2,427
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reproductive Mechanisms in Ginkgo and Cycas: Sisters but not Twins

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ackerman, J. D. 2000. Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. In: Pollen and Pollination; Dafni A., Hesse M., and Pacini, E., Eds. Springer: Vienna, pp 167–185.
  • Becker, A., Saedler, H., and Theissen, G. 2003. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev. Genes Evol. 213: 567–572. doi:10.1007/s00427-003-0358-0
  • Breygina, M., Klimenko, E., and Schekaleva, O. 2021. Pollen germination and pollen tube growth in gymnosperms. Plants. 10: 1301. doi:10.3390/plants10071301
  • Carothers, I. E. 1907. Development of ovule and female gametophyte in Ginkgo biloba. Bot. Gaz. 43: 116–130.
  • Carrier, D. J., Kendall, E. J., Bock, C. A., Cunningham, J. E., and Dunstan, D. I. 1999. Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J. Exp. Bot. 50:1359–1364. doi:10.1093/jxb/50.337.1359
  • Chamberlain, C. J. 1935. Gymnosperms, structure and evolution. Chicago, Illinois: University of Chicago Press.
  • Chamberlain, C. Y. 1906. The ovule and female gametophyte of Dioon. Bot. Gaz. 42: 321–358. doi:10.1086/329037
  • Cheng, F., Zhao, B., Jiang, B., Lu, Y., Li, W., Jin, B., and Wang, L. 2018. Constituent analysis and proteomic evaluation of ovular secretions in Ginkgo biloba: not just a pollination medium. Plant Signal. Behav. 13: 1–8.
  • Chiwocha, S., and von Aderkas, P. 2002. Endogenous levels of free and conjugated forms of auxin, cytokinins and abscisic acid during seed development in Douglas fir. Plant Growth Regul. 36: 191–200. doi:10.1023/A:1016522422983
  • Condamine, F. L., Nagalingum, N. S., Marshall, C. R., and Morlon, H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 15: 65.
  • Coulter, A., Poulis, B. A. D., and von Aderkas, P. 2012. Pollination drops as dynamic apoplastic secretions. Flora: Morphol. Distrib. Funct. Ecol. Plants. 207: 482–490. doi:10.1016/j.flora.2012.06.004
  • D’Apice, G., Moschin, S., Araniti, F., Nigris, S., Di Marzo, M., Muto, A., Banfi, C., Bruno, L., Colombo, L., and Baldan, B. 2021. The role of pollination in controlling Ginkgo biloba ovule development. New Phytol. 232: 2353–2368. doi:10.1111/nph.17753
  • D’Apice, G., Moschin, S., Nigris, S., Ciarle, R., Muto, A., Bruno, L., and Baldan, B. 2022. Identification of key regulatory genes involved in the sporophyte and gametophyte development in Ginkgo biloba ovules revealed by in situ expression analyses. Am. J. Bot. 109: 887–898. doi:10.1002/ajb2.1862
  • Dehgan, B. and Dehgan, N. B. 1988. Comparative pollen morphology and taxonomic affinities in Cycadales. Am. J. Bot. 75: 1501–1516. doi:10.1002/j.1537-2197.1988.tb11224.x
  • Del Tredici, P. 2007. The phenology of sexual reproduction in Ginkgo biloba: ecological and evolutionary implications. Bot. Rev. 73: 267–278.
  • Donaldson, J .S. (ed.). 2003. Cycads. Status Survey and Conservation Action Plan. IUCN/SSC Cycad Specialist Group. IUCN, Gland (CH) and Cambridge (UK).
  • Douglas, A. W., Stevenson, D. W., and Little, D. P. 2007. Ovule development in Ginkgo biloba L., with emphasis on the collar and nucellus. Int. J. Plant Sci. 168: 1207–1236. doi:10.1086/521693
  • Fernando, D. D., Quinn, C. R., Brenner, E. D., and Owens, J. N. 2010. Male gametophyte development and evolution in extant gymnosperms. Int. J. Plant Dev. Biol. 4: 47–63.
  • Foster, A. S. and Gifford, E. M. 1974. Comparative Morphology of Vascular Plants, 2nd ed. W. H. Freeman and Company: San Francisco. ISBN 978-0716707127.
  • Friedman, W. E. 1987. Growth and development of the male gametophyte of Ginkgo biloba within the ovule (in vivo). Am. J. Bot. 74: 1797–1815. doi:10.1002/j.1537-2197.1987.tb08783.x
  • Friedman, W. E. 1993. The evolutionary history of the seed plant male gametophyte. Trends Ecol. Evol. 8: 15–21. doi:10.1016/0169-5347(93)90125-9
  • Friedman, W. E. and Gifford, E. M. 1997. Development of the male gametophyte of Ginkgo biloba: a window into the reproductive biology of early seed plants. In: Ginkgo Biloba: A Global Treasure; Hori, T., Ridge, R. W., Tulecke, W., Del Tredici, P., Trémouillaux-Guiller, J., and Tobe, H., Eds. Springer: Tokyo, pp 29–49.
  • Gramzow, L., Weilandt, L., and Theißen, G. 2014. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants. Ann. Bot. 114: 1407–1429. doi:10.1093/aob/mcu066
  • Guan, R., Zhao, Y., Zhang, H., Fan, G., Liu, X., Zhou, W., Shi, C., Wang, J., Liu, W., Liang, X., Fu, Y., Ma, K., Zhao, L., Zhang, F., Lu, Z., Lee, S. M., Xu, X., Wang, J., Yang, H., Fu, C., Ge, S., and Chen, W. 2016. Draft genome of the living fossil Ginkgo biloba. Gigascience. 5: 49. doi:10.1186/s13742-016-0154-1
  • Hori, T., and Miyamura, S. 1997. Contribution to the knowledge of fertilization of gymnosperms with flagellated sperm cells: Ginkgo biloba and Cycas revoluta. In: Ginkgo Biloba a Global Treasure; Hori, T., Ridge, R. W., Tulecke, W., Del Tredici, P., Trémouillaux-Guiller, J., and Tobe, H., Eds. Springer: Tokyo, pp 67–84.
  • Hou, C., Li, L., Liu, Z., Su, Y., and Wan, T. 2020. Diversity and expression patterns of MADS-Box genes in Gnetum luofuense - Implications for functional diversity and evolution. Trop. Plant Biol. 13: 36–49. doi:10.1007/s12042-019-09247-x
  • Jager, M., Hassanin, A., Manuel, M., Le Guyader, H., and Deutsch, J. 2003. MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol. Biol. Evol. 20: 842–854. doi:10.1093/molbev/msg089
  • Jin, B., Jiang, X., Wang, D., Zhang, L., Wan, Y., and Wang, L. 2012. The behavior of pollination drop secretion in Ginkgo biloba L. Plant Signal. Behav. 7: 1168–1176. doi:10.4161/psb.21122
  • Jin, B., Wang, D., Lu, Y., Jiang, X. X., Zhang, M., Zhang, L., and Wang, L. 2012. Female short shoot and ovule development in Ginkgo biloba L. with emphasis on structures associated with wind pollination. ISRN Bot. 2012: e230685–9. doi:10.5402/2012/230685 ]
  • Kong, L., Attree, S., and Fowke, L.C. 1997. Changes of endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol. Plant. 101: 23–30. doi:10.1034/j.1399-3054.1997.1010104.x
  • Kong, L., von Aderkas, P., Zaharia, I., Abrams, S. R., Lee, T., and Woods, J. 2012. Analysis of phytohormone profiles during male and female cone initiation and early differentiation in longshoot buds of lodgepole pine. J. Plant Growth Regul. 31: 478–489. doi:10.1007/s00344-011-9257-1
  • Kono, M., and Tobe, H. 2007. Is Cycas revoluta (Cycadaceae) wind- or insect-pollinated? Am. J. Bot. 94: 847–855. doi:10.3732/ajb.94.5.847
  • Lan, Q., Liu, J.F., Shi, S.Q., Deng, N., Jiang, Z.P., and Chang, E.M. 2018. Anatomy, microstructure, and endogenous hormone changes in Gnetum parvifolium during anthesis. J. Sytematics Evol. 56: 14–24. doi:10.1111/jse.12263
  • Lee, C. L. 1955. Fertilization in Ginkgo biloba. Bot. Gaz. 117: 79–100. doi:10.1086/335894
  • Little, S. A., Prior, N. A., Pirone, C., and von Aderkas, P. 2014. Pollen–ovule interactions in gymnosperms. In: Reproductive Biology of Plants; Ramawat, K. G., Mérillon, J. M., and Shivanna, K. R., Eds. CRC Press: Boca Raton, pp. 91–117.
  • Liu, H., Wang, X., Wang, G., Cui, P., Wu, S., Ai, C., Hu, N., Li, A., He, B., Shao, X., Wu, Z., Feng, H., Chang, Y., Mu, D., Hou, J., Dai, X., Yin, T., Ruan, J., and Cao, F. 2021. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat. Plants. 7: 748–756. doi:10.1038/s41477-021-00933-x
  • Liu, Y., Wang, S., Li, L., Yang, T., Dong, S., Wei, T., Wu, S., Liu, Y., Gong, Y., Feng, X., Ma, J., Chang, G., Huang, J., Yang, Y., Wang, H., Liu, M., Xu, Y., Liang, H., Yu, J., Cai, Y., Zhang, Z., Fan, Y., Mu, W., Sahu, S. K., Liu, S., Lang, X., Yang, L., Li, N., Habib, S., Yang, Y., Lindstrom, A. J., Liang, P., Goffinet, B., Zaman, S., Wegrzyn, J. L., Li, D., Liu, J., Cui, J., Sonnenschein, E. C., Wang, X., Ruan, J., Xue, J. Y., Shao, Z. Q., Song, C., Fan, G., Li, Z., Zhang, L., Liu, J., Liu, Z. J., Jiao, Y., Wang, X. Q., Wu, H., Wang, E., Lisby, M., Yang, H., Wang, J., Liu, X., Xu, X., Li, N., Soltis, P. S., Van de Peer, Y., Soltis, D. E., Gong, X., Liu, H., and Zhang, S. 2022. The Cycas genome and the early evolution of seed plants. Nat. Plants 8: 389–401. doi:10.1038/s41477-022-01129-7
  • Lovisetto, A., Baldan, B., Pavanello, A., and Casadoro, G. 2015. Characterization of an AGAMOUS gene expressed throughout development of the fleshy fruit-like structure produced by Ginkgo biloba around its seeds. BMC Evol. Biol. 15: 139.
  • Lovisetto, A., Guzzo, F., Tadiello, A., Toffali, K., Favretto, A., and Casadoro, G. 2012. Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol. Biol. Evol. 29: 409–419. doi:10.1093/molbev/msr244
  • Lu, W., Wang, E., Zhou, W., Li, Y., Li, Z., Song, X., Wang, J., Ren, M., Yang, D., Huo, S., Zhao, Y., and Liang, H. 2021. Morpho-histology, endogenous hormone dynamics, and transcriptome profiling in Dacrydium pectinatum during male cone development. Forests 12: 1598. doi:10.3390/f12111598
  • Lu, Y., Jin, B., Wang, L., Wang, Y., Wang, D., Jiang, X., and Chen, P. 2011. Adaptation of male reproductive structures to wind pollination in gymnosperms: cones and pollen grains. Can. J. Plant Sci. 91: 897–906. doi:10.4141/cjps2011-020
  • Lu, Y., Wang, L., Wang, D., Wang, Y., Zhang, M., Jin, B., and Chen, P. 2011. Male cone morphogenesis, pollen development and pollen dispersal mechanism in Ginkgo biloba L. Can. J. Plant Sci. 91: 971–981. doi:10.4141/cjps2011-036
  • Lu, Y., Zhang, L., Cheng, F., Zhao, J., Cui, J., Li, W., Wang, L., and Jin, B. 2016. The morphology, ultrastructure, element distribution and motion behaviour in pollen of Ginkgo biloba L. Trees 30:2189–2201. doi:10.1007/s00468-016-1444-z
  • Lu, Z., Jiang, B., Zhao, B., Mao, X., Lu, J., Jin, B., and Wang, L. 2020. Liquid profiling in plants: identification and analysis of extracellular metabolites and miRNAs in pollination drops of Ginkgo biloba. Tree Physiol. 40: 1420–1436. doi:10.1093/treephys/tpaa073
  • Maheshwari, P., and Singh, H. 1967. The female gametophyte of gymnosperms. Biol. Rev. 42: 88–129. doi:10.1111/j.1469-185X.1967.tb01341.x
  • Mao, D., Tang, H., Xiao, N., and Wang, L. 2022. Uncovering the secrets of secretory fluids during the reproductive process in Ginkgo biloba. Crit. Rev. Plant Sci. 41: 161–175. doi:10.1080/07352689.2022.2066805
  • Meade, L. E., Plackett, A. R. G., and Hilton, J. 2021. Reconstructing development of the earliest seed integuments raises a new hypothesis for the evolution of ancestral seed-bearing structures. New Phytol. 229: 1782–1794. doi:10.1111/nph.16792
  • Moitra, A. and Bhatnagar, S. P. 1982. Ultrastructure, cytochemical, and histochemical studies on pollen and male gamete development in gymnosperms. Gamete Res. 5:71–112. doi:10.1002/mrd.1120050108
  • Moyroud, E., Monniaux, M., Thévenon, E., Dumas, R., Scutt, C. P., Frohlich, M. W., and Parcy, F. 2017. A link between LEAFY and B‐gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytol. 216: 469–481. doi:10.1111/nph.14483
  • Mundry, M., and Stützel, T. 2004. Morphogenesis of leaves and cones of male short-shoots of Ginkgo biloba L. Flora. Morphol. Distrib. Funct. Ecol. Plants. 199: 437–452. doi:10.1078/0367-2530-00171
  • Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H., and Theissen, G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA. 94: 2415–2420. doi:10.1073/pnas.94.6.2415
  • Nagalingum, N. S., Marshall, C. R., Quental, T. B., Rai, H. S., Little, D. P., and Mathews, S. 2011. Recent synchronous radiation of a living fossil. Science. 334: 796–799. doi:10.1126/science.1209926
  • Nepi, M., Little, S., Guarnieri, M., Nocentini, D., Prior, N. A., Gill, J., Tomlinson, P. B., Ickert-Bond, S. R., Pirone, C., Pacini, E., and von Aderkas, P. 2017. Phylogenetic and functional signals in gymnosperm ovular secretions. Ann. Bot. 120: 923–936. doi:10.1093/aob/mcx103
  • Nepi, M., von Aderkas, P., Wagner, R., Mugnaini, S., Coulter, A., and Pacini, E. 2009. Nectar and pollination drops: how different are they? Ann. Bot. 104: 205–219. doi:10.1093/aob/mcp124
  • Nigris, S., D’Apice, G., Moschin, S., Ciarle, R., and Baldan, B. 2021. Fleshy structures associated with ovule protection and seed dispersal in gymnosperms: a systematic and evolutionary overview. Crit. Rev. Plant Sci. 40: 285–302. doi:10.1080/07352689.2021.1938397
  • Niu, S., Yuan, L., Zhang, Y., Chen, X., and Li, W. 2014. Isolation and expression profiles of gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis. Funct. Integr. Genomics 14: 697–705. doi:10.1007/s10142-014-0387-y
  • Norstog, K. 1972. Role of archegonial neck cells of Zamia and other cycads. Phytomorphology. 22: 125–130.
  • Norstog, K. 1987. Cycads and the origin of insect pollination. Am. Sci. 75: 270–279.
  • Norstog, K. J. 1990. Spermatozoids of Microcycas calocoma: ultrastructure. Bot. Gaz. 151:275–284. doi:10.1086/337827
  • Norstog, K. J., Gifford, E. M., and Stevenson, D.W. 2004. Comparative development of the spermatozoids of cycads and Ginkgo biloba. Bot. Rev. 70: 5–15. doi:10.1663/0006-8101(2004)070[0005:CDOTSO2.0.CO;2]
  • Norstog, K., and Nicholls, T. 1998. The Biology of the Cycads. Cornell University Press: Ithaca, NY.
  • PalDat. 2023. A palynological database, society for the promotion of palynological research in Austria (AutPal). https://www.paldat.org. (accessed Jun 2).
  • Paolillo, D. J. 1981. The swimming sperms of land plants. BioScience. 31: 367–373. doi:10.2307/1308401
  • Prior, N., Little, S. A., Boyes, I., Griffith, P., Husby, C., Pirone-Davies, C., Stevenson, D. W., Tomlinson, P. B., and von Aderkas, P. 2019. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. Plant Reprod. 32: 153–166. doi:10.1007/s00497-018-0348-z
  • Ran, J. H., Shen, T. T., Wang, M. M., and Wang, X. Q. 2018. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc. R Soc. B. 285: 20181012. doi:10.1098/rspb.2018.1012
  • Renzaglia, K. S. and Garbary, D. J. 2001. Motile gametes of land plants: diversity, development, and evolution. Crit. Rev. Plant Sci 20: 107–213. doi:10.1080/20013591099209
  • Reynolds, L. G. 1924. Female gametophyte of Microcycas. Bot. Gaz. 77:391–403. doi:10.1086/333340
  • Sahashi, N. and Ueno, J. 1986. Pollen morphology of Ginkgo biloba and Cycas revoluta. Can. J. Bot. 64: 3075–3078. doi:10.1139/b86-406
  • Sandberg, G. and Ernstsen, A. 1987. Dynamics of indole-3-acetic acid during germination of Picea abies seeds. Tree Physiol. 3: 185–192. doi:10.1093/treephys/3.2.185
  • Sandberg, G., Ernstsen, A., and Hamnede, M. 1987. Dynamics of indole-3 acetic acid and indole-3 ethanol during maturation and germination of Pinus sylvestris seeds. Physiol. Plant. 71: 411–418. doi:10.1111/j.1399-3054.1987.tb02876.x
  • Sedgwick, P. J. 1924. Life history of Encephalartos. Bot. Gaz. 77: 300–310. doi:10.1086/333317
  • Shindo, S., Ito, M., Ueda, K., Kato, M., and Hasebe, M. 1999. Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol. Dev. 1: 180–190. doi:10.1046/j.1525-142x.1999.99024.x
  • Smith, F. G. 1910. Development of the ovulate strobilus and young ovule of Zamia floridana. Bot. Gaz. 50: 128–141. doi:10.1086/330306
  • Soma, S. 1997. Development of the female gametophyte and the embryogeny of Ginkgo biloba. In Ginkgo Biloba a Global Treasure; Hori, T., Ridge, R. W., Tulecke, W., Del Tredici, P., Trémouillaux-Guiller, J., and Tobe, H., Eds. Springer: Tokyo, pp 51–65.
  • Stevenson, D. W. 2013. Chapter 5: Gymnosperm. In Annual Plant Reviews Volume 45: The Evolution of Plant Form; Ambrose, B., and Purrugganan, M., Eds. Hoboken, New Jersey, USA: Blackwell Publishing Ltd. pp 141–149.
  • Stevenson, D. W., Norstog, K., and Fawcett, P. 1998. Pollination biology of cycads. In Reproductive Biology in Systematics, Conservation, and Economic Botany; Owens, S. and Rudall, P., Eds. Royal Botanic Gardens: Kew, UK. pp 277–294.
  • Sundström, J. and Engström, P. 2002. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant J. 31: 161–169.
  • Takaso, T., Kimoto, Y., Owens, J. N., Kono, M., and Mimura, T. 2013. Secretions from the female gametophyte and their role in spermatozoid induction in Cycas revoluta. Plant Reprod. 26: 17–23. doi:10.1007/s00497-012-0204-5
  • Terry, I., Tang, W., Taylor, A., Singh, R., Vovides, A., and Cibrián Jaramillo, A. 2012. An overview of cycad pollination studies. In: Memoirs of the New York Botanical Garden, vol. 106. Springer: New York, NY, pp 352–394. doi:10.21135/893275150.024
  • Toon, A., Terry, L. I., Tang, W., Walter, G. H., and Cook, L. G. 2020. Insect pollination of cycads. Austral Ecol. 45: 1033–1058.
  • Von Aderkas, P., Little, S., Nepi, M., Guarnieri, M., Antony, M., and Takaso, T. 2022. Composition of sexual fluids in Cycas revoluta ovules during pollination and fertilization. Bot. Rev. 88: 453–484. doi:10.1007/s12229-021-09271-1
  • Von Aderkas, P., Prior, N. A., and Little, S. A. 2018. The evolution of sexual fluids in gymnosperms from pollination drops to nectar. Front. Plant Sci. 9: 1844. doi:10.3389/fpls.2018.01844
  • Wang, D., Lu, Y., Zhang, M., Lu, Z., Luo, K., Cheng, F., and Wang, L. 2014. Structure and function of the neck cell during fertilization in Ginkgo biloba L. Trees. 28: 995–1005. doi:10.1007/s00468-014-1013-2
  • Wang, E., Lu, W., Liang, H., Zhang, X., Huo, S., Song, X., Wang, J., and Zhao, Y. 2022. Morpho-histology, endogenous hormone dynamics, and transcriptome profiling in Dacrydium pectinatum during female cone development. Front. Plant Sci. 13: 954788. doi:10.3389/fpls.2022.954788
  • Wang, L., Lu, Z., Li, W., Xu, J., Luo, K., Lu, W., Zhang, L., and Jin, B. 2016. Global comparative analysis of expressed genes in ovules and leaves of Ginkgo biloba L. Tree Genet. Genomes. 12: 29. doi:10.1007/s11295-016-0989-8
  • Yao, Y., Han, R., Gong, Z., Zheng, C., and Zhao, Y. 2018. RNA-seq analysis reveals gene expression profiling of female fertile and sterile ovules of Pinus tabulaeformis Carr. during free nuclear mitosis of the female gametophyte. Int. J. Mol. Sci. 19: 2246. doi:10.3390/ijms19082246
  • Zhang, P., Tan, H. T., Pwee, K. H., and Kumar, P. P. 2004. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 37: 566–577. doi:10.1046/j.1365-313x.2003.01983.x
  • Zhang, X. 2019. Ovule development in Cycads: observation on anatomy and nucellus morphology in Zamia and Cycas. bioRxiv 735837. doi:10.1101/735837
  • Zhao, Y. P., Fan, G., Yin, P. P., Sun, S., Li, N., Hong, X., Hu, G., Zhang, H., Zhang, F. M., Han, J. D., Hao, Y. J., Xu, Q., Yang, X., Xia, W., Chen, W., Lin, H. Y., Zhang, R., Chen, J., Zheng, X. M., Lee, S.M., Lee, J., Uehara, K., Wang, J., Yang, H., Fu, C. X., Liu, X., Xu, X., and Ge, S. 2019. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10: 4201. doi:10.1038/s41467-019-12133-5
  • Zumajo-Cardona, C., Frangos, S., and Stevenson, D. W. 2021. Seed anatomy and development in cycads and Ginkgo, keys for understanding the evolution of seeds. Flora. 285: 151951. doi:10.1016/j.flora.2021.151951