee, S., Je, B. I., Piao, H. L., Park, S. H., Kim, C. M., Ryu, C.-H., Park, S. H., Xuan, Y-h., Colasanti, J., An, G., and Han, C-d. 2008. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J. 56:1018–1029. PMID 18774969. doi:10.1111/j.1365-313X.2008.03667.x
  • Pasriga, R., Yoon, J., Cho, L. H., and An, G. 2019. Overexpression of RICE FLOWERING LOCUS T 1 (RFT1) induces extremely early flowering in rice. Mol. Cells. 42:406–417. doi:10.14348/molcells.2019.0009
  • Peng, L. T., Shi, Z. Y., Li, L., Shen, G. Z., and Zhang, J. L. 2008. Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. J. Plant Physiol. 165:876–885. doi:10.1016/j.jplph.2007.07.010
  • Peng, L. T., Shi, Z. Y., Li, L., Shen, G. Z., and Zhang, J. L. 2007. Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem. Biophys. Res. Commun. 360:251–256. doi:10.1016/j.bbrc.2007.06.041
  • Peng, M., Gan, F., Yang, F., Pan, C., Lin, X., Fan, X., Chen, K., and Gao, P. 2021a. Nuclear factor OsNF-YB4 promotes flowering by negatively regulating the floral repressor gene Ghd7 in rice. Biochem. Biophys. Res. Commun. 571:32–37. doi:10.1016/j.bbrc.2021.07.048
  • Peng, Q., Zhu, C., Liu, T., Zhang, S., Feng, S., and Wu, C. 2021b. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice. Mol. Plant. 14:1135–1148. doi:10.1016/j.molp.2021.04.003
  • Peng, Y., Zou, T., Li, L., Tang, S., Li, Q., Zhang, J., Chen, Y., Wang, X., Yang, G., and Hu, Y. 2019. Map-based cloning and functional analysis of YE1 in rice, which is involved in light-dependent chlorophyll biogenesis and photoperiodic flowering pathway. Ijms. 20:758. doi:10.3390/ijms20030758
  • Pnueli, L., Gutfinger, T., Hareven, D., Ben-Naim, O., Ron, N., Adir, N., and Lifschitz, E. 2001. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell. 13:2687–2702. doi:10.1105/tpc.010293
  • Purwestri, Y. A., Ogaki, Y., Tamaki, S., Tsuji, H., and Shimamoto, K. 2009. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol. 50:429–438. doi:10.1093/pcp/pcp012
  • Qu, L., Chu, Y. J., Lin, W. H., and Xue, H. W. 2021. A secretory phospholipase D hydrolyzes phosphatidylcholine to suppress rice heading time. PLoS Genet. 17:e1009905. doi:10.1371/journal.pgen.1009905
  • Rao, N. N., Prasad, K., Kumar, P. R., and Vijayraghavan, U. 2008. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc. Natl. Acad. Sci. U S A. 105:3646–3651. doi:10.1073/pnas.0709059105
  • Romera-Branchat, M., Severing, E., Pocard, C., Ohr, H., Vincent, C., Née, G., Martinez-Gallegos, R., Jang, S., Andrés, F., Madrigal, P., and Coupland, G. 2020. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP. Cell Rep. 31:107717. doi:10.1016/j.celrep.2020.107717
  • Ryu, C.-H., Lee, S., Cho, L.-H., Kim, S. L., Lee, Y.-S., Choi, S. C., Jeong, H. J., Yi, J., Park, S. J., Han, C.-D., and An, G. 2009. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant. Cell Environ. 32:1412–1427. doi:10.1111/j.1365-3040.2009.02008.x
  • Saito, H., Ogiso-Tanaka, E., Okumoto, Y., Yoshitake, Y., Izumi, H., Yokoo, T., Matsubara, K., Hori, K., Yano, M., Inoue, H., and Tanisaka, T. 2012. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol. 53:717–728. doi:10.1093/pcp/pcs029
  • Samach, A., Onouchi, H., Gold, S. E., Ditta, G. S., Schwarz-Sommer, Z., Yanofsky, M. F., and Coupland, G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616. doi:10.1126/science.288.5471.1613
  • Shannon, S., and Meeks-Wagner, D. R. 1991. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell. 3:877–892. doi:10.1105/tpc.3.9.877
  • Shen, C., Liu, H., Guan, Z., Yan, J., Zheng, T., Yan, W., Wu, C., Zhang, Q., Yin, P., and Xing, Y. 2020. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering. Plant Cell. 32:3469–3484. doi:10.1105/tpc.20.00067
  • Sheng, P., Wu, F., Tan, J., Zhang, H., Ma, W., Chen, L., Wang, J., Wang, J., Zhu, S., Guo, X., Wang, J., Zhang, X., Cheng, Z., Bao, Y., Wu, C., Liu, X., and Wan, J. 2016. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Mol. Biol. 92:209–222. doi:10.1007/s11103-016-0506-3
  • Shibaya, T., Hori, K., Ogiso-Tanaka, E., Yamanouchi, U., Shu, K., Kitazawa, N., Shomura, A., Ando, T., Ebana, K., Wu, J., Yamazaki, T., and Yano, M. 2016. Hd18, Encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice. Plant Cell Physiol. 57:1828–1838. doi:10.1093/pcp/pcw105
  • Shim, Y., Lim, C., Seong, G., Choi, Y., Kang, K., and Paek, N. C. 2022. The AP2/ERF transcription factor LATE FLOWERING SEMI-DWARF suppresses long-day-dependent repression of flowering. Plant. Cell Environ. 45:2446–2459. doi:10.1111/pce.14365
  • Song, S., Chen, Y., Liu, L., Wang, Y., Bao, S., Zhou, X., Teo, Z. W., Mao, C., Gan, Y., and Yu, H. 2017. OsFTIP1-mediated regulation of florigen transport in rice is negatively regulated by the Ubiquitin-Like Domain Kinase OsUbDKγ4. Plant Cell. 29:491–507. doi:10.1105/tpc.16.00728
  • Song, S., Wang, G., Hu, Y., Liu, H., Bai, X., Qin, R., and Xing, Y. 2018a. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J. Exp. Bot. 69:4283–4293. doi:10.1093/jxb/ery232
  • Song, T., Zhang, Q., Wang, H., Han, J., Xu, Z., Yan, S., and Zhu, Z. 2018b. OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress. Plant Physiol. Biochem. 132:183–188. doi:10.1016/j.plaphy.2018.09.007
  • Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120. doi:10.1038/35074138
  • Sui, P., Jin, J., Ye, S., Mu, C., Gao, J., Feng, H., Shen, W. H., Yu, Y., and Dong, A. 2012. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J. 70:340–347. doi:10.1111/j.1365-313X.2011.04873.x
  • Sui, P., Shi, J., Gao, X., Shen, W. H., and Dong, A. 2013. H3K36 methylation is involved in promoting rice flowering. Mol. Plant. 6:975–977. doi:10.1093/mp/sss152
  • Sun, C., Fang, J., Zhao, T., Xu, B., Zhang, F., Liu, L., Tang, J., Zhang, G., Deng, X., Chen, F., Qian, Q., Cao, X., and Chu, C. 2012. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell. 24:3235–3247. doi:10.1105/tpc.112.101436
  • Sun, C., Liu, S., He, C., Zhong, C., Liu, H., Luo, X., Li, K., Zhang, K., Wang, Q., Chen, C., Tang, Y., Yang, B., Chen, X., Xu, P., Zou, T., Li, S., Qin, P., Wang, P., Chu, C., and Deng, X. 2022. Crosstalk between the circadian clock and histone methylation. Ijms. 23:6465. doi:10.3390/ijms23126465
  • Sun, C., Zhang, K., Zhou, Y., Xiang, L., He, C., Zhong, C., Li, K., Wang, Q., Yang, C., Wang, Q., Chen, C., Chen, D., Wang, Y., Liu, C., Yang, B., Wu, H., Chen, X., Li, W., Wang, J., Xu, P., Wang, P., Fang, J., Chu, C., and Deng, X. 2021. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. Plant Biotechnol. J. 19:1644–1657. doi:10.1111/pbi.13580
  • Su, L., Shan, J. X., Gao, J. P., and Lin, H. X. 2016. OsHAL3, a blue light-responsive protein, interacts with the floral regulator Hd1 to activate flowering in rice. Mol. Plant. 9:233–244. doi:10.1016/j.molp.2015.10.009
  • Sun, S. Y., Chao, D. Y., Li, X. M., Shi, M., Gao, J. P., Zhu, M. Z., Yang, H. Q., Luan, S., and Lin, H. X. 2009. OsHAL3 mediates a new pathway in the light-regulated growth of rice. Nat. Cell Biol. 11:845–851. doi:10.1038/ncb1892
  • Sun, X., Zhang, Z., Wu, J., Cui, X., Feng, D., Wang, K., Xu, M., Zhou, L., Han, X., Gu, X., and Lu, T. 2016. The Oryza sativa regulator HDR1 associates with the kinase OsK4 to control photoperiodic flowering. PLoS Genet. 12:e1005927. doi:10.1371/journal.,pgen.1005927
  • Takano, M., Inagaki, N., Xie, X., Kiyota, S., Baba-Kasai, A., Tanabata, T., and Shinomura, T. 2009. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc. Natl. Acad. Sci. U S A. 106:14705–14710. doi:10.1073/pnas.0907378106
  • Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., Hirochika, H., and Shinomura, T. 2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell. 17:3311–3325. doi:10.1105/tpc.105.035899
  • Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., and Shimamoto, K. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036. doi:10.1126/science.1141753
  • Tan, J., Jin, M., Wang, J., Wu, F., Sheng, P., Cheng, Z., Wang, J., Zheng, X., Chen, L., Wang, M., Zhu, S., Guo, X., Zhang, X., Liu, X., Wang, C., Wang, H., Wu, C., and Wan, J. 2016. OsCOL10, a CONSTANS-like gene, functions as a flowering time repressor downstream of Ghd7 in rice. Plant Cell Physiol. 57:798–812. doi:10.1093/pcp/pcw025
  • Tan, J., Wu, F., and Wan, J. 2017. Flowering time regulation by the CONSTANS-Like gene OsCOL10. Plant Signal. Behav. 12:e1267893. doi:10.1080/15592324.2016.1267893
  • Tanaka, N., Itoh, H., Sentoku, N., Kojima, M., Sakakibara, H., Izawa, T., Itoh, J., and Nagato, Y. 2011. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. Plant Cell. 23:2143–2154. doi:10.1105/tpc.111.083436
  • Taoka, K-i., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y. A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., and Shimamoto, K. 2011. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335. doi:10.1038/nature10272
  • Teo, C. J., Takahashi, K., Shimizu, K., Shimamoto, K., and Taoka, K. I. 2017. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol. 58:365–374. doi:10.1093/pcp/pcw197
  • Tsuji, H., Nakamura, H., Taoka, K., and Shimamoto, K. 2013. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol. 54:385–397. doi:10.1093/pcp/pct005
  • Vega-Sánchez, M. E., Zeng, L., Chen, S., Leung, H., and Wang, G. L. 2008. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell. 20:1456–1469. doi:10.1105/tpc.108.058610
  • Wang, F., Han, T., Song, Q., Ye, W., Song, X., Chu, J., Li, J., and Chen, Z. J. 2020a. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell. 32:3124–3138. doi:10.1105/tpc.20.00289
  • Wang, G., Wang, C., Lu, G., Wang, W., Mao, G., Habben, J. E., Song, C., Wang, J., Chen, J., Gao, Y., Liu, J., and Greene, T. W. 2020b. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations. Plant Mol. Biol. 104:137–150. doi:10.1007/s11103-020-01031-w
  • Wang, H., Li, Y., Chern, M., Zhu, Y., Zhang, L.-L., Lu, J.-H., Li, X.-P., Dang, W.-Q., Ma, X.-C., Yang, Z.-R., Yao, S.-Z., Zhao, Z.-X., Fan, J., Huang, Y.-Y., Zhang, J.-W., Pu, M., Wang, J., He, M., Li, W.-T., Chen, X.-W., Wu, X.-J., Li, S.-G., Li, P., Li, Y., Ronald, P. C., and Wang, W.-M. 2021a. Suppression of rice miR168 improves yield, flowering time and immunity. Nat. Plants. 7:129–136. doi:10.1038/s41477-021-00852-x
  • Wang, J., Hu, J., Qian, Q., and Xue, H. W. 2013. LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Mol. Plant. 6:514–527. doi:10.1093/mp/sss096
  • Wang, J., Wu, F., Zhu, S., Xu, Y., Cheng, Z., Wang, J., Li, C., Sheng, P., Zhang, H., Cai, M., Guo, X., Zhang, X., Wang, C., and Wan, J. 2016. Overexpression of OsMYB1R1-VP64 fusion protein increases grain yield in rice by delaying flowering time. FEBS Lett. 590:3385–3396. doi:10.1002/1873-3468.12374
  • Wang, M., Zhu, X., Peng, G., Liu, M., Zhang, S., Chen, M., Liao, S., Wei, X., Xu, P., Tan, X., Li, F., Li, Z., Deng, L., Luo, Z., Zhu, L., Zhao, S., Jiang, D., Li, J., Liu, Z., Xie, X., Wang, S., Wu, A., Zhuang, C., and Zhou, H. 2022. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice. Mol. Plant. 15:956–972. doi:10.1016/j.molp.2022.04.004
  • Wang, P., Gong, R., Yang, Y., and Yu, S. 2019. Ghd8 controls rice photoperiod sensitivity by forming a complex that interacts with Ghd7. BMC Plant Biol. 19:462. doi:10.1186/s12870-019-2053-y
  • Wang, P., Li, J., Zhang, Z., Zhang, Q., Li, X., Xiao, J., Ma, H., and Wang, S. 2021b. OsVQ1 links rice immunity and flowering via interaction with a mitogen-activated protein kinase OsMPK6. Plant Cell Rep. 40:1989–1999. doi:10.1007/s00299-021-02766-6
  • Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., Ou, S., Liu, Y., Zhang, Z., Wang, H., Li, H., Jiang, Z., Zhang, Z., Gao, X., Qiu, Y., Meng, X., Liu, Y., Bai, Y., Liang, Y., Wang, Y., Zhang, L., Li, L., Jing, H., Li, J., Chu, C. and Sodmergen,., 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell. 30:638–651. doi:10.1105/tpc.17.00809
  • Wang, Y., Lu, Y., Guo, Z., Ding, Y., and Ding, C. 2020c. RICE CENTRORADIALIS 1, a TFL1-like gene, responses to drought stress and regulates rice flowering transition. Rice 13:70. doi:10.1186/s12284-020-00430-3
  • Wei, J., Choi, H., Jin, P., Wu, Y., Yoon, J., Lee, Y. S., Quan, T., and An, G. 2016. GL2-type homeobox gene Roc4 in rice promotes flowering time preferentially under long days by repressing Ghd7. Plant Sci. 252:133–143. doi:10.1016/j.plantsci.2016.07.012
  • Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H., and Wan, J. 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153:1747–1758. doi:10.1104/pp.110.156943
  • Weng, X., Wang, L., Wang, J., Hu, Y., Du, H., Xu, C., Xing, Y., Li, X., Xiao, J., and Zhang, Q. 2014. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol. 164:735–747. doi:10.1104/pp.113.231308
  • Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U., and Weigel, D. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. doi:10.1126/science.1114358
  • Wu, C., You, C., Li, C., Long, T., Chen, G., Byrne, M. E., and Zhang, Q. 2008. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. U S A. 105:12915–12920. doi:10.1073/pnas.0806019105
  • Wu, Q., Liu, X., Yin, D., Yuan, H., Xie, Q., Zhao, X., Li, X., Zhu, L., Li, S., and Li, D. 2017a. Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.). BMC Plant Biol. 17:166. doi:10.1186/s12870-017-1109-0
  • Wu, W., Zhang, Y., Zhang, M., Zhan, X., Shen, X., Yu, P., Chen, D., Liu, Q., Sinumporn, S., Hussain, K., Cheng, S., and Cao, L. 2018. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1. Biochem. Biophys. Res. Commun. 495:1349–1355. doi:10.1016/j.bbrc.2017.11.095
  • Wu, W., Zheng, X.-M., Chen, D., Zhang, Y., Ma, W., Zhang, H., Sun, L., Yang, Z., Zhao, C., Zhan, X., Shen, X., Yu, P., Fu, Y., Zhu, S., Cao, L., and Cheng, S. 2017b. OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. Plant Sci. 260:60–69. doi:10.1016/j.plantsci.2017.04.004
  • Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., Wang, Y., and Zhang, M. 2012. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One. 7:e30039. doi:10.1371/journal.pone.0030039
  • Xi, W., Liu, C., Hou, X., and Yu, H. 2010. MOTHER OF FT AND TFL 1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 22:1733–1748. doi:10.1105/tpc.109.073072
  • Xu, P., Wu, T., Ali, A., Zhang, H., Liao, Y., Chen, X., Tian, Y., Wang, W., Fu, X., Li, Y., Fan, J., Wang, H., Tian, Y., Liu, Y., Jiang, Q., Sun, C., Zhou, H., and Wu, X. 2022a. EARLY MORNING FLOWERING1 (EMF1) regulates the floret opening time by mediating lodicule cell wall formation in rice. Plant Biotechnol. J. 20:1441–1443. doi:10.1111/pbi.13860
  • Xu, P., Zhang, Y., Wen, X., Yang, Q., Liu, L., Hao, S., Li, J., Wu, Z., Shah, L., Sohail, A., Liu, Q., Sun, L., Hong, Y., Chen, D., Shen, X., Zhan, X., Cheng, S., Cao, L., and Wu, W. 2022b. The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7. J. Adv. Res 48:17–31. S2090-1232(22)00169-2. doi:10.1016/j.jare.2022.08.001
  • Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., and Zhang, Q. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40:761–767. doi:10.1038/ng.143
  • Xu, Z., Li, E., Xue, G., Zhang, C., Yang, Y., and Ding, Y. 2022c. OsHUB2 inhibits function of OsTrx1 in heading date in rice. Plant J. 110:1670–1680. doi:10.1111/tpj.15763
  • Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., and Araki, T. 2005. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46:1175–1189. PMID:15951566. doi:10.1093/pcp/pci151
  • Yamaguchi, T., and Hirano, H. Y. 2006. Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6:1923–1932. doi:10.1100/tsw.2006.320
  • Yang, J., Lee, S., Hang, R., Kim, S. R., Lee, Y. S., Cao, X., Amasino, R., and An, G. 2013a. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J. 73:566–578. doi:10.1111/tpj.12057
  • Yang, R., Li, P., Mei, H., Wang, D., Sun, J., Yang, C., Hao, L., Cao, S., Chu, C., Hu, S., Song, X., and Cao, X. 2019. Fine-tuning of MiR528 accumulation modulates flowering time in rice. Mol. Plant. 12:1103–1113. doi:10.1016/j.molp.2019.04.009
  • Yang, Y., Peng, Q., Chen, G. X., Li, X. H., and Wu, C. Y. 2013b. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol. Plant. 6:202–215. doi:10.1093/mp/sss062
  • Yang, Y., Fu, D., Zhu, C., He, Y., Zhang, H., Liu, T., Li, X., and Wu, C. 2015. The RING-finger ubiquitin ligase HAF1 mediates heading date 1 degradation during photoperiodic flowering in rice. Plant Cell. 27:2455–2468. doi:10.1105/tpc.15.00320
  • Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., and Sasaki, T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell. 12:2473–2484. doi:10.1105/tpc.12.12.2473
  • Yokoo, T., Saito, H., Yoshitake, Y., Xu, Q., Asami, T., Tsukiyama, T., Teraishi, M., Okumoto, Y., and Tanisaka, T. 2014. Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1. PLoS One. 9:e96064. doi:10.1371/journal.,pone.0096064
  • Yoon, H., Shim, Y., Yoo, S. C., Kang, K., and Paek, N. C. 2021. The rice CHD3/Mi-2 chromatin remodeling factor rolled fine striped promotes flowering independent of photoperiod. Ijms. 22:1303. doi:10.3390/ijms22031303
  • Yoshioka, H., Kimura, K., Ogo, Y., Ohtsuki, N., Nishizawa-Yokoi, A., Itoh, H., Toki, S., and Izawa, T. 2021. Real-time monitoring of key gene products involved in rice photoperiodic flowering. Front. Plant Sci. 12:766450. doi:10.3389/fpls.2021.766450
  • Zeng, L., Liu, X., Zhou, Z., Li, D., Zhao, X., Zhu, L., Luo, Y., and Hu, S. 2018. Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by co-expression and reverse genetic analysis. BMC Plant Biol. 18:157. doi:10.1186/s12870-018-1382-6
  • Zhang, C., Liu, J., Zhao, T., Gomez, A., Li, C., Yu, C., Li, H., Lin, J., Yang, Y., Liu, B., and Lin, C. 2016. A drought-inducible transcription factor delays reproductive timing in rice. Plant Physiol. 171:334–343. doi:10.1104/pp.16.01691
  • Zhang, H., Zhu, S., Liu, T., Wang, C., Cheng, Z., Zhang, X., Chen, L., Sheng, P., Cai, M., Li, C., Wang, J., Zhang, Z., Chai, J., Zhou, L., Lei, C., Guo, X., Wang, J., Wang, J., Jiang, L., Wu, C., and Wan, J. 2019. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. Plant Biotechnol. J. 17:531–539. doi:10.1111/pbi.12996
  • Zhang, H., Jia, J., and Zhai, J. 2022a. Date from: Plant Intron-Splicing Efficiency Database (PISE): exploringsplicing of ∼1,650,000 introns in Arabidopsis, maize, riceandsoybean from ∼57,000 public RNA-seq libraries. Dateset. Plant Public RNA-seq Database. [accessed 2022 Aug 30]. http://ipf.sustech.edu.cn/pub/plantrna/.
  • Zhang, J., Fan, X., Hu, Y., Zhou, X., He, Q., Liang, L., and Xing, Y. 2021a. Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice. J. Integr. Plant Biol. 63:913–923. doi:10.1111/jipb.13013
  • Zhang, L., Li, Q., Dong, H., He, Q., Liang, L., Tan, C., Han, Z., Yao, W., Li, G., Zhao, H., Xie, W., and Xing, Y. 2015. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci. Rep. 5:7663. doi:10.1038/srep07663
  • Zhang, L., Zhang, F., Zhou, X., Poh, T. X., Xie, L., Shen, J., Yang, L., Song, S., Yu, H., and Chen, Y. 2022b. The tetratricopeptide repeat protein OsTPR075 promotes heading by regulating florigen transport in rice. Plant Cell. 34:3632–3646. doi:10.1093/plcell/koac190
  • Zhang, S., Deng, L., Cheng, R., Hu, J., and Wu, C. Y. 2022c. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. J. Integr. Plant Biol. 64:149–165. doi:10.1111/jipb.13196
  • Zhang, S., Zhang, Y., Li, K., Yan, M., Zhang, J., Yu, M., Tang, S., Wang, L., Qu, H., Luo, L., Xuan, W., and Xu, G. 2021b. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Curr. Biol. 31:671–683.e5. doi:10.1016/j.cub.2020.10.095
  • Zhang, Y. J., Zhang, Y., Zhang, L. L., He, J. X., Xue, H. W., Wang, J. W., and Lin, W. H. 2022d. The transcription factor OsGATA6 regulates rice heading date and grain number per panicle. J. Exp. Bot. 73:6133–6149. doi:10.1093/jxb/erac247
  • Zhang, Z., Hu, W., Shen, G., Liu, H., Hu, Y., Zhou, X., Liu, T., and Xing, Y. 2017a. Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci. Rep. 7:5388. doi:10.1038/s41598-017-05873-1
  • Zhang, Z., Zhang, Y., Zhao, H., Huang, F., Zhang, Z., and Lin, W. 2017b. The important functionality of 14-3-3 isoforms in rice roots revealed by affinity chromatography. J. Proteomics. 158:20–30. doi:10.1016/j.jprot.2017.02.008
  • Zhang, Z. H., Zhu, Y. J., Wang, S. L., Fan, Y. Y., and Zhuang, J. Y. 2019c. Importance of the interaction between Heading Date Genes Hd1 and Ghd7 for controlling yield traits in rice. Ijms. 20:516. doi:10.3390/ijms20030516
  • Zhao, J., Huang, X., Ouyang, X., Chen, W., Du, A., Zhu, L., Wang, S., Deng, X. W., and Li, S. 2012. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One. 7:e43705. doi:10.1371/journal.pone.0043705
  • Zhao, X. L., Shi, Z. Y., Peng, L. T., Shen, G. Z., and Zhang, J. L. 2011. An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15. N Biotechnol. 28:788–797. doi:10.1016/j.nbt.2011.04.006
  • Zheng, T., Sun, J., Zhou, S., Chen, S., Lu, J., Cui, S., Tian, Y., Zhang, H., Cai, M., Zhu, S., Wu, M., Wang, Y., Jiang, L., Zhai, H., Wang, H., and Wan, J. 2019. Post-transcriptional regulation of Ghd7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice. New Phytol. 224:306–320. doi:10.1111/nph.16010
  • Zhou, S., Zhu, S., Cui, S., Hou, H., Wu, H., Hao, B., Cai, L., Xu, Z., Liu, L., Jiang, L., Wang, H., and Wan, J. 2021. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytol. 230:943–956. doi:10.1111/nph.17158
  • Zhu, C., Peng, Q., Fu, D., Zhuang, D., Yu, Y., Duan, M., Xie, W., Cai, Y., Ouyang, Y., Lian, X., and Wu, C. 2018. The E3 ubiquitin ligase HAF1 modulates circadian accumulation of EARLY FLOWERING3 to control heading date in rice under long-day conditions. Plant Cell. 30:2352–2367. doi:10.1105/tpc.18.00653

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.