227
Views
0
CrossRef citations to date
0
Altmetric
Articles

Transcription Factors in the Regulation of Plant Heat Responses

& ORCID Icon

References

  • Albertos, P., Dundar, G., Schenk, P., Carrera, S., Cavelius, P., Sieberer, T., and Poppenberger, B. 2022. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. Embo J. 41:e108664. doi:10.15252/embj.2021108664
  • Anckar, J., and Sistonen, L. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80:1089–1115. doi:10.1146/annurev-biochem-060809-095203
  • Andrási, N., Rigó, G., Zsigmond, L., Pérez-Salamó, I., Papdi, C., Klement, E., Pettkó-Szandtner, A., Baba, A. I., Ayaydin, F., Dasari, R., Cséplő, Á., and Szabados, L. 2019. The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. J. Exp. Bot. 70:4903–4918. doi:10.1093/jxb/erz217
  • Baniwal, S. K., Chan, K. Y., Scharf, K. D., and Nover, L. 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J. Biol. Chem. 282:3605–3613. doi:10.1074/jbc.M609545200
  • Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S. K., Nover, L., Port, M., Scharf, K.-D., Tripp, J., Weber, C., Zielinski, D., and von Koskull-Döring, P. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29:471–487. doi:10.1007/BF02712120
  • Busch, W., Wunderlich, M., and Schoffl, F. 2005. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41:1–14. doi:10.1111/j.1365-313X.2004.02272.x
  • Casal, J. J., and Balasubramanian, S. 2019. Thermomorphogenesis. Annu. Rev. Plant Biol. 70:321–346. doi:10.1146/annurev-arplant-050718-095919
  • Castroverde, C. D. M., and Dina, D. 2021. Temperature regulation of plant hormone signaling during stress and development. J Exp Bot 72:7436–7458. doi:10.1093/jxb/erab257
  • Charng, Y. Y., Liu, H. C., Liu, N. Y., Chi, W. T., Wang, C. N., Chang, S. H., and Wang, T. T. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143:251–262. doi:10.1104/pp.106.091322
  • Chen, H., Hwang, J. E., Lim, C. J., Kim, D. Y., Lee, S. Y., and Lim, C. O. 2010. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem. Biophys. Res. Commun. 401:238–244. doi:10.1016/j.bbrc.2010.09.038
  • Chen, X., Zhou, T., Wu, P., Guo, Z., and Wang, M. 2020. Emergent constraints on future projections of the western North Pacific Subtropical High. Nat. Commun. 11:2802. doi:10.1038/s41467-020-16631-9
  • Chen, X., Xue, H., Zhu, L., Wang, H., Long, H., Zhao, J., Meng, F., Liu, Y., Ye, Y., Luo, X., Liu, Z., Xiao, G., and Zhu, S. 2022. ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thaliana. BMC Biol. 20:254. doi:10.1186/s12915-022-01455-4
  • Cheng, M. C., Liao, P. M., Kuo, W. W., and Lin, T. P. 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162:1566–1582. doi:10.1104/pp.113.221911
  • Cheng, Z., Luan, Y., Meng, J., Sun, J., Tao, J., and Zhao, D. (2021). WRKY transcription factor response to high-ctemperature stress. Plants (Basel) 10:1–13. doi:10.3390/plants10102211
  • Choudhury, F. K., Rivero, R. M., Blumwald, E., and Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90:856–867. doi:10.1111/tpj.13299
  • Davletova, S., Schlauch, K., Coutu, J., and Mittler, R. 2005a. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139:847–856. doi:10.1104/pp.105.068254
  • Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D. J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. 2005b. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 17:268–281. doi:10.1105/tpc.104.026971
  • Delker, C., Quint, M., and Wigge, P. A. 2022. Recent advances in understanding thermomorphogenesis signaling. Curr. Opin. Plant Biol. 68:102231. doi:10.1016/j.pbi.2022.102231
  • Deng, Y., Humbert, S., Liu, J. X., Srivastava, R., Rothstein, S. J., and Howell, S. H. 2011. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc. Natl. Acad. Sci. USA. 108:7247–7252. doi:10.1073/pnas.1102117108
  • Ding, Y., Shi, Y., and Yang, S. 2020. Molecular regulation of plant responses to environmental temperatures. Mol. Plant. 13:544–564. doi:10.1016/j.molp.2020.02.004
  • Droge-Laser, W., Snoek, B. L., Snel, B., and Weiste, C. 2018. The Arabidopsis bZIP transcription factor family-an update. Curr. Opin. Plant Biol. 45:36–49. doi:10.1016/j.pbi.2018.05.001
  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15:573–581. doi:10.1016/j.tplants.2010.06.005
  • El-Esawi, M. A., Al-Ghamdi, A. A., Ali, H. M., and Ahmad, M. 2019. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in Wheat (Triticum aestivum L.). Genes (Basel) 10:1–13. doi:10.3390/genes10020163
  • Feng, C., Andreasson, E., Maslak, A., Mock, H. P., Mattsson, O., and Mundy, J. 2004. Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci 167:1099–1107. doi:10.1016/j.plantsci.2004.06.014
  • Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lamke, J., Gorka, M., Kappel, C., Sokolowska, E., Skirycz, A., Graf, A., and Baurle, I. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat. Commun. 12:3426. doi:10.1038/s41467-021-23786-6
  • Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. 2000. Arabidopsis ethylene-responsive rlement binding factors act as transcriptional activators or repressors of GCC Box–mediated gene expression. Plant Cell. 12:393–404. doi:10.1105/tpc.12.3.393
  • Gao, H., Brandizzi, F., Benning, C., and Larkin, R. M. 2008. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105:16398–16403. doi:10.1073/pnas.0808463105
  • Gao, J., Wang, M. J., Wang, J. J., Lu, H. P., and Liu, J. X. 2022. bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. aBIOTECH 3:1–11. doi:10.1007/s42994-021-00062-1
  • Giesguth, M., Sahm, A., Simon, S., and Dietz, K. J. 2015. Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett. 589:718–725. doi:10.1016/j.febslet.2015.01.039
  • Guan, Q., Yue, X., Zeng, H., and Zhu, J. 2014. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell. 26:438–453. doi:10.1105/tpc.113.118927
  • Hahn, A., Bublak, D., Schleiff, E., and Scharf, K. D. 2011. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell. 23:741–755. doi:10.1105/tpc.110.076018
  • Haider, S., Raza, A., Iqbal, J., Shaukat, M., and Mahmood, T. 2022. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Mol. Biol. Rep. 49:5771–5785. doi:10.1007/s11033-022-07190-x
  • Hong, S. W., and Vierling, E. 2000. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 97:4392–4397. doi:10.1073/pnas.97.8.4392
  • Howell, S. H. 2013. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 64:477–499. doi:10.1146/annurev-arplant-050312-120053
  • Huang, J., Zhao, X., Burger, M., Wang, Y., and Chory, J. 2021. Two interacting ethylene response factors regulate heat stress response. Plant Cell. 33:338–357. doi:10.1093/plcell/koaa026
  • Huang, Y. C., Niu, C. Y., Yang, C. R., and Jinn, T. L. 2016. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 172:1182–1199. doi:10.1104/pp.16.00860
  • Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. 2011. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157:1243–1254. doi:10.1104/pp.111.179036
  • Iwata, Y., and Koizumi, N. 2012. Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci. 17:720–727. doi:10.1016/j.tplants.2012.06.014
  • Iwata, Y., Ashida, M., Hasegawa, C., Tabara, K., Mishiba, K. I., and Koizumi, N. 2017. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease. Plant J. 91:408–415. doi:10.1111/tpj.13572
  • Jacob, P., Hirt, H., and Bendahmane, A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 15:405–414. doi:10.1111/pbi.12659
  • Jacob, P., Brisou, G., Dalmais, M., Thevenin, J., van der Wal, F., Latrasse, D., Suresh Devani, R., Benhamed, M., Dubreucq, B., Boualem, A., Lepiniec, L., Immink, R. G. H., Hirt, H., and Bendahmane, A. 2021. The seed development factors TT2 and MYB5 regulate heat stress response in Arabidopsis. Genes (Basel) 12:746. doi:10.3390/genes12050746
  • Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., and Zhang, J. 2017. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 59:86–101. doi:10.1111/jipb.12513
  • Katiyar, A., Smita, S., Lenka, S. K., Rajwanshi, R., Chinnusamy, V., and Bansal, K. C. 2012. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genome. 13:1–19. doi:10.1186/1471-2164-13-544
  • Kim, J. S., Mochida, K., and Shinozaki, K. 2022. ER stress and the unfolded protein response: homeostatic regulation coordinate plant survival and growth. Plants (Basel) 11:3197. doi:10.3390/plants11233197
  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., and Scharf, K.-D. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10:310–316. doi:10.1016/j.pbi.2007.04.011
  • Kumar, M., Busch, W., Birke, H., Kemmerling, B., Nurnberger, T., and Schoffl, F. 2009. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol. Plant. 2:152–165. doi:10.1093/mp/ssn095
  • Lamke, J., Brzezinka, K., Altmann, S., and Baurle, I. 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. Embo J. 35:162–175. doi:10.15252/embj.201592593
  • Larkindale, J., Hall, J. D., Knight, M. R., and Vierling, E. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138:882–897. doi:10.1104/pp.105.062257
  • Lata, C., and Prasad, M. 2011. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62:4731–4748. doi:10.1093/jxb/err210
  • Lee, S., Wang, W., and Huq, E. 2021. Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat. Commun. 12:3656. doi:10.1038/s41467-021-24018-7
  • Lee, S., Lee, H. J., Huh, S. U., Paek, K. H., Ha, J. H., and Park, C. M. 2014. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Sci. 227:76–83. doi:10.1016/j.plantsci.2014.07.003
  • Li, B., Gao, K., Ren, H., and Tang, W. 2018a. Molecular mechanisms governing plant responses to high temperatures. J. Integr. Plant Biol. 60:757–779. doi:10.1111/jipb.12701
  • Li, B., Gao, Z., Liu, X., Sun, D., and Tang, W. 2019. Transcriptional profiling reveals a time-of-day-specific role of REVEILLE 4/8 in regulating the first wave of heat shock-induced gene expression in Arabidopsis. Plant Cell. 31:2353–2369. doi:10.1105/tpc.19.00519
  • Li, N., Bo, C., Zhang, Y., and Wang, L. 2021. Phytochrome interacting factors PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. J. Exp. Bot. 72:4577–4589. doi:10.1093/jxb/erab158
  • Li, N., Euring, D., Cha, J. Y., Lin, Z., Lu, M., Huang, L. J., and Kim, W. Y. 2020a. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 11:627969. doi:10.3389/fpls.2020.627969
  • Li, Q. F., Lu, J., Yu, J. W., Zhang, C. Q., He, J. X., and Liu, Q. Q. 2018b. The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim. Biophys. Acta. Gene Regul. Mech. 1861:561–571. doi:10.1016/j.bbagrm.2018.04.003
  • Li, S., Fu, Q., Huang, W., and Yu, D. 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep. 28:683–693. doi:10.1007/s00299-008-0666-y
  • Li, S., Zhou, X., Chen, L., Huang, W., and Yu, D. 2010. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells. 29:475–483. doi:10.1007/s10059-010-0059-2
  • Li, S., Fu, Q., Chen, L., Huang, W., and Yu, D. 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252. doi:10.1007/s00425-011-1375-2
  • Li, W., Pang, S., Lu, Z., and Jin, B. 2020b. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants (Basel) 9:1515. doi:10.3390/plants9111515
  • Li, X.-d., Wang, X.-l., Cai, Y.-M., Wu, J.-h., Mo, B.-t., and Yu, E.-r. 2017. Arabidopsis heat stress transcription factors A2 (HSFA2) and A3 (HSFA3) function in the same heat regulation pathway. Acta Physiol. Plant. 39:1–9. doi:10.1007/s11738-017-2351-7
  • Liao, C., Zheng, Y., and Guo, Y. 2017. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. New Phytol. 216:163–177. doi:10.1111/nph.14679
  • Liu, H. C., and Charng, Y. Y. 2013. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol. 163:276–290. doi:10.1104/pp.113.221168
  • Liu, H. C., Liao, H. T., and Charng, Y. Y. 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant. Cell Environ. 34:738–751. doi:10.1111/j.1365-3040.2011.02278.x
  • Liu, J. X., and Howell, S. H. 2016. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 211:418–428. doi:10.1111/nph.13915
  • Liu, J. X., Srivastava, R., Che, P., and Howell, S. H. 2007. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell. 19:4111–4119. doi:10.1105/tpc.106.050021
  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10:1391–1406. doi:10.1105/tpc.10.8.1391
  • Liu, X. H., Lyu, Y. S., Yang, W., Yang, Z. T., Lu, S. J., and Liu, J. X. 2020. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol. J. 18:1317–1329. doi:10.1111/pbi.13297
  • Liu, Y., Lv, Y., Wei, A., Guo, M., Li, Y., Wang, J., Wang, X., and Bao, Y. 2022. Unfolded protein response in balancing plant growth and stress tolerance. Front. Plant Sci. 13:1019414. doi:10.3389/fpls.2022.1019414
  • Liu, Y. N., Zhang, T. J., Lu, X. X., Ma, B. L., Ren, A., Shi, L., Jiang, A. L., Yu, H. S., and Zhao, M. W. 2017. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum. Environ. Microbiol. 19:1653–1668. doi:10.1111/1462-2920.13693
  • Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2010. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol. Genet. Genomics 283:185–196. doi:10.1007/s00438-009-0506-y
  • Miller, G., and Mittler, R. 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. 98:279–288. doi:10.1093/aob/mcl107
  • Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–498. doi:10.1016/j.tplants.2004.08.009
  • Mizoi, J., Kanazawa, N., Kidokoro, S., Takahashi, F., Qin, F., Morimoto, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2019. Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J. Biol. Chem. 294:902–917. doi:10.1074/jbc.RA118.002662
  • Morimoto, K., Mizoi, J., Qin, F., Kim, J. S., Sato, H., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2013. Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress. PLoS One. 8:e80457. doi:10.1371/journal.pone.0080457
  • Morimoto, K., Ohama, N., Kidokoro, S., Mizoi, J., Takahashi, F., Todaka, D., Mogami, J., Sato, H., Qin, F., Kim, J. S., Fukao, Y., Fujiwara, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2017. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proc. Natl. Acad. Sci. USA. 114:E8528–E8536. doi:10.1073/pnas.1704189114
  • Nagashima, Y., Mishiba, K., Suzuki, E., Shimada, Y., Iwata, Y., and Koizumi, N. 2011. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci. Rep. 1:29. doi:10.1038/srep00029
  • Nolan, T. M., Vukasinovic, N., Liu, D., Russinova, E., and Yin, Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 32:295–318. doi:10.1105/tpc.19.00335
  • Nover, L., Bharti, K., Dö Ring, P., Mishra, S. K., Ganguli, A., and Scharf, K.-D. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress 6:177–189. doi:10.1379/1466-1268(2001)006 < 0177:aathst>2.0.co;2
  • Ogawa, D., Yamaguchi, K., and Nishiuchi, T. 2007. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot. 58:3373–3383. doi:10.1093/jxb/erm184
  • Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22:53–65. doi:10.1016/j.tplants.2016.08.015
  • Ohama, N., Kusakabe, K., Mizoi, J., Zhao, H., Kidokoro, S., Koizumi, S., Takahashi, F., Ishida, T., Yanagisawa, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2016. The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell. 28:181–201. doi:10.1105/tpc.15.00435
  • Olsen, A. N., Ernst, H. A., Leggio, L. L., and Skriver, K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10:79–87. doi:10.1016/j.tplants.2004.12.010
  • Patel, K., Bidalia, A., Tripathi, I., Gupta, Y., Arora, P., and Rao, K. S. 2022. Effect of heat stress on wild type and A7a knockout mutant Arabidopsis thaliana plants. Vegetos 35:168–178. doi:10.1007/s42535-021-00272-4
  • Perez-Salamo, I., Papdi, C., Rigo, G., Zsigmond, L., Vilela, B., Lumbreras, V., Nagy, I., Horvath, B., Domoki, M., Darula, Z., Medzihradszky, K., Bogre, L., Koncz, C., and Szabados, L. 2014. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 165:319–334. doi:10.1104/pp.114.237891
  • Puranik, S., Sahu, P. P., Srivastava, P. S., and Prasad, M. 2012. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17:369–381. doi:10.1016/j.tplants.2012.02.004
  • Qu, A. L., Ding, Y. F., Jiang, Q., and Zhu, C. 2013. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432:203–207. doi:10.1016/j.bbrc.2013.01.104
  • Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J., and van Zanten, M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants. 2:15190. doi:10.1038/nplants.2015.190
  • Rushton, P. J., Somssich, I. E., Ringler, P., and Shen, Q. J. 2010. WRKY transcription factors. Trends Plant Sci. 15:247–258. doi:10.1016/j.tplants.2010.02.006
  • Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998–1009. doi:10.1006/bbrc.2001.6299
  • Sakuma, Y., Maruyama, S., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2006a. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA. 103:18822–18827. doi:10.1073/pnas.0605639103
  • Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2006b. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 18:1292–1309. doi:10.1105/tpc.105.035881
  • Sato, H., Mizoi, J., Tanaka, H., Maruyama, K., Qin, F., Osakabe, Y., Morimoto, K., Ohori, T., Kusakabe, K., Nagata, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2014. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell. 26:4954–4973. doi:10.1105/tpc.114.132928
  • Scharf, K. D., Berberich, T., Ebersberger, I., and Nover, L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta 1819:104–119. doi:10.1016/j.bbagrm.2011.10.002
  • Sedaghatmehr, M., Stuwe, B., Mueller-Roeber, B., and Balazadeh, S. 2022. Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6. J. Exp. Bot. 73:6394–6404. doi:10.1093/jxb/erac257
  • Shahnejat-Bushehri, S., Mueller-Roeber, B., and Balazadeh, S. 2012. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal. Behav. 7:1518–1521. doi:10.4161/psb.22092
  • Shekhawat, K., Almeida-Trapp, M., García-Ramírez, G. X., and Hirt, H. 2022. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends Plant Sci. 27:802–813. doi:10.1016/j.tplants.2022.02.008
  • Srivastava, R., Deng, Y., and Howell, S. H. 2014. Stress sensing in plants by an ER stress sensor/transducer, bZIP28. Front. Plant Sci. 5:59. doi:10.3389/fpls.2014.00059
  • Srivastava, R., Deng, Y., Shah, S., Rao, A. G., and Howell, S. H. 2013. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell. 25:1416–1429. doi:10.1105/tpc.113.110684
  • Suzuki, N., Bajad, S., Shuman, J., Shulaev, V., and Mittler, R. 2008. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. Chem. 283:9269–9275. doi:10.1074/jbc.M709187200
  • Suzuki, N., Sejima, H., Tam, R., Schlauch, K., and Mittler, R. 2011. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J. 66:844–851. doi:10.1111/j.1365-313X.2011.04550.x
  • Suzuki, N., Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., and Mittler, R. 2005. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 139:1313–1322. doi:10.1104/pp.105.070110
  • Turck, F., Zhou, A., and Somssich, I. E. 2004. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell. 16:2573–2585. doi:10.1105/tpc.104.024810
  • Ulker, B., and Somssich, I. E. 2004. WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7:491–498. doi:10.1016/j.pbi.2004.07.012
  • Vanderauwera, S., Suzuki, N., Miller, G., van de Cotte, B., Morsa, S., Ravanat, J. L., Hegie, A., Triantaphylides, C., Shulaev, V., Van Montagu, M. C., Van Breusegem, F., and Mittler, R. 2011. Extranuclear protection of chromosomal DNA from oxidative stress. Proc. Natl. Acad. Sci. USA 108:1711–1716. doi:10.1073/pnas.1018359108
  • Wahid, A., Gelani, S., Ashraf, M., and Foolad, M. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199–223. doi:10.1016/j.envexpbot.2007.05.011
  • Wang, F., Liu, Y., Shi, Y., Han, D., Wu, Y., Ye, W., Yang, H., Li, G., Cui, F., Wan, S., Lai, J., and Yang, C. 2020. SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance. Plant Physiol. 183:41–50. doi:10.1104/pp.20.00080
  • Wang, Q., and Zhu, Z. 2022. Light signaling-mediated growth plasticity in Arabidopsis grown under high-temperature conditions. Stress Biol. 2:1–18. doi:10.1007/s44154-022-00075-w
  • Wang, X., Niu, Y., and Zheng, Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. Int. J. Mol. Sci. 22:1–14. doi:10.3390/ijms22116125
  • Witze, A. 2022. Extreme heatwaves: surprising lessons from the record warmth. Nature 608:464–465. doi:10.1038/d41586-022-02114-y
  • Wu, A., Allu, A. D., Garapati, P., Siddiqui, H., Dortay, H., Zanor, M. I., Asensi-Fabado, M. A., Munne-Bosch, S., Antonio, C., Tohge, T., Fernie, A. R., Kaufmann, K., Xue, G. P., Mueller-Roeber, B., and Balazadeh, S. 2012. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 24:482–506. doi:10.1105/tpc.111.090894
  • Wunderlich, M., Gross-Hardt, R., and Schöffl, F. 2014. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol. Biol. 85:541–550. doi:10.1007/s11103-014-0202-0
  • Wunderlich, M., Doll, J., Busch, W., Kleindt, C., Lohmann, C., and Schöffl, F. 2007. Heat shock factors: regulators of early and late functions in plant stress response. Plant Stress 1:16–22. doi:10.1034/j.1399-6576.2002.460407.x
  • Yamasaki, K., Kigawa, T., Seki, M., Shinozaki, K., and Yokoyama, S. 2013. DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci. 18:267–276. doi:10.1016/j.tplants.2012.09.001
  • Yang, J., Qu, X., Ji, L., Li, G., Wang, C., Wang, C., Zhang, Y., Zheng, L., Li, W., and Zheng, X. 2022. PIF4 promotes expression of HSFA2 to enhance basal thermotolerance in Arabidopsis. Int. J. Mol. Sci. 23:1–20. doi:10.3390/ijms23116017
  • Yao, Y., He, R. J., Xie, Q. L., Zhao, X. H., Deng, X. M., He, J. B., Song, L., He, J., Marchant, A., Chen, X. Y., and Wu, A. M. 2017. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 213:1667–1681. doi:10.1111/nph.14278
  • Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2008. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 368:515–521. doi:10.1016/j.bbrc.2008.01.134
  • Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J. M., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schoffl, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2011. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics 286:321–332. doi:10.1007/s00438-011-0647-7
  • Zandalinas, S. I., Balfagon, D., Arbona, V., Gomez-Cadenas, A., Inupakutika, M. A., and Mittler, R. 2016. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J. Exp. Bot. 67:5381–5390. doi:10.1093/jxb/erw299
  • Zhang, S. S., Yang, H., Ding, L., Song, Z. T., Ma, H., Chang, F., and Liu, J. X. 2017. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis. Plant Cell. 29:1007–1023. doi:10.1105/tpc.16.00916
  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Muller, C., Peng, S., Penuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA. 114:9326–9331. doi:10.1073/pnas.1701762114
  • Zhu, T., van Zanten, M., and De Smet, I. 2022. Wandering between hot and cold: temperature dose-dependent responses. Trends Plant Sci. 27:1124–1133. doi:10.1016/j.tplants.2022.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.