43
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

A Sequential Scanning of the Immune Efficiency in Astrocytoma (Grade I to Grade III), Meningioma and Secondary Glioma Patients with and without Therapeutic Scheduling

, M.Sc., , M.D., , M.Sc., , , M.Sc., , M.Sc., , Ph.D., , M.Sc., , M.B.B.S., , M.D., , Ph.D. & , Ph.D. show all
Pages 502-513 | Published online: 11 Jun 2009

REFERENCES

  • Dix A. R., Brooks W. H., Roszman T. L., Morford L. A. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol. 1999; 100: 216–232, [INFOTRIEVE], [CSA]
  • Bodmer S., Strommer K., Frei K., Siepl C., de Tribolet N., Heid I., et al. Immunosuppression and transforming growth factor-beta in glioblastoma. referential production of transforming growth factor-beta 2. J. Immunol. 1989; 43: 3222–3229, [CSA]
  • Bodmer S., Huber D., Heid I., Fontana A. Human glioblastoma cell derived transforming growth factor-beta 2: Evidence for secretion of both high and low molecular weight biologically active forms. J Neuroimmunol. 1991; 34: 33–42, [INFOTRIEVE], [CSA], [CROSSREF]
  • De Martin R., Haendler B., Hofer-Warbinek R., Gaugitsch H., Wrann Schlusener H., Seifert J. M., et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J. 1987; 6: 3673–3677, [INFOTRIEVE], [CSA]
  • Fontana A., Hengartner H., de Tribolet N., Weber E. Glioblastoma cells release Interleukin 1 and factors inhibiting interleukin2-mediated effects. J Immunol. 1984; 132: 1837–1844, [INFOTRIEVE], [CSA]
  • Kuppner M. C., Hamou M. F., Sawamura Y., Bodmer S., de Tribolet N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J. Neurosurg. 1989; 71: 211–217, [INFOTRIEVE], [CSA]
  • Siepl C., Bodmer S., Frei K., MacDonald H. R., De Martin R., Hofer E., et al. The glioblastoma-derived, T cell suppressor factor transforming growth factor-beta 2 inhibits, T.; cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J. Immunol. 1988; 18: 593–600, [INFOTRIEVE], [CSA]
  • Wrann M., Bodmer S., de Martin R., Siepl C., Hofer-Warbinek R., Frei K., et al. T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J. 1987; 6: 1633–1636, [INFOTRIEVE], [CSA]
  • Castelli M. G., Chiabrando C., Fanelli R., Martelli L., Butti G., Gaetani P., et al. Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res. 1989; 49: 1505–1508, [INFOTRIEVE], [CSA]
  • Couldwell W. T., DoreDuffy P., Apuzzo M. L., Antel J. P. Malignant glioma modulation of immune function: Relative contribution of different soluble factors. J Neuroimmunol. 1991; 33: 89–96, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bogdan C., Nathan C. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann. NY Acad. Sci. 1993; 685: 713–739, [INFOTRIEVE], [CSA]
  • Ding L., Shevach E. M. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J Immunol. 1992; 148: 3133–3139, [INFOTRIEVE], [CSA]
  • Fiorentino D. F., Zlotnik A., Vieira P., Mosmann T. R., Howard M., Moore K. W., et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 1991; 46: 3444–3451, [CSA]
  • Taga K., Tosato G. IL-10 inhibit human T cell proliferation and IL-2 production. J. Immunol. 1992; 148: 1143–1148, [INFOTRIEVE], [CSA]
  • Merritt W. D., Bailey J. M., Pluznik D. H. Inhibition of interleukin-2-dependent cytotoxic T-lymphocyte growth by gangliosides. Cell Immunol. 1984; 89: 1–10, [INFOTRIEVE], [CSA], [CROSSREF]
  • Offner H., Thieme T., Vandenbark A. A. Gangliosides induce selective modulation of CD4 from helper, T.; lymphocytes. Immunol. J. 1987; 139: 3295–3305, [CSA]
  • Nidus Information Services, Inc., 41 East 11th Street, 11th Floor, New York, NY 10003 or emailoffice@well–connected.com or on the internet at www.well-connected.com
  • DeAngelis L. M. Brain Tumors. The New England J. of Med. 2001; 344(2)114–123, [CSA], [CROSSREF]
  • Stahnke K., Simone F., Friesen C., Straub G., Debatin K. M. Activation of apoptosis pathways in peripheral blood lymphocytes in in vivo chemotherapy. Neoplasia 2001; 98(10)3066–3073, [CSA]
  • Louagie H., Van Eijkeren M., Philippe L., Thierens H., Ridder de L. Changes in peripheral blood lymphocyte subsets in patients undergoing radiotherapy. Int. J. of Radiation. Biol. 1999; 75(6)767–771, [CSA], [CROSSREF]
  • Willams J. L., Patchen M. L., Darden J. H., Jackson W. E. Effects of radiation on survival and recovery of T lymphocyte subsetw in C3H/HeN mice. Exp. Hematol. 1994; 22(6)510–516, [CSA]
  • Schedule Y. Indian Drug and Cosmetic Law. 1940, (amended version, 2005), Website: www.cdsco.nic.in
  • Good clinical Practice, Central Drugs standard Control Organization. Directorate General of Health Services, Ministry of Health & Family Welfare, Govt. of India, Drug Controller General, New DelhiIndia
  • Mukherjee J., Sarkar S., Ghosh A., Duttagupta A. K., Chaudhuri S. Chaudhuri Swapna. Immunotherapeutic effects of T11TS/SLFA-3 against nitrosocompound mediated neural genotoxicity. Tox. Lett. 2004; 150(3)239–257, [CSA], [CROSSREF]
  • Mukherjee J., Sarkar S., Begurn Z., Dutta S., Ghosh A., Chaudhuri S. Chaudhuri, Swapna. Preclinical changes in immunoreactivity and cellular architecture during the progressive development of intracranial neoplasm and its immunotherapeutic schedule with a novel biological response modifier, the T11TS/S-LFA-3. Asian Pacific J. Cancer Prevention 2002; 3: 325–337, [CSA]
  • Sarkar S., Begum Z., Dutta S., Chaudhuri S. Chaudhuri Swapna. Sheep form of Leucocyte Function Antigen-3 (T IITS) exerts immunostimulatory and anti-tumor activity against experimental brain tumor: A new approach to biological response modifier therapy. J. Exp. Clin. Cancer Res. 2002; 21(1)95–106, [INFOTRIEVE], [CSA]
  • Mackall C.-L., Fleisher T.-A., Brown M.-R., et al. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 1994; 84: 2221–2228, [INFOTRIEVE], [CSA]
  • Mackall C.-L., Hakim F.-T., Gress R.-E. Restoration of T cell homeostasis after T cell depletion. Semin Immunol 1997; 9: 339–346, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brooks W. H., Netsky M. G., Normansell D. E., Horwitz D. A. Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J. Exp. Med. 1972; 136: 1631–1647, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mahaley M. S., Jr., Brooks W. H., Roszman T. L., Bigner D. D., Dudka L. Ialyllactotetraosylceramide, a ganglioside marker for human malignant gliomas. J. Neurochem. 1988; 50: 912–919, [CSA]
  • Young H. F., Kaplan A. M. Cellular immune deficiency in patients with glioblastoma. Surg. Forum. 1976; 27: 476–478, [INFOTRIEVE], [CSA]
  • Brooks W. H., Roszman T. L., Mahaley M. S., Woosley R. E. Immunobiology of primary intracranial tumours: II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clin. Exp. Immunol. 1977; 29: 61–66, [INFOTRIEVE], [CSA]
  • Mizoguchi H., O'Shea J. J., Longo D. L., Loeffler C. M., McVicar D. W., Ochoa A. C. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 1992; 258: 1795–1798, [INFOTRIEVE], [CSA]
  • Gratas C., Tohma Y., Van Meir E. G., Klein M., Tenan M., Ishii N., Tachibana O., Kleihues P., Ohgaki H. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 1997; 7: 863–869, [INFOTRIEVE], [CSA]
  • Saas P., Walker P. R., Hahne M., Quiquerez A. L., Schnuriger V., Perrin G. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain?. J. Clin. Invest. 1997; 99: 1173–1178, [INFOTRIEVE], [CSA]
  • Weller M., Weinstock C., Will C., Wagenknecht B., Dichgans J., Lang F., Gulbins E. CD95-dependent, T cell killing by glioma Cells expressing CD95 ligand: more on tumor immune escape, the CD95 counterattack, and the immune privilege of the brain. Cell Physiol. Biochem. 1997; 7: 282–288, [CSA]
  • Weller M., Kleihus P., Dichgans J., Ohgaki H. CD95 ligand: Lethal weapon against malignant glioma. Brain Pathology. 1998; 8: 285–293, [INFOTRIEVE], [CSA]
  • Hong J. H., Chiang C. S., Campbell I. L., Sun J. R., Withers H. R., McBride W. H. Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1995; 33: 619–626, [INFOTRIEVE], [CSA], [CROSSREF]
  • Plevova P. Radiotherapy and chemotherapy-induced normal tissue damage: the role of cytokines and adhesion molecules. Radiol. Oncol. 2002; 36(2)109–119, [CSA]
  • Schwaighofer H., Kernan N. A., O'Reilly R. J., Brankova J., Nachbaur D., Herold M., et al. Serum levels of cytokines and secondary messages after T-cell-depleted and non-T-cell-depleted bone marrow transplantation: influence of conditioning and hematopoietic reconstitution. Transplantation 1996; 62: 947–953, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sigurdson J. A., Jones I. M. Second cancers after radiotherapy: any evidence for radiation induced genomic instability. Oncogene. 2003; 22: 7018–7027, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pardoll D. T. cells and tumors. Nature, 411: 1010–1012, [CSA], [CROSSREF]
  • Plunkett M. L., Sanders M. E., Selvaraj P., et al. Rosetting of activated human, T.; lymphocytes with autologous erythrocytes. Definition of the receptor and ligand molecules as CD2 and lymphocyte function associated antigen 3 (LFA-3). J. Exp. Med. 1987; 165: 664–676, [INFOTRIEVE], [CSA], [CROSSREF]
  • Raha S. K., Dey S. K., Roy S. K. Antitumor activity of Lasparaginase from Cylindrocarpon obstutisporum MB10 and its effect on the immune system. Biochem. Int. 1990; 21: 987–1000, [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.