202
Views
0
CrossRef citations to date
0
Altmetric
Articles

Functional Residues in Plant Nutrient Transporters: An Opportunity for Gene Editing to Improve Agronomic Traits

ORCID Icon, &

References

  • Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A. J., and Xu, G. 2009. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. Plant J. 57: 798–809. doi:10.1111/j.1365-313X.2008.03726.x
  • Ajeesh Krishna, T.P., Maharajan, T., Victor Roch, G., Ignacimuthu, S., and Antony Ceasar, S. 2020. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 11: 662. doi:10.3389/fpls.2020.00662
  • Alemán, F., Caballero, F., Ródenas, R., Rivero, R.M., Martínez, V., and Rubio, F. 2014. The F130S point mutation in the arabidopsis high-affinity K + transporter AtHAK5 increases K + over Na + and Cs + selectivity and confers Na + and Cs + tolerance to yeast under heterologous expression. Front. Plant Sci. 5: 430. doi:10.3389/fpls.2014.00430
  • Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A. E., Brutnell, T. P., Citovsky, V., Conrad, L. J., Gelvin, S. B., Jackson, D. P., Kausch, A. P., Lemaux, P. G., Medford, J. I., Orozco-Cárdenas, M. L., Tricoli, D. M., Van Eck, J., Voytas, D. F., Walbot, V., Wang, K., Zhang, Z. J., and Stewart, C. N. 2016. Advancing crop transformation in the era of genome editing. Plant Cell. 28: 1510–1520. doi:10.1105/tpc.16.00196
  • Andrade, S.L.A., Dickmanns, A., Ficner, R., and Einsle, O. 2005. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. U S A. 102: 14994–14999. doi:10.1073/pnas.0506254102
  • Ankit Singh, A. 2022. Chapter 2 - Potassium (K+) transporters in plants: regulation and functional role in K + uptake and homeostasis. In Cation transporters in plants; Upadhyay, S. K. Ed. New York: Academic Press, pp 29–47.
  • Antony Ceasar, S., and Ignacimuthu, S. 2023. CRISPR/Cas genome editing in plants: dawn of agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. Plant Physiol. Biochem. 196: 724–730. doi:10.1016/j.plaphy.2023.02.030
  • Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., and Liu, D. R. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576: 149–157. doi:10.1038/s41586-019-1711-4
  • Bao, A., Burritt, D.J., Chen, H., Zhou, X., Cao, D., and Tran, L.S.P. 2019. The CRISPR/Cas9 system and its applications in crop genome editing. Crit. Rev. Biotechnol. 39: 321–336. doi:10.1080/07388551.2018.1554621
  • Castro-Rodríguez, R., Abreu, I., Reguera, M., Novoa-Aponte, L., Mijovilovich, A., Escudero, V., Jiménez-Pastor, F. J., Abadía, J., Wen, J., Mysore, K. S., Álvarez-Fernández, A., Küpper, H., Imperial, J., and González-Guerrero, M. 2020. The Medicago truncatula Yellow Stripe1-Like3 gene is involved in vascular delivery of transition metals to root nodules. J. Exp. Bot. 71: 7257–7269. doi:10.1093/jxb/eraa390
  • Ceasar, S.A. 2020. Regulation of low phosphate stress in plants. In Plant life under changing environment; Tripathi, D. K., Singh, V. P., Sharma, S., Prasad, S., Dubey, N. K., and Ramawat, N., Eds. London: Elsevier, pp. 123–156.
  • Ceasar, S.A., Baker, A., Muench, S.P., Ignacimuthu, S., and Baldwin, S.A. 2016. The conservation of phosphate-binding residues among PHT1 transporters suggests that distinct transport affinities are unlikely to result from differences in the phosphate-binding site. Biochem. Soc. Trans. 44: 1541–1548. doi:10.1042/BST20160016
  • Ceasar, S.A., Maharajan, T., Hillary, V.E., and Ajeesh Krishna, T.P. 2022. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol. Adv. 59: 107963. doi:10.1016/j.biotechadv.2022.107963
  • Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70: 667–697. doi:10.1146/annurev-arplant-050718-100049
  • Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Misson, J., Schikora, A., Czernic, P., and Mari, S. 2009. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 103: 1–11. doi:10.1093/aob/mcn207
  • Dalmas, O., Sompornpisut, P., Bezanilla, F., and Perozo, E. 2014. Molecular mechanism of Mg2+-dependent gating in CorA. Nat. Commun. 5: 3590. doi:10.1038/ncomms4590
  • Dennison, K.L., Robertson, W.R., Lewis, B.D., Hirsch, R.E., Sussman, M.R., and Spalding, E.P. 2001. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol. 127: 1012–1019.
  • Diatloff, E., Kumar, R., and Schachtman, D. P. 1998. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K + transporter. FEBS Lett. 432: 31–36.
  • Drechsler, N., Zheng, Y., Bohner, A., Nobmann, B., von Wirén, N., Kunze, R., and Rausch, C. 2015. Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K + outward rectifier SKOR in arabidopsis. Plant Physiol. 169: 2832–2847. doi:10.1104/pp.15.01152
  • Dreyer, I., Vergara-Jaque, A., Riedelsberger, J., and González, W. 2019. Exploring the fundamental role of potassium channels in novel model plants. J. Exp. Bot 70: 5985–5989.
  • Ehrnstorfer, I.A., Geertsma, E.R., Pardon, E., Steyaert, J., and Dutzler, R. 2014. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat. Struct. Mol. Biol. 21: 990–996. doi:10.1038/nsmb.2904
  • Ehrnstorfer, I.A., Manatschal, C., Arnold, F.M., Laederach, J., and Dutzler, R. 2017. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family. Nat. Commun. 8: 14033. doi:10.1038/ncomms14033
  • Eide, D., Broderius, M., Fett, J., and Guerinot, M. L. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. U S A. 93:5624–5628.
  • Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M., et al. 2007. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 50: 2.9.1–2.9.31.
  • Fontenot, E. B., Ditusa, S. F., Kato, N., Olivier, D. M., Dale, R., Lin, W.-Y., Chiou, T.-J., Macnaughtan, M. A., and Smith, A. P. 2015. Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant. Cell Environ. 38: 2012–2022. doi:10.1111/pce.12522
  • Ganz, P., Ijato, T., Porras-Murrilo, R., Stührwohldt, N., Ludewig, U., and Neuhäuser, B. 2020. A twin histidine motif is the core structure for high-affinity substrate selection in plant ammonium transporters. J. Biol. Chem. 295: 3362–3370. doi:10.1074/jbc.RA119.010891
  • Gao, C. 2021. Genome engineering for crop improvement and future agriculture. Cell 184: 1621–1635. doi:10.1016/j.cell.2021.01.005
  • Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551: 464–471. doi:10.1038/nature24644
  • Guo, B., Li, Y., Wang, S., Li, D., Lv, C., and Xu, R. 2020. Characterization of the nitrate transporter gene family and functional identification of HvNRT2. 1 in barley (Hordeum vulgare L.). PLOS One. 15: e0232056. doi:10.1371/journal.pone.0232056
  • Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Krämer, U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391–395. doi:10.1038/nature06877
  • Hao, D.-L., Zhou, J.-Y., Yang, S.-Y., Qi, W., Yang, K.-J., and Su, Y.-H. 2020. Function and regulation of ammonium transporters in plants. Int. J. Mol. Sci 21: 3557. doi:10.3390/ijms21103557
  • Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R., and Nureki, O. 2007. Crystal structure of the MgtE Mg 2+ transporter. Nature 448: 1072–1075. doi:10.1038/nature06093
  • Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., Zhang, Z., Chai, X., Wang, H., Wang, Y., Liang, C., Liu, L., Piao, Z., Deng, Q., Deng, K., Xu, C., Liang, Y., Zhang, L., Li, L., and Chu, C. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47: 834–838. doi:10.1038/ng.3337
  • Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. 2005. OsZIP4, a novel zinc-regulated zinc transporter in rice. J. Exp. Bot. 56: 3207–3214. doi:10.1093/jxb/eri317
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. doi:10.1126/science.1225829
  • Kato, T., Kumazaki, K., Wada, M., Taniguchi, R., Nakane, T., Yamashita, K., Hirata, K., Ishitani, R., Ito, K., Nishizawa, T., and Nureki, O. 2019. Crystal structure of plant vacuolar iron transporter VIT1. Nat. Plants 5: 308–315. doi:10.1038/s41477-019-0367-2
  • Kawachi, M., Kobae, Y., Kogawa, S., Mimura, T., Krämer, U., and Maeshima, M. 2012. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1. FEBS J. 279: 2339–2356. doi:10.1111/j.1742-4658.2012.08613.x
  • Kerkeb, L., Mukherjee, I., Chatterjee, I., Lahner, B., Salt, D.E., and Connolly, E.L. 2008. Iron-induced turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 metal transporter requires lysine residues. Plant Physiol. 146: 1964–1973. doi:10.1104/pp.107.113282
  • Khademi, S., O'Connell, J., Remis, J., Robles-Colmenares, Y., Miercke, L. J. W., and Stroud, R. M. 2004. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305: 1587–1594. doi:10.1126/science.1101952
  • Knoop, V., Groth-Malonek, M., Gebert, M., Eifler, K., and Weyand, K. 2005. Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol. Genet. Genomics 274: 205–216. doi:10.1007/s00438-005-0011-x
  • Kobayashi, T., Nozoye, T., and Nishizawa, N.K. 2019. Iron transport and its regulation in plants. Free Radic. Biol. Med 133: 11–20.
  • Krishna, T. P. A., Ceasar, S. A., and Maharajan, T. 2023. Biofortification of crops to fight anemia: role of vacuolar iron transporters. J. Agric. Food Chem. 71:3583–3598. doi:10.1021/acs.jafc.2c07727
  • Krishna, T.P.A., Maharajan, T., and Ceasar, S.A. 2022. The role of membrane transporters in the biofortification of zinc and iron in plants. Biol. Trace Elem. Res. 201(1): 464–478.
  • Kumar, V., Pandita, S., Singh Sidhu, G. P., Sharma, A., Khanna, K., Kaur, P., Bali, A. S., and Setia, R. 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 262: 127810. doi:10.1016/j.chemosphere.2020.127810
  • Léran, S., Varala, K., Boyer, J.-C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., David, L., Dickstein, R., Fernandez, E., Forde, B., Gassmann, W., Geiger, D., Gojon, A., Gong, J.-M., Halkier, B. A., Harris, J. M., Hedrich, R., Limami, A. M., Rentsch, D., Seo, M., Tsay, Y.-F., Zhang, M., Coruzzi, G., and Lacombe, B. 2014. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci. 19: 5–9. doi:10.1016/j.tplants.2013.08.008
  • Li, H., Du, H., Huang, K., Chen, X., Liu, T., Gao, S., Liu, H., Tang, Q., Rong, T., and Zhang, S. 2016. Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize. Plant Cell Physiol. 57: 1153–1168. doi:10.1093/pcp/pcw064
  • Li, J., Wang, L., Zheng, L., Wang, Y., Chen, X., and Zhang, W. 2018. A functional study identifying critical residues involving metal transport activity and selectivity in natural resistance-associated macrophage protein 3 in Arabidopsis thaliana. Int. J. Mol. Sci. 19: 1430.
  • Li, Q., Gao, Y., and Yang, A. 2020. Sulfur homeostasis in plants. Int. J. Mol. Sci 21: 8926.
  • Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J., and Chen, R. 2013. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol. 13: 114. doi:10.1186/1471-2229-13-114
  • Liao, Y.-Y., Li, J.-L., Pan, R.-L., and Chiou, T.-J. 2019. Structure–function analysis reveals amino acid residues of arabidopsis phosphate transporter AtPHT1;1 crucial for its activity. Front. Plant Sci. 10: 1158. doi:10.3389/fpls.2019.01158
  • Lin, S.-H., Kuo, H.-F., Canivenc, G., Lin, C.-S., Lepetit, M., Hsu, P.-K., Tillard, P., Lin, H.-L., Wang, Y.-Y., Tsai, C.-B., Gojon, A., and Tsay, Y.-F. 2008. Mutation of the arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell. 20: 2514–2528. doi:10.1105/tpc.108.060244
  • Liu, K.-H., and Tsay, Y.-F. 2003. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. Embo J. 22: 1005–1013. doi:10.1093/emboj/cdg118
  • Lu, M., Yang, G., Li, P., Wang, Z., Fu, S., Zhang, X., Chen, X., Shi, M., Ming, Z., and Xia, J. 2018. Bioinformatic and functional analysis of a key determinant underlying the substrate selectivity of the Al Transporter, Nrat1. Front. Plant Sci. 9: 606. doi:10.3389/fpls.2018.00606
  • Lu, Y., and Zhu, J.-K. 2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant. 10: 523–525. doi:10.1016/j.molp.2016.11.013
  • Ludewig, U., Neuhäuser, B., and Dynowski, M. 2007. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett. 581:2301–2308. doi:10.1016/j.febslet.2007.03.034
  • Lunin, V. V., Dobrovetsky, E., Khutoreskaya, G., Zhang, R., Joachimiak, A., Doyle, D. A., Bochkarev, A., Maguire, M. E., Edwards, A. M., and Koth, C. M. 2006. Crystal structure of the CorA Mg 2+ transporter. Nature 440: 833–837. doi:10.1038/nature04642
  • McKinzie, A.A., Ryan, R.M., and Vandenberg, R.J. 2010. Site-directed mutagenesis in the study of membrane transporters. Methods Mol. Biol. 637: 277–293.
  • Metje-Sprink, J., Menz, J., Modrzejewski, D., and Sprink, T. 2019. DNA-free genome editing: past, present and future. Front. Plant Sci. 9: 1957.
  • Mian, A., Oomen, R. J. F. J., Isayenkov, S., Sentenac, H., Maathuis, F. J. M., and Véry, A. 2011. Over‐expression of an Na+‐and K+‐permeable HKT transporter in barley improves salt tolerance. Plant J. 68: 468–479. doi:10.1111/j.1365-313X.2011.04701.x
  • Miller, A.J., Shen, Q., and Xu, G. 2009. Freeways in the plant: transporters for N, P and S and their regulation. Curr. Opin. Plant Biol. 12: 284–290. doi:10.1016/j.pbi.2009.04.010
  • Montecillo, J.A V., Chu, L.L., and Bae, H. 2020. CRISPR-Cas9 system for plant genome editing: current approaches and emerging developments. Agronomy 10: 1033.
  • Neuhäuser, B., and Ludewig, U. 2014. Uncoupling of ionic currents from substrate transport in the plant ammonium transporter AtAMT1;2. J. Biol. Chem. 289: 11650–11655. doi:10.1074/jbc.C114.552802
  • Newstead, S., and Parker, J. 2014. Crystal structure of the plant nitrate transporter NRT1.1. Acta Crystallogr. A Found. Adv. 70: C1487–C1487. doi:10.1107/S205327331408512X
  • Ortiz-Ramirez, C., Mora, S.I., Trejo, J., and Pantoja, O. 2011. PvAMT1; 1, a highly selective ammonium transporter that functions as H+/NH4+ symporter. J. Biol. Chem. 286: 31113–31122. doi:10.1074/jbc.M111.261693
  • Parker, J.L., and Newstead, S. 2014. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507: 68–72. doi:10.1038/nature13116
  • Pedas, P., and Husted, S. 2009. Zinc transport mediated by barley ZIP proteins are induced by low pH. Plant Signal. Behav. 4: 842–845.
  • Pedersen, B. P., Kumar, H., Waight, A. B., Risenmay, A. J., Roe-Zurz, Z., Chau, B. H., Schlessinger, A., Bonomi, M., Harries, W., Sali, A., Johri, A. K., and Stroud, R. M. 2013. Crystal structure of a eukaryotic phosphate transporter. Nature 496: 533–536. doi:10.1038/nature12042
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., and Ferrin, T. E. 2021. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30: 70–82. doi:10.1002/pro.3943
  • Puig, S. 2014. Function and regulation of the plant COPT family of high-affinity copper transport proteins. Adv. Bot. 2014: 1–9. doi:10.1155/2014/476917
  • Puig, S., and Peñarrubia, L. 2009. Placing metal micronutrients in context: transport and distribution in plants. Curr. Opin. Plant Biol. 12: 299–306. doi:10.1016/j.pbi.2009.04.008
  • Puig, S., Lee, J., Lau, M., and Thiele, D.J. 2002. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277: 26021–26030. doi:10.1074/jbc.M202547200
  • Qin, Y. J., Wu, W. H., and Wang, Y. 2019. ZmHAK5 and ZmHAK1 function in K + uptake and distribution in maize under low K+ conditions. J. Integr. Plant Biol. 61: 691–705.
  • Qiao, K., Gong, L., Tian, Y., Wang, H., and Chai, T. 2018. The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Rep. 37: 1343–1352. doi:10.1007/s00299-018-2316-3
  • Ram, H., Sardar, S., and Gandass, N. 2021. Vacuolar Iron Transporter (Like) proteins: regulators of cellular iron accumulation in plants. Physiol. Plant 171: 823–832. doi:10.1111/ppl.13363
  • Ren, F., Logeman, B.L., Zhang, X., Liu, Y., Thiele, D.J., and Yuan, P. 2019. X-ray structures of the high-affinity copper transporter Ctr1. Nat. Commun. 10: 1386. doi:10.1038/s41467-019-09376-7
  • Ricachenevsky, F. K., Punshon, T., Lee, S., Oliveira, B. H. N., Trenz, T. S., Maraschin, F. D. S., Hindt, M. N., Danku, J., Salt, D. E., Fett, J. P., and Guerinot, M. L. 2018. Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7. Front. Plant Sci. 9: 865. doi:10.3389/fpls.2018.00865
  • Ródenas, R., Ragel, P., Nieves-Cordones, M., Martínez-Martínez, A., Amo, J., Lara, A., Martínez, V., Quintero, F. J., Pardo, J. M., and Rubio, F. 2021. Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K + transporter HAK51. Plant Physiol. 185: 1860–1874. doi:10.1093/plphys/kiab028
  • Rogers, E. E., Eide, D. J., and Guerinot, M. L. 2000. Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. U S A. 97: 12356–12360. doi:10.1073/pnas.210214197
  • Samyn, D. R., Ruiz-Pávon, L., Andersson, M. R., Popova, Y., Thevelein, J. M., and Persson, B. L. 2012. Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem. J. 445:413–422. doi:10.1042/BJ20112086
  • Sanz, A., Pike, S., Khan, M. A., Carrió-Seguí, À., Mendoza-Cózatl, D. G., Peñarrubia, L., and Gassmann, W. 2019. Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters. Protoplasma 256: 161–170. doi:10.1007/s00709-018-1286-1
  • Sasaki, A., Yamaji, N., and Ma, J. F. 2016. Transporters involved in mineral nutrient uptake in rice. J. Exp. Bot. 67: 3645–3653.
  • Scheben, A., Wolter, F., Batley, J., Puchta, H., and Edwards, D. 2017. Towards CRISPR/CAS crops – Bringing together genomics and genome editing. New Phytol. 216: 682–698. doi:10.1111/nph.14702
  • Schroeder, J. I., Delhaize, E., Frommer, W. B., Guerinot, M. L., Harrison, M. J., Herrera-Estrella, L., Horie, T., Kochian, L. V., Munns, R., Nishizawa, N. K., Tsay, Y.-F., and Sanders, D. 2013. Using membrane transporters to improve crops for sustainable food production. Nature 497: 60–66. doi:10.1038/nature11909
  • Sharma, S., Kaur, G., Kumar, A., Meena, V., Ram, H., Kaur, J., and Pandey, A. K. 2020. Gene expression pattern of vacuolar-iron transporter-like (VTL) genes in hexaploid wheat during metal stress. Plants 9: 229. doi:10.3390/plants9020229
  • Sharma, T., Dreyer, I., and Riedelsberger, J. 2013. The role of K + channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front. Plant Sci. 4: 224. doi:10.3389/fpls.2013.00224
  • Søgaard, R., Alsterfjord, M., Macaulay, N., and Zeuthen, T. 2009. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH. Pflugers Arch. 458: 733–743. doi:10.1007/s00424-009-0665-z
  • Solcan, N., Kwok, J., Fowler, P. W., Cameron, A. D., Drew, D., Iwata, S., and Newstead, S. 2012. Alternating access mechanism in the POT family of oligopeptide transporters. Embo J. 31:3411–3421. doi:10.1038/emboj.2012.157
  • Song, G., Jia, M., Chen, K., Kong, X., Khattak, B., Xie, C., Li, A., and Mao, L. 2016. CRISPR/Cas9: A powerful tool for crop genome editing. Crop J. 4: 75–82. doi:10.1016/j.cj.2015.12.002
  • Suenaga, A., Moriya, K., Sonoda, Y., Ikeda, A., Von Wirén, N., Hayakawa, T., Yamaguchi, J., and Yamaya, T. 2003. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol. 44: 206–211. doi:10.1093/pcp/pcg017
  • Sun, J., Bankston, J. R., Payandeh, J., Hinds, T. R., Zagotta, W. N., and Zheng, N. 2014. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507: 73–77. doi:10.1038/nature13074
  • Takahashi, H. 2019. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J. Exp. Bot. 70: 4075–4087. doi:10.1093/jxb/erz132
  • Tan, S., Zhang, X., Zhang, Q., Li, Y.-M., Zhang, P., and Yin, L.-P. 2022. HRM and CRAC in MxIRT1 act as iron sensors to determine MxIRT1 vesicle-PM fusion and metal transport. Plant Signal. Behav. 17: 2005881.
  • Tascón, I., Sousa, J. S., Corey, R. A., Mills, D. J., Griwatz, D., Aumüller, N., Mikusevic, V., Stansfeld, P. J., Vonck, J., and Hänelt, I. 2020. Structural basis of proton-coupled potassium transport in the KUP family. Nat. Commun. 11: 626. doi:10.1038/s41467-020-14441-7
  • Taudte, N., and Grass, G. 2010. Point mutations change specificity and kinetics of metal uptake by ZupT from Escherichia coli. Biometals 23:643–656. doi:10.1007/s10534-010-9319-z
  • Tong, M., Liu, W., He, H. S., Hu, H. Y., Ding, Y. H., Li, X., Huang, J., and Yin, L. Y. 2020. Identification and functional analysis of the CorA/MGT/MRS2-type magnesium transporter in banana. PLOS One. 15: e0239058. doi:10.1371/journal.pone.0239058
  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., and Curie, C. 2002. IRT1, an arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 14: 1223–1233. doi:10.1105/tpc.001388
  • Victor Roch, G., Maharajan, T., Ceasar, S. A., and Ignacimuthu, S. 2019. The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. CRC. Crit. Rev. Plant Sci 38: 171–198. doi:10.1080/07352689.2019.1645402
  • Wang, L., Chen, K., and Zhou, M. 2021. Structure and function of an Arabidopsis thaliana sulfate transporter. Nat. Commun. 12: 4455. doi:10.1038/s41467-021-24778-2
  • Wang, W., Hu, B., Li, A., and Chu, C. 2020. NRT1.1s in plants: functions beyond nitrate transport. J. Exp. Bot. 71: 4373–4379. doi:10.1093/jxb/erz554
  • Yadav, B., Jogawat, A., Lal, S.K., Lakra, N., Mehta, S., Shabek, N., and Narayan, O.P. 2021. Plant mineral transport systems and the potential for crop improvement. Planta 253: 45. doi:10.1007/s00425-020-03551-7
  • Yamagata, A., Murata, Y., Namba, K., Terada, T., Fukai, S., and Shirouzu, M. 2022. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter. Nat. Commun. 13: 7180. doi:10.1038/s41467-022-34930-1
  • Yuan, M., Li, X., Xiao, J., and Wang, S. 2011. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol. 11: 69. doi:10.1186/1471-2229-11-69
  • Zhang, T., Liu, J., Fellner, M., Zhang, C., Sui, D., and Hu, J. 2017. Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway. Sci. Adv. 3: e1700344. doi:10.1126/sciadv.1700344
  • Zhao Qiufang, J. I. A., Liqiang, C., Shu, J. I. N., and Hui, M. A. H. 1219. Research progress on manganese transporters in plants. Chinese J. Trop. Crop. 40: 1252.
  • Zheng, L., Kostrewa, D., Bernèche, S., Winkler, F.K., and Li, X.-D. 2004. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc. Natl. Acad. Sci. U S A. 101: 17090–17095. doi:10.1073/pnas.0406475101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.