1,350
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polyamines as Universal Bioregulators across Kingdoms and Their role in Cellular Longevity and Death

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Agostinelli, E., Belli, F., Molinari, A., Condello, M., Palmigiani, P., Dalla Vedova, L., Marra, M., Seiler, N., and Arancia, G. 2006. Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): sensitization by heat and MDL 72527. Biochim. Biophys. Acta. 1763:1040–1050. doi:10.1016/j.bbamcr.2006.07.014
  • Agostinelli, E., Marques, M., Calheiros, R., Gil, F., Tempera, G., Viceconte, N., Battaglia, V., Grancara, S., and Toninello, A. 2010a. Polyamines: fundamental characters in chemistry and biology. Amino Acids. 38:393–403. doi:10.1007/s00726-009-0396-7
  • Agostinelli, E., Tempera, G., Viceconte, N., Saccoccio, S., Battaglia, V., Grancara, S., Toninello, A., and Stevanato, R. 2010b. Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids. 38:353–368. doi:10.1007/s00726-009-0431-8
  • Ahou, A., Martignago, D., Alabdallah, O., Tavazza, R., Stano, P., Macone, A., Pivato, M., Masi, A., Rambla, J. L., Vera-Sirera, F., Angelini, R., Federico, R., and Tavladoraki, P. 2014. A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines. J. Exp. Bot. 65:1585–1603. doi:10.1093/jxb/eru016
  • Al-Kafaji, G., Al-Muhtaresh, H. A., and Salem, A. H. 2021. Expression and clinical significance of miR‑1 and miR‑133 in pre‑diabetes. Biomed. Rep. 14:33. doi:10.3892/br.2021.1409
  • Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F., and Altabella, T. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28:1867–1876. doi:10.1007/s10529-006-9179-3
  • Alexander, E. T., Mariner, K., Donnelly, J., Phanstiel, O., and Gilmour, S. K. 2020. Polyamine blocking therapy decreases survival of tumor-infiltrating immunosuppressive myeloid cells and enhances the antitumor efficacy of PD-1 blockade. Mol. Cancer Ther. 19:2012–2022. doi:10.1158/1535-7163.MCT-19-1116
  • Alexander, E. T., Minton, A., Peters, M. C., Phanstiel, O., and Gilmour, S. K. 2017. A novel polyamine blockade therapy activates an anti-tumor immune response. Oncotarget 8:84140–84152. doi:10.18632/oncotarget.20493
  • Angelini, R., Tisi, A., Rea, G., Chen, M. M., Botta, M., Federico, R., and Cona, A. 2008. Involvement of polyamine oxidase in wound healing. Plant Physiol. 146:162–177. doi:10.1104/pp.107.108902
  • Asgher, M., Khan, M. I. R., Anjum, N. A., Verma, S., Vyas, D., Per, T. S., Masood, A., and Khan, N. A. 2018. Ethylene and polyamines in counteracting heavy metal phytotoxicity: a crosstalk perspective. J. Plant Growth Regul. 37:1050–1065. doi:10.1007/s00344-018-9823-x
  • Aye, I. L., Gong, S., Avellino, G., Barbagallo, R., Gaccioli, F., Jenkins, B. J., Koulman, A., Murray, A. J., Stephen Charnock-Jones, D., and Smith, G. C. 2022. Placental sex-dependent spermine synthesis regulates trophoblast gene expression through acetyl-coA metabolism and histone acetylation. Commun. Biol. 5:586. doi:10.1038/s42003-022-03530-6
  • Bachrach, U. 2005. Naturally occurring polyamines: interaction with macromolecules. Curr. Protein Pept. Sci. 6:559–566. doi:10.2174/138920305774933240
  • Bachrach, U. 2010. The early history of polyamine research. Plant Physiol. Biochem. 48:490–495. doi:10.1016/j.plaphy.2010.02.003
  • Bagni, N., and Tassoni, A. 2001. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids. 20:301–317. doi:10.1007/s007260170046
  • Basu, S., Roychoudhury, A., and Sengupta, D. N. 2014. Deciphering the role of various cis-acting regulatory elements in controlling SamDC gene expression in rice. Plant Signal. Behav. 9:e28391. doi:10.4161/psb.28391
  • Belda-Palazón, B., Almendáriz, C., Martí, E., Carbonell, J., and Ferrando, A. 2016. Relevance of the axis spermidine/eIF5A for plant growth and development. Front. Plant Sci. 7:245. doi:10.3389/fpls.2016.00245
  • Bell, E., and Malmberg, R. L. 1990. Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol. Gen. Genet. 224:431–436. doi:10.1007/BF00262438
  • Biłas, R., Szafran, K., Hnatuszko-Konka, K., and Kononowicz, A. K. 2016. Cis-regulatory elements used to control gene expression in plants. Plant Cell. Tiss. Organ Cult. 127:269–287. doi:10.1007/s11240-016-1057-7
  • Biswas, M. S., and Mano, J. 2015. Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-induced programmed cell death in plants. Plant Physiol. 168:885–898. doi:10.1104/pp.115.256834
  • Biswas, M. S., and Mano, J. 2016. Reactive carbonyl species activate caspase-3-like protease to initiate programmed cell death in plants. Plant Cell Physiol. 57:1432–1442. doi:10.1093/pcp/pcw053
  • Brooks, W. H. 2013. Increased polyamines alter chromatin and stabilize autoantigens in autoimmune diseases. Front. Immunol. 4:91. doi:10.3389/fimmu.2013.00091
  • Burcham, P. C., Raso, A., and Kaminskas, L. M. 2012. Chaperone heat shock protein 90 mobilization and hydralazine cytoprotection against acrolein-induced carbonyl stress. Mol. Pharmacol. 82:876–886. doi:10.1124/mol.112.078956
  • Byers, T. L., Lakanen, J. R., Coward, J. K., and Pegg, A. E. 1994. The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine. Biochem. J. 303 (Pt 2):363–368. doi:10.1042/bj3030363
  • Cervelli, M., Polticelli, F., Federico, R., and Mariottini, P. 2003. Heterologous expression and characterization of mouse spermine oxidase. J. Biol. Chem. 278:5271–5276. doi:10.1074/jbc.M207888200
  • Chattopadhyay, M. K., Park, M. H., and Tabor, H. 2008. Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc. Natl. Acad. Sci. U S A. U S A 105:6554–6559. doi:10.1073/pnas.0710970105
  • Chattopadhyay, M. K., Tabor, C. W., and Tabor, H. 2003. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase. Proc. Natl. Acad. Sci. USA. 100:13869–13874. doi:10.1073/pnas.1835918100
  • Che, H., Ma, C., Li, H., Yu, F., Wei, Y., Chen, H., Wu, J., and Ren, Y. 2022. Rebalance of the polyamine metabolism suppresses oxidative stress and delays senescence in nucleus pulposus cells. Oxid. Med. Cell. Longev. 2022:8033353. doi:10.1155/2022/8033353
  • Chen, H. J., Wang, C. C., Chan, D. C., Chiu, C. Y., Yang, R. S., and Liu, S. H. 2019. Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. J. Cachexia. Sarcopenia Muscle. 10:165–176. doi:10.1002/jcsm.12362
  • Chen, K. Y. 1983. An 18000-dalton protein metabolically labeled by polyamines in various mammalian cell lines. Biochim. Biophys. Acta. 756:395–402. doi:10.1016/0304-4165(83)90350-1
  • Cona, A., Rea, G., Angelini, R., Federico, R., and Tavladoraki, P. 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 11:80–88. doi:10.1016/j.tplants.2005.12.009
  • Cooper, H. L., Park, M. H., and Folk, J. E. 1982. Posttranslational formation of hypusine in a single major protein occurs generally in growing cells and is associated with activation of lymphocyte growth. Cell 29:791–797. doi:10.1016/0092-8674(82)90441-x
  • Cooper, H. L., Park, M. H., Folk, J. E., Safer, B., and Braverman, R. 1983. Identification of the hypusine-containing protein hy + as translation initiation factor eIF-4D. Proc. Natl. Acad. Sci. U S A. U S A 80:1854–1857. doi:10.1073/pnas.80.7.1854
  • Daimon, M., Sugiyama, K., Kameda, W., Saitoh, T., Oizumi, T., Hirata, A., Yamaguchi, H., Ohnuma, H., Igarashi, M., and Kato, T. 2003. Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes. Endocr. J. 50:61–67. doi:10.1507/endocrj.50.61
  • Dobrovolskaite, A., Gardner, R. A., Delcros, J.-G., and Phanstiel, O. 2022. Development of polyamine lassos as polyamine transport inhibitors. ACS Med. Chem. Lett. 13:319–326. doi:10.1021/acsmedchemlett.1c00557
  • Doerfel, L. K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H., and Rodnina, M. V. 2013. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339:85–88. doi:10.1126/science.1229017
  • Duguay, J., Jamal, S., Liu, Z., Wang, T. W., and Thompson, J. E. 2007. Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. J. Plant Physiol. 164:408–420. doi:10.1016/j.jplph.2006.02.001
  • Eisenberg, T., Abdellatif, M., Schroeder, S., Primessnig, U., Stekovic, S., Pendl, T., Harger, A., Schipke, J., Zimmermann, A., Schmidt, A., Tong, M., Ruckenstuhl, C., Dammbrueck, C., Gross, A. S., Herbst, V., Magnes, C., Trausinger, G., Narath, S., Meinitzer, A., Hu, Z., Kirsch, A., Eller, K., Carmona-Gutierrez, D., Büttner, S., Pietrocola, F., Knittelfelder, O., Schrepfer, E., Rockenfeller, P., Simonini, C., Rahn, A., Horsch, M., Moreth, K., Beckers, J., Fuchs, H., Gailus-Durner, V., Neff, F., Janik, D., Rathkolb, B., Rozman, J., De Angelis, M. H., Moustafa, T., Haemmerle, G., Mayr, M., Willeit, P., Von Frieling-Salewsky, M., Pieske, B., Scorrano, L., Pieber, T., Pechlaner, R., Willeit, J., Sigrist, S. J., Linke, W. A., Mühlfeld, C., Sadoshima, J., Dengjel, J., Kiechl, S., Kroemer, G., Sedej, S., and Madeo, F. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22:1428–1438. doi:10.1038/nm.4222
  • Eisenberg, T., Knauer, H., Schauer, A., Büttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., Megalou, E., Weiskopf, D., Laun, P., Heeren, G., Breitenbach, M., Grubeck-Loebenstein, B., Herker, E., Fahrenkrog, B., Fröhlich, K.-U., Sinner, F., Tavernarakis, N., Minois, N., Kroemer, G., and Madeo, F. 2009. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11:1305–1314. doi:10.1038/ncb1975
  • Faundes, V., Jennings, M. D., Crilly, S., Legraie, S., Withers, S. E., Cuvertino, S., Davies, S. J., Douglas, A. G. L., Fry, A. E., Harrison, V., Amiel, J., Lehalle, D., Newman, W. G., Newkirk, P., Ranells, J., Splitt, M., Cross, L. A., Saunders, C. J., Sullivan, B. R., Granadillo, J. L., Gordon, C. T., Kasher, P. R., Pavitt, G. D., and Banka, S. 2021. Impaired eIF5A function causes a Mendelian disorder that is partially rescued in model systems by spermidine. Nat. Commun. 12:833. doi:10.1038/s41467-021-21053-2
  • Frostesjö, L., Holm, I., Grahn, B., Page, A. W., Bestor, T. H., and Heby, O. 1997. Interference with DNA methyltransferase activity and genome methylation during F9 teratocarcinoma stem cell differentiation induced by polyamine depletion. J. Biol. Chem. 272:4359–4366. doi:10.1074/jbc.272.7.4359
  • Fuell, C., Elliott, K. A., Hanfrey, C. C., Franceschetti, M., and Michael, A. J. 2010. Polyamine biosynthetic diversity in plants and algae. Plant Physiol. Biochem. 48:513–520. doi:10.1016/j.plaphy.2010.02.008
  • Fukui, T., Soda, K., Takao, K., and Rikiyama, T. 2019. Extracellular spermine activates DNA methyltransferase 3A and 3B. Int. J. Mol. Sci. 20:1254. doi:10.3390/ijms20051254
  • Gerlin, L., Baroukh, C., and Genin, S. 2021. Polyamines: double agents in disease and plant immunity. Trends Plant Sci. 26:1061–1071. doi:10.1016/j.tplants.2021.05.007
  • Gerner, E. W., Mamont, P. S., Bernhardt, A., and Siat, M. 1986. Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells. Biochem. J. 239:379–386. doi:10.1042/bj2390379
  • Gonzalez, M. E., Jasso‐Robles, F. I., Flores‐Hernández, E., Rodríguez‐Kessler, M., and Pieckenstain, F. L. 2021. Current status and perspectives on the role of polyamines in plant immunity. Ann. Appl. Biol. 178:244–255. doi:10.1111/aab.12670
  • Green, D. R. 2019. Polyamines and aging: a CLEAR connection? Mol. Cell. 76:5–7. doi:10.1016/j.molcel.2019.09.003
  • Guo, Y., Ye, Q., Deng, P., Cao, Y., He, D., Zhou, Z., Wang, C., Zaytseva, Y. Y., Schwartz, C. E., Lee, E. Y., Evers, B. M., Morris, A. J., Liu, S., and She, Q.-B. 2020. Spermine synthase and MYC cooperate to maintain colorectal cancer cell survival by repressing Bim expression. Nat. Commun. 11:3243. doi:10.1038/s41467-020-17067-x
  • Gutierrez, E., Shin, B. S., Woolstenhulme, C. J., Kim, J. R., Saini, P., Buskirk, A. R., and Dever, T. E. 2013. eIF5A promotes translation of polyproline motifs. Mol. Cell. 51:35–45. doi:10.1016/j.molcel.2013.04.021
  • Hackenberg, M., Gustafson, P., Langridge, P., and Shi, B. J. 2015. Differential expression of micro RNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol. J. 13:2–13. doi:10.1111/pbi.12220
  • Hajdinák, P., Czobor, Á., and Szarka, A. 2019. The potential role of acrolein in plant ferroptosis-like cell death. PLOS One. 14:e0227278. doi:10.1371/journal.pone.0227278
  • Hanauske-Abel, H., Park, M.-H., Hanauske, A.-R., Popowicz, A., Lalande, M., and Folk, J. 1994. Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim. Biophys. Acta. 1221:115–124. doi:10.1016/0167-4889(94)90003-5
  • Handa, A. K., Fatima, T., and Mattoo, A. K. 2018. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front. Chem. 6:10. doi:10.3389/fchem.2018.00010
  • Hanfrey, C. C., Pearson, B. M., Hazeldine, S., Lee, J., Gaskin, D. J., Woster, P. M., Phillips, M. A., and Michael, A. J. 2011. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286:43301–43312. doi:10.1074/jbc.M111.307835
  • Hiramatsu, K., Sugimoto, M., Kamei, S., Hoshino, M., Kinoshita, K., Iwasaki, K., and Kawakita, M. 1997. Diagnostic and prognostic usefulness of N 1, N 8-diacetylspermidine and N 1, N 12-diacetylspermine in urine as novel markers of malignancy. J. Cancer Res. Clin. Oncol. 123:539–545. doi:10.1007/s004320050102
  • Hiramatsu, K., Takahashi, K., Yamaguchi, T., Matsumoto, H., Miyamoto, H., Tanaka, S., Tanaka, C., Tamamori, Y., Imajo, M., Kawaguchi, M., Toi, M., Mori, T., and Kawakita, M. 2005. N 1, N 12-diacetylspermine as a sensitive and specific novel marker for early-and late-stage colorectal and breast cancers. Clin. Cancer Res. 11:2986–2990. doi:10.1158/1078-0432.CCR-04-2275
  • Hussain, A., Saraiva, L. R., Ferrero, D. M., Ahuja, G., Krishna, V. S., Liberles, S. D., and Korsching, S. I. 2013. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. U S A. U S A 110:19579–19584. doi:10.1073/pnas.1318596110
  • Igarashi, K., and Kashiwagi, K. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271:559–564. doi:10.1006/bbrc.2000.2601
  • Igarashi, K., and Kashiwagi, K. 2006. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J. Biochem. 139:11–16. doi:10.1093/jb/mvj020
  • Igarashi, K., and Kashiwagi, K. 2010. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42:39–51. doi:10.1016/j.biocel.2009.07.009
  • Igarashi, K., and Kashiwagi, K. 2011. Protein-conjugated acrolein as a biochemical marker of brain infarction. Mol. Nutr. Food Res. 55:1332–1341. doi:10.1002/mnfr.201100068
  • Igarashi, K., and Kashiwagi, K. 2018. Effects of polyamines on protein synthesis and growth of Escherichia coli. J. Biol. Chem. 293:18702–18709. doi:10.1074/jbc.TM118.003465
  • Igarashi, K., and Kashiwagi, K. 2019. The functional role of polyamines in eukaryotic cells. Int. J. Biochem. Cell Biol. 107:104–115. doi:10.1016/j.biocel.2018.12.012
  • Imre, L., Niaki, E. F., Bosire, R., Nanasi, P., Jr, Nagy, P., Bacso, Z., Hamidova, N., Pommier, Y., Jordan, A., and Szabo, G. 2022. Nucleosome destabilization by polyamines. Arch. Biochem. Biophys. 722:109184. doi:10.1016/j.abb.2022.109184
  • Inal, B., Türktaş, M., Eren, H., Ilhan, E., Okay, S., Atak, M., Erayman, M., and Unver, T. 2014. Genome-wide fungal stress responsive miRNA expression in wheat. Planta 240:1287–1298. doi:10.1007/s00425-014-2153-8
  • Ioannidis, N. E., Zschiesche, W., Barth, O., Kotakis, C., Navakoudis, E., Humbeck, K., and Kotzabasis, K. 2014. The genetic reprogramming of polyamine homeostasis during the functional assembly, maturation, and senescence-specific decline of the photosynthetic apparatus in Hordeum vulgare. J. Plant Growth Regul. 33:77–90. doi:10.1007/s00344-013-9387-8
  • Kamada-Nobusada, T., Hayashi, M., Fukazawa, M., Sakakibara, H., and Nishimura, M. 2008. A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol. 49:1272–1282. doi:10.1093/pcp/pcn114
  • Kambis, T. N., Tofilau, H., Gawargi, F. I., Chandra, S., and Mishra, P. K. 2021. Regulating polyamine metabolism by miRNAs in diabetic cardiomyopathy. Curr. Diab. Rep. 21:52. doi:10.1007/s11892-021-01429-w
  • Kano, Y., Soda, K., and Konishi, F. 2013. Suppression of LFA-1 expression by spermine is associated with enhanced methylation of ITGAL, the LFA-1 promoter area. PLoS One. 8:e56056. doi:10.1371/journal.pone.0056056
  • Kiechl, S., Pechlaner, R., Willeit, P., Notdurfter, M., Paulweber, B., Willeit, K., Werner, P., Ruckenstuhl, C., Iglseder, B., Weger, S., Mairhofer, B., Gartner, M., Kedenko, L., Chmelikova, M., Stekovic, S., Stuppner, H., Oberhollenzer, F., Kroemer, G., Mayr, M., Eisenberg, T., Tilg, H., Madeo, F., and Willeit, J. 2018. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am. J. Clin. Nutr. 108:371–380. doi:10.1093/ajcn/nqy102
  • Kim, T. H., Nosella, M. L., Bolik-Coulon, N., Harkness, R. W., Huang, S. K., and Kay, L. E. 2023. Correlating histone acetylation with nucleosome core particle dynamics and function. Proc. Natl. Acad. Sci. U S A. U S A 120:e2301063120. doi:10.1073/pnas.2301063120
  • Kimes, B. W., and Morris, D. R. 1971. Inhibition of nucleic acid and protein synthesis in Escherichia coli by oxidized polyamines and acrolein. Biochim. Biophys. Acta. 228:235–244. doi:10.1016/0005-2787(71)90563-6
  • Kirschner, K. M., Braun, J. F. W., Jacobi, C. L., Rudigier, L. J., Persson, A. B., and Scholz, H. 2014. Amine oxidase copper-containing 1 (AOC1) is a downstream target gene of the wilms tumor protein, WT1, during kidney development. J. Biol. Chem. 289:24452–24462. doi:10.1074/jbc.M114.564336
  • Kumar, V., Thakur, J. K., and Prasad, M. 2021. Histone acetylation dynamics regulating plant development and stress responses. Cell. Mol. Life Sci. 78:4467–4486. doi:10.1007/s00018-021-03794-x
  • Kusano, T., Berberich, T., Tateda, C., and Takahashi, Y. 2008. Polyamines: essential factors for growth and survival. Planta 228:367–381. doi:10.1007/s00425-008-0772-7
  • Lasanajak, Y., Minocha, R., Minocha, S. C., Goyal, R., Fatima, T., Handa, A. K., and Mattoo, A. K. 2014. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. Amino Acids. 46:729–742. doi:10.1007/s00726-013-1624-8
  • Lenis, Y. Y., Elmetwally, M. A., Maldonado-Estrada, J. G., and Bazer, F. W. 2017. Physiological importance of polyamines. Zygote 25:244–255. doi:10.1017/S0967199417000120
  • Liu, B., and Sun, G. 2017. Micro RNA s contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor. Plant J. 91:57–69. doi:10.1111/tpj.13546
  • Liu, J., Chang, X., Ding, B., Zhong, S., Peng, L., Wei, Q., Meng, J., and Yu, Y. 2019. PhDHS Is Involved in Chloroplast Development in Petunia. Front. Plant Sci. 10:284. doi:10.3389/fpls.2019.00284
  • Liu, L., Santora, R., Rao, J. N., Guo, X., Zou, T., Zhang, H. M., Turner, D. J., and Wang, J.-Y. 2003. Activation of TGF-β-Smad signaling pathway following polyamine depletion in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G1056–G1067. doi:10.1152/ajpgi.00151.2003
  • Liu, T., Huang, B., Chen, L., Xian, Z., Song, S., Chen, R., and Hao, Y. 2018. Genome-wide identification, phylogenetic analysis, and expression profiling of polyamine synthesis gene family members in tomato. Gene 661:1–10. doi:10.1016/j.gene.2018.03.084
  • Liu, X., Liu, S., Chen, X., Prasanna, B. M., Ni, Z., Li, X., He, Y., Fan, Z., and Zhou, T. 2022. Maize miR167-ARF3/30-polyamine oxidase 1 module-regulated H2O2 production confers resistance to maize chlorotic mottle virus. Plant Physiol. 189:1065–1082. doi:10.1093/plphys/kiac099
  • Liu, Z., Duguay, J., Ma, F., Wang, T. W., Tshin, R., Hopkins, M. T., Mcnamara, L., and Thompson, J. E. 2008. Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. J. Exp. Bot. 59:939–950. doi:10.1093/jxb/ern017
  • Locke, J. M., Bryce, J. H., and Morris, P. C. 2000. Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J. Exp. Bot. 51:1843–1849. doi:10.1093/jexbot/51.352.1843
  • Lopez, J. P., Fiori, L. M., Gross, J. A., Labonte, B., Yerko, V., Mechawar, N., and Turecki, G. 2014. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int. J. Neuropsychopharmacol. 17:23–32. doi:10.1017/S1461145713000941
  • Lou, Y. R., Ahmed, S., Yan, J., Adio, A. M., Powell, H. M., Morris, P. F., and Jander, G. 2020. Arabidopsis ADC1 functions as an Nδ‐acetylornithine decarboxylase. J. Integr. Plant Biol. 62:601–613. doi:10.1111/jipb.12821
  • Lou, Y. R., Bor, M., Yan, J., Preuss, A. S., and Jander, G. 2016. Arabidopsis NATA1 acetylates putrescine and decreases defense-related hydrogen peroxide accumulation. Plant Physiol. 171:1443–1455. doi:10.1104/pp.16.00446
  • Luka, Z., Mudd, S. H., and Wagner, C. 2009. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J. Biol. Chem. 284:22507–22511. doi:10.1074/jbc.R109.019273
  • Ma, F., Liu, Z., Wang, T. W., Hopkins, M. T., Peterson, C. A., and Thompson, J. E. 2010. Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant. Cell Environ. 33:1682–1696. doi:10.1111/j.1365-3040.2010.02173.x
  • Madeo, F., Eisenberg, T., Büttner, S., Ruckenstuhl, C., and Kroemer, G. 2010. Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 6:160–162. doi:10.4161/auto.6.1.10600
  • Mahajan, U. V., Varma, V. R., Griswold, M. E., Blackshear, C. T., An, Y., Oommen, A. M., Varma, S., Troncoso, J. C., Pletnikova, O., O'Brien, R., Hohman, T. J., Legido-Quigley, C., and Thambisetty, M. 2020. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: a targeted metabolomic and transcriptomic study. PLOS Med. 17:e1003012. doi:10.1371/journal.pmed.1003012
  • Majumdar, R., Shao, L., Turlapati, S. A., and Minocha, S. C. 2017. Polyamines in the life of Arabidopsis: profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC Plant Biol. 17:264. doi:10.1186/s12870-017-1208-y
  • Mano, J., Ishibashi, A., Muneuchi, H., Morita, C., Sakai, H., Biswas, M. S., Koeduka, T., and Kitajima, S. 2017. Acrolein-detoxifying isozymes of glutathione transferase in plants. Planta 245:255–264. doi:10.1007/s00425-016-2604-5
  • Mano, J., Miyatake, F., Hiraoka, E., and Tamoi, M. 2009. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta 230:639–648. doi:10.1007/s00425-009-0964-9
  • Mano, J. I., Tokushige, K., Mizoguchi, H., Fujii, H., and Khorobrykh, S. 2010. Accumulation of lipid peroxide-derived, toxic α, β-unsaturated aldehydes (E)-2-pentenal, acrolein and (E)-2-hexenal in leaves under photoinhibitory illumination. Plant Biotechnology 27:193–197. doi:10.5511/plantbiotechnology.27.193
  • Matsumoto, M. 2015. Polyamines and Longevity in Mammals. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer: Tokyo.
  • Mattoo, A., Fatima, T., Upadhyay, R., and Handa, A. 2015. Polyamines in plants: biosynthesis from arginine, and metabolic, physiological and stress-response roles. Amino Acids in Higher Plants, D’Mello, JPF, Ed., CABI: Wallingford, UK, p. 177–194.
  • Mattoo, A. K., Minocha, S. C., Minocha, R., and Handa, A. K. 2010. Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids. 38:405–413. doi:10.1007/s00726-009-0399-4
  • McKenna, J., Kapfhamer, D., Kinchen, J. M., Wasek, B., Dunworth, M., Murray-Stewart, T., Bottiglieri, T., Casero, R. A., and Gambello, M. J. 2018. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 27:2113–2124. doi:10.1093/hmg/ddy118
  • Michael, A. J., Furze, J. M., Rhodes, M. J., and Burtin, D. 1996. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem. J. 314 (Pt 1):, 241–248. doi:10.1042/bj3140241
  • Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., and Blázquez, M. A. 2008. Evolutionary diversification in polyamine biosynthesis. Mol. Biol. Evol. 25:2119–2128. doi:10.1093/molbev/msn161
  • Mizoi, M., Yoshida, M., Saiki, R., Waragai, M., Uemura, K., Akatsu, H., Kashiwagi, K., and Igarashi, K. 2014. Distinction between mild cognitive impairment and Alzheimer’s disease by CSF amyloid β40 and β42, and protein-conjugated acrolein. Clin. Chim. Acta. 430:150–155. doi:10.1016/j.cca.2014.01.007
  • Moghe, A., Ghare, S., Lamoreau, B., Mohammad, M., Barve, S., Mcclain, C., and Joshi-Barve, S. 2015. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol. Sci. 143:242–255. doi:10.1093/toxsci/kfu233
  • Moschou, P. N., Sanmartin, M., Andriopoulou, A. H., Rojo, E., Sanchez-Serrano, J. J., and Roubelakis-Angelakis, K. A. 2008. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 147:1845–1857. doi:10.1104/pp.108.123802
  • Muth, A., Pandey, V., Kaur, N., Wason, M., Baker, C., Han, X., Johnson, T. R., Altomare, D. A., and Phanstiel, O. 2014. Synthesis and biological evaluation of antimetastatic agents predicated upon dihydromotuporamine C and its carbocyclic derivatives. J. Med. Chem. 57:4023–4034. doi:10.1021/jm401906v
  • Nathanson, J. A., Hunnicutt, E. J., Kantham, L., and Scavone, C. 1993. Cocaine as a naturally occurring insecticide. Proc. Natl. Acad. Sci. U S A. U S A 90:9645–9648. doi:10.1073/pnas.90.20.9645
  • Navakoudis, E., and Kotzabasis, K. 2022. Polyamines: α bioenergetic smart switch for plant protection and development. J. Plant Physiol. 270:153618. doi:10.1016/j.jplph.2022.153618
  • Nishimura, K., Lee, S. B., Park, J. H., and Park, M. H. 2012. Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids. 42:703–710. doi:10.1007/s00726-011-0986-z
  • Nishio, T., Yoshikawa, Y., Fukuda, W., Umezawa, N., Higuchi, T., Fujiwara, S., Imanaka, T., and Yoshikawa, K. 2018. Branched‐chain polyamine found in hyperthermophiles induces unique temperature‐dependent structural changes in genome‐size DNA. Chemphyschem 19:2299–2304. doi:10.1002/cphc.201800396
  • Ober, D., Gibas, L., Witte, L., and Hartmann, T. 2003. Evidence for general occurrence of homospermidine in plants and its supposed origin as by-product of deoxyhypusine synthase. Phytochemistry 62:339–344. doi:10.1016/s0031-9422(02)00553-8
  • Ober, D., and Hartmann, T. 1999. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc. Natl. Acad. Sci. U S A. U S A 96:14777–14782. doi:10.1073/pnas.96.26.14777
  • Pagnussat, G. C., Yu, H. J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., Capron, A., Xie, L. F., Ye, D., and Sundaresan, V. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614. doi:10.1242/dev.01595
  • Pálfi, P., Bakacsy, L., Kovács, H., and Szepesi, Á. 2021. Hypusination, a Metabolic Posttranslational Modification of eIF5A in Plants during Development and Environmental Stress Responses. Plants 10:1261. doi:10.3390/plants10071261
  • Pällmann, N., Braig, M., Sievert, H., Preukschas, M., Hermans-Borgmeyer, I., Schweizer, M., Nagel, C. H., Neumann, M., Wild, P., Haralambieva, E., Hagel, C., Bokemeyer, C., Hauber, J., and Balabanov, S. 2015. Biological relevance and therapeutic potential of the hypusine modification system. J. Biol. Chem. 290:18343–18360. doi:10.1074/jbc.M115.664490
  • Park, M., Nishimura, K., Zanelli, C. F., and Valentini, S. R. 2010. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids. 38:491–500. doi:10.1007/s00726-009-0408-7
  • Park, M. H. 2006. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem. 139:161–169. doi:10.1093/jb/mvj034
  • Park, M. H., Cooper, H. L., and Folk, J. E. 1981. Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc. Natl. Acad. Sci. U S A. U S A 78:2869–2873. doi:10.1073/pnas.78.5.2869
  • Park, M. H., and Igarashi, K. 2013. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol. Ther. 21:1–9. doi:10.4062/biomolther.2012.097
  • Park, M. H., Joe, Y. A., and Kang, K. R. 1998. Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273:1677–1683. doi:10.1074/jbc.273.3.1677
  • Park, M. H., and Wolff, E. C. 2018. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J. Biol. Chem. 293:18710–18718. doi:10.1074/jbc.TM118.003341
  • Park, M. H., Wolff, E. C., Lee, Y. B., and Folk, J. 1994. Antiproliferative effects of inhibitors of deoxyhypusine synthase. Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J. Biol. Chem. 269:27827–27832.
  • Parrish, R. R., Buckingham, S. C., Mascia, K. L., Johnson, J. J., Matyjasik, M. M., Lockhart, R. M., and Lubin, F. D. 2015. Methionine increases BDNF DNA methylation and improves memory in epilepsy. Ann. Clin. Transl. Neurol. 2:401–416. doi:10.1002/acn3.183
  • Parrotta, L., Tanwar, U. K., Aloisi, I., Sobieszczuk-Nowicka, E., Arasimowicz-Jelonek, M., and Del Duca, S. 2022. Plant transglutaminases: new insights in biochemistry, genetics, and physiology. Cells 11:1529. doi:10.3390/cells11091529
  • Patel, A. R., Li, J., Bass, B. L., and Wang, J.-Y. 1998. Expression of the transforming growth factor-β gene during growth inhibition following polyamine depletion. Am. J. Physiol. 275:C590–C598. doi:10.1152/ajpcell.1998.275.2.C590
  • Patel, J., Ariyaratne, M., Ahmed, S., Ge, L., Phuntumart, V., Kalinoski, A., and Morris, P. F. 2017. Dual functioning of plant arginases provides a third route for putrescine synthesis. Plant Sci. 262:62–73. doi:10.1016/j.plantsci.2017.05.011
  • Pegg, A. E. 2008. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am. J. Physiol. Endocrinol. Metab. 294:E995–1010. doi:10.1152/ajpendo.90217.2008
  • Pegg, A. E. 2013. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 26:1782–1800. doi:10.1021/tx400316s
  • Perez, R. F., Tejedor, J. R., Bayon, G. F., Fernández, A. F., and Fraga, M. F. 2018. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. 17:e12744. doi:10.1111/acel.12744
  • Poidevin, L., Unal, D., Belda-Palazón, B., and Ferrando, A. 2019. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. Plants (Basel) 8:109. doi:10.3390/plants8040109
  • Pollard, K. J., Samuels, M. L., Crowley, K. A., Hansen, J. C., and Peterson, C. L. 1999. Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. Embo J. 18:5622–5633. doi:10.1093/emboj/18.20.5622
  • Pucciarelli, S., Moreschini, B., Micozzi, D., De Fronzo, G. S., Carpi, F. M., Polzonetti, V., Vincenzetti, S., Mignini, F., and Napolioni, V. 2012. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 15:590–595. doi:10.1089/rej.2012.1349
  • Rao, J. N., Li, L., Bass, B. L., and Wang, J.-Y. 2000. Expression of the TGF-β receptor gene and sensitivity to growth inhibition following polyamine depletion. Am. J. Physiol. Cell Physiol. 279:C1034–C1044. doi:10.1152/ajpcell.2000.279.4.C1034
  • Raspaud, E., Chaperon, I., Leforestier, A., and Livolant, F. 1999. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys. J. 77:1547–1555. doi:10.1016/S0006-3495(99)77002-5
  • Robertson, L., Backer, J., Biemans, C., Van Doorn, J., Krab, K., and Reijnders, W. 2016. Antoni Van Leeuwenhoek: Master of the Minuscule, Brill, Leiden: Boston.
  • Saiki, R., Nishimura, K., Ishii, I., Omura, T., Okuyama, S., Kashiwagi, K., and Igarashi, K. 2009. Intense correlation between brain infarction and protein-conjugated acrolein. Stroke 40:3356–3361. doi:10.1161/STROKEAHA.109.553248
  • Saiki, R., Park, H., Ishii, I., Yoshida, M., Nishimura, K., Toida, T., Tatsukawa, H., Kojima, S., Ikeguchi, Y., Pegg, A. E., Kashiwagi, K., and Igarashi, K. 2011. Brain infarction correlates more closely with acrolein than with reactive oxygen species. Biochem. Biophys. Res. Commun. 404:1044–1049. doi:10.1016/j.bbrc.2010.12.107
  • Saini, P., Eyler, D. E., Green, R., and Dever, T. E. 2009. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121. doi:10.1038/nature08034
  • Sakamoto, A., Terui, Y., Uemura, T., Igarashi, K., and Kashiwagi, K. 2020. Polyamines regulate gene expression by stimulating translation of histone acetyltransferase mRNAs. J. Biol. Chem. 295:8736–8745. doi:10.1074/jbc.RA120.013833
  • Sakata, K., Kashiwagi, K., Sharmin, S., Ueda, S., Irie, Y., Murotani, N., and Igarashi, K. 2003. Increase in putrescine, amine oxidase, and acrolein in plasma of renal failure patients. Biochem. Biophys. Res. Commun. 305:143–149. doi:10.1016/s0006-291x(03)00716-2
  • Sánchez-Jiménez, F., Medina, M. Á., Villalobos-Rueda, L., and Urdiales, J. L. 2019. Polyamines in mammalian pathophysiology. Cell. Mol. Life Sci. 76:3987–4008. doi:10.1007/s00018-019-03196-0
  • Sasaki, K., Abid, R., and Miyazaki, M. 1996. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 384:151–154. doi:10.1016/0014-5793(96)00310-9
  • Schipper, R. G., van den Heuvel, L.P., Verhofstad. A.A., De Abreu, R.A. 2007. Polyamines and DNA methylation in childhood leukaemia. Biochem. Soc. Trans. 35:331–335. doi:10.1042/BST0350331
  • Schnier, J., Schwelberger, H., Smit-Mcbride, Z., Kang, H. A., and Hershey, J. 1991. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3105–3114. doi:10.1128/mcb.11.6.3105-3114.1991
  • Schuller, A. P., Wu, C. C., Dever, T. E., Buskirk, A. R., and Green, R. 2017. eIF5A functions globally in translation elongation and termination. Mol. Cell. 66:194–205.e5. doi:10.1016/j.molcel.2017.03.003
  • Seiler, N. 2004. Catabolism of polyamines. Amino Acids. 26:217–233. doi:10.1007/s00726-004-0070-z
  • Sekhar, V., Andl, T., and Phanstiel, O. 2022. ATP13A3 facilitates polyamine transport in human pancreatic cancer cells. Sci. Rep. 12:4045. doi:10.1038/s41598-022-07712-4
  • Sequera-Mutiozabal, M. I., Erban, A., Kopka, J., Atanasov, K. E., Bastida, J., Fotopoulos, V., Alcázar, R., and Tiburcio, A. F. 2016. Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front. Plant Sci. 7:173. doi:10.3389/fpls.2016.00173
  • Shiba, T., Mizote, H., Kaneko, T., Nakajima, T., Yasuo, K., and Sano, I. 1971. Hypusine, a new amino acid occurring in bovine brain: isolation and structural determination. Biochim. Biophys. Acta. 244:523–531. doi:10.1016/0304-4165(71)90069-9
  • Shojaei Saadi, H. A., Gagné, D., Fournier, É., Baldoceda Baldeon, L. M., Sirard, M.-A., and Robert, C. 2016. Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics 8:1039–1060. doi:10.2217/epi-2016-0022
  • Sobieszczuk-Nowicka, E. 2017. Polyamine catabolism adds fuel to leaf senescence. Amino Acids. 49:49–56. doi:10.1007/s00726-016-2377-y
  • Sobieszczuk-Nowicka, E., Kubala, S., Zmienko, A., Małecka, A., and Legocka, J. 2015a. From accumulation to degradation: reprogramming polyamine metabolism facilitates dark-induced senescence in barley leaf cells. Front. Plant Sci. 6:1198. doi:10.3389/fpls.2015.01198
  • Sobieszczuk-Nowicka, E., Zmienko, A., Samelak-Czajka, A., Łuczak, M., Pietrowska-Borek, M., Iorio, R., Del Duca, S., Figlerowicz, M., and Legocka, J. 2015b. Dark-induced senescence of barley leaves involves activation of plastid transglutaminases. Amino Acids. 47:825–838. doi:10.1007/s00726-014-1912-y
  • Soda, K., Kano, Y., Chiba, F., Koizumi, K., and Miyaki, Y. 2013. Increased polyamine intake inhibits age-associated alteration in global DNA methylation and 1, 2-dimethylhydrazine-induced tumorigenesis. PLOS One. 8:e64357. doi:10.1371/journal.pone.0064357
  • Stephenson, A., and Seidel, E. 2006. Analysis of the interactions of Nrf-2, PMF-1, and CSN-7 with the 5′-flanking sequence of the mouse 4E-BP1 gene. Life Sci. 79:1221–1227. doi:10.1016/j.lfs.2006.03.042
  • Stewart, T. M., Dunston, T. T., Woster, P. M., and Casero, R. A. 2018. Polyamine catabolism and oxidative damage. J. Biol. Chem. 293:18736–18745. doi:10.1074/jbc.TM118.003337
  • Tabor, C. W., and Tabor, H. 1984. Polyamines. Annu. Rev. Biochem. 53:749–790. doi:10.1146/annurev.bi.53.070184.003533
  • Tabor, C. W., Tabor, H., and Bachrach, U. 1964. Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase. J. Biol. Chem. 239:2194–2203.
  • Takahashi, T., and Tong, W. 2015. Regulation and Diversity of Polyamine Biosynthesis in Plants. In: Kusano, T., Suzuki, H. (eds.), Polyamines. Springer: Tokyo.
  • Tanwar, U. K., Stolarska, E., Paluch-Lubawa, E., Mattoo, A. K., Arasimowicz-Jelonek, M., and Sobieszczuk-Nowicka, E. 2022. Unraveling the genetics of polyamine metabolism in barley for senescence-related crop improvement. Int. J. Biol. Macromol. 221:585–603. doi:10.1016/j.ijbiomac.2022.09.006
  • Tari, I., and Csiszár, J. 2003. Effects of NO2− or NO3− supply on polyamine accumulation and ethylene production of wheat roots at acidic and neutral pH: implications for root growth. Plant Growth Regulation 40:121–128. doi:10.1023/A:1024235211395
  • Tassoni, A., Van Buuren, M., Franceschetti, M., Fornalè, S., and Bagni, N. 2000. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol. Biochem. 38:383–393. doi:10.1016/S0981-9428(00)00757-9
  • Tavladoraki, P., Cona, A., Federico, R., Tempera, G., Viceconte, N., Saccoccio, S., Battaglia, V., Toninello, A., and Agostinelli, E. 2012. Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids. 42:411–426. doi:10.1007/s00726-011-1012-1
  • Tavladoraki, P., Rossi, M. N., Saccuti, G., Perez-Amador, M. A., Polticelli, F., Angelini, R., and Federico, R. 2006. Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol. 141:1519–1532. doi:10.1104/pp.106.080911
  • Ten Dijke, P., Goumans, M. J., Itoh, F., and Itoh, S. 2002. Regulation of cell proliferation by Smad proteins. J. Cell. Physiol. 191:1–16. doi:10.1002/jcp.10066
  • Thomas, T., and Thomas, T. J. 2001. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell. Mol. Life Sci. 58:244–258. doi:10.1007/PL00000852
  • Thomas, T., Tajmir-Riahi, H., and Thomas, T. 2016. Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids. 48:2423–2431. doi:10.1007/s00726-016-2246-8
  • Thompson, J. E., Hopkins, M. T., Taylor, C., and Wang, T. W. 2004. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9:174–179. doi:10.1016/j.tplants.2004.02.008
  • Tiburcio, A. F., Altabella, T., Bitrián, M., and Alcázar, R. 2014. The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18. doi:10.1007/s00425-014-2055-9
  • Torres, M. A., Jones, J. D., and Dangl, J. L. 2005. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37:1130–1134. doi:10.1038/ng1639
  • Toumi, I., Pagoulatou, M. G., Margaritopoulou, T., Milioni, D., and Roubelakis-Angelakis, K. A. 2019. Genetically modified heat shock protein90s and polyamine oxidases in Arabidopsis reveal their interaction under heat stress affecting polyamine acetylation, oxidation and homeostasis of reactive oxygen species. Plants 8:323. doi:10.3390/plants8090323
  • Tse, R.T.-H., Ding, X., Wong, C.Y.-P., Cheng, C.K.-L., Chiu, P.K.-F., Ng, C.-F. 2022.The Association between Spermidine/Spermine N1-Acetyltransferase (SSAT) and Human Malignancies. Int. J. Mol. Sci. 23:5926. doi:10.3390/ijms23115926
  • Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., and Niki, E. 1998. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 273:16058–16066. doi:10.1074/jbc.273.26.16058
  • Upadhyay, R. K., Fatima, T., Handa, A. K., and Mattoo, A. K. 2020. Polyamines and their biosynthesis/catabolism genes are differentially modulated in response to heat versus cold stress in tomato leaves (Solanum lycopersicum L.). Cells 9:1749. doi:10.3390/cells9081749
  • Upadhyay, R. K., Fatima, T., Handa, A. K., and Mattoo, A. K. 2021a. Differential association of free, conjugated, and bound forms of polyamines and transcript abundance of their biosynthetic and catabolic genes during drought/salinity stress in tomato (Solanum lycopersicum L.) Leaves. Front. Plant Sci. 12:743568. doi:10.3389/fpls.2021.743568
  • Upadhyay, R. K., Shao, J., and Mattoo, A. K. 2021b. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses. Planta 254:108. doi:10.1007/s00425-021-03755-5
  • Van De Poel, B., Bulens, I., Oppermann, Y., Hertog, M. L., Nicolai, B. M., Sauter, M., and Geeraerd, A. H. 2013. S‐adenosyl‐l‐methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiol. Plant. 148:176–188. doi:10.1111/j.1399-3054.2012.01703.x
  • Van Den Oever, S. P., and Mayer, H. K. 2022. Can oligomeric proanthocyanidins interfere with UHPLC analysis of spermidine in nutritional supplements? J. Food Compos. Anal. 109:104466. doi:10.1016/j.jfca.2022.104466
  • Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., and Carbonell, J. 2010. Role of polyamines in plant vascular development. Plant Physiol. Biochem. 48:534–539. doi:10.1016/j.plaphy.2010.01.011
  • Visvanathan, A., Ahmed, K., Even-Faitelson, L., Lleres, D., Bazett-Jones, D. P., and Lamond, A. I. 2013. Modulation of higher order chromatin conformation in mammalian cell nuclei can be mediated by polyamines and divalent cations. PLOS One. 8:e67689. doi:10.1371/journal.pone.0067689
  • Vujcic, S., Diegelman, P., Bacchi, C. J., Kramer, D. L., and Porter, C. W. 2002. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem. J. 367:665–675. doi:10.1042/BJ20020720
  • Walters, D. R. 2003. Polyamines and plant disease. Phytochem. 64:97–107. doi:10.1016/s0031-9422(03)00329-7
  • Wahlfors, J., Hiltunen, H., Heinonen, K., Hamalainen, E., Alhonen, L. & Janne, J. 1992. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood, 80:2074–80. doi:10.1182/blood.V80.8.2074.2074
  • Wang, T. W., Lu, L., Wang, D., and Thompson, J. E. 2001a. Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato. J. Biol. Chem. 276:17541–17549. doi:10.1074/jbc.M008544200
  • Wang, T. W., Lu, L., Zhang, C. G., Taylor, C., and Thompson, J. E. 2003. Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol. Biol. 52:1223–1235. doi:10.1023/b:plan.0000004332.80792.4d
  • Wang, T. W., Zhang, C. G., Wu, W., Nowack, L. M., Madey, E., and Thompson, J. E. 2005. Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol. 138:1372–1382. doi:10.1104/pp.105.060194
  • Wang, W., and Liu, J.-H. 2015. Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis). Gene 555:421–429. doi:10.1016/j.gene.2014.11.042
  • Wang, X., Ying, W., Dunlap, K. A., Lin, G., Satterfield, M. C., Burghardt, R. C., Wu, G., and Bazer, F. W. 2014. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol. Reprod. 90:84. doi:10.1095/biolreprod.113.114637
  • Wang, Y., Devereux, W., Stewart, T. M., and Casero, R. A. 1999. Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermineN 1-Acetyltransferase gene. J. Biol. Chem. 274:22095–22101. doi:10.1074/jbc.274.31.22095
  • Wang, Y., Devereux, W., Woster, P. M., Stewart, T. M., Hacker, A., and Casero, R. A. Jr, 2001b. Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Research 61:5370–5373.
  • Waragai, M., Yoshida, M., Mizoi, M., Saiki, R., Kashiwagi, K., Takagi, K., Arai, H., Tashiro, J., Hashimoto, M., Iwai, N., Uemura, K., and Igarashi, K. 2012. Increased protein-conjugated acrolein and amyloid-β40/42 ratio in plasma of patients with mild cognitive impairment and Alzheimer’s disease. J. Alzheimers. Dis. 32:33–41. doi:10.3233/JAD-2012-120253
  • Wirth, A., Wolf, B., Huang, C.-K., Glage, S., Hofer, S. J., Bankstahl, M., Bär, C., Thum, T., Kahl, K. G., Sigrist, S. J., Madeo, F., Bankstahl, J. P., and Ponimaskin, E. 2021. Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length. Geroscience. 43:673–690. doi:10.1007/s11357-020-00310-0
  • Wöhl, T., Klier, H., Ammer, H., Lottspeich, F., and Magdolen, V. 1993. The HYP2 gene of Saccharomyces cerevisiae is essential for aerobic growth: characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. Mol. Gen. Genet. 241:305–311. doi:10.1007/BF00284682
  • Wood, P. L., Khan, M. A., and Moskal, J. R. 2007. The concept of “aldehyde load” in neurodegenerative mechanisms: cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res. 1145:150–156. doi:10.1016/j.brainres.2006.10.004
  • Wu, D., von Roepenack-Lahaye, E., Buntru, M., de Lange, O., Schandry, N., Pérez-Quintero, A. L., Weinberg, Z., Lowe-Power, T. M., Szurek, B., Michael, A. J., Allen, C., Schillberg, S., and Lahaye, T. 2019. A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host Microbe. 26:638–649. e5. doi:10.1016/j.chom.2019.09.014
  • Yamamoto, D., Shima, K., Matsuo, K., Nishioka, T., Chen, C. Y., Hu, G.-F., Sasaki, A., and Tsuji, T. 2010. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2) in human oral cancer cell line. PloS One. 5:e12554. doi:10.1371/journal.pone.0012554
  • Yamauchi, Y., Hasegawa, A., Mizutani, M., and Sugimoto, Y. 2012. Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress. FEBS Lett. 586:1208–1213. doi:10.1016/j.febslet.2012.03.013
  • Yin, L., Mano, J., Wang, S., Tsuji, W., and Tanaka, K. 2010. The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol. 152:1406–1417. doi:10.1104/pp.109.151449
  • Yoda, H., Hiroi, Y., and Sano, H. 2006. Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol. 142:193–206. doi:10.1104/pp.106.080515
  • Yoda, H., Yamaguchi, Y., and Sano, H. 2003. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol. 132:1973–1981. doi:10.1104/pp.103.024737
  • Yoshida, M., Tomitori, H., Machi, Y., Katagiri, D., Ueda, S., Horiguchi, K., Kobayashi, E., Saeki, N., Nishimura, K., Ishii, I., Kashiwagi, K., and Igarashi, K. 2009. Acrolein, IL-6 and CRP as markers of silent brain infarction. Atherosclerosis 203:557–562. doi:10.1016/j.atherosclerosis.2008.07.022
  • Yu, Y., Jin, C., Sun, C., Wang, J., Ye, Y., Zhou, W., Lu, L., and Lin, X. 2016. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. Sci. Rep. 6:18888. doi:10.1038/srep18888
  • Zahedi, K., Huttinger, F., Morrison, R., Murray-Stewart, T., Casero, R. A., and Strauss, K. I. 2010. Polyamine catabolism is enhanced after traumatic brain injury. J. Neurotrauma. 27:515–525. doi:10.1089/neu.2009.1097
  • Zeesman, S., Kjaergaard, S., Hove, H. D., Kirchhoff, M., Stevens, J. M., and Nowaczyk, M. J. 2012. Microdeletion in distal 17p13.1: a recognizable phenotype with microcephaly, distinctive facial features, and intellectual disability. Am. J. Med. Genet. A. 158a:1832–1836. doi:10.1002/ajmg.a.35508
  • Zhang, H., Alsaleh, G., Feltham, J., Sun, Y., Napolitano, G., Riffelmacher, T., Charles, P., Frau, L., Hublitz, P., Yu, Z., Mohammed, S., Ballabio, A., Balabanov, S., Mellor, J., and Simon, A. K. 2019. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell. 76:110–125. e9. doi:10.1016/j.molcel.2019.08.005
  • Zhao, J., Missihoun, T. D., and Bartels, D. 2017. The role of Arabidopsis aldehyde dehydrogenase genes in response to high temperature and stress combinations. J. Exp. Bot. 68:4295–4308. doi:10.1093/jxb/erx194