549
Views
15
CrossRef citations to date
0
Altmetric
REVIEW

Ubiquitin Ligases in Cancer: Ushers for Degradation

, Ph.D. & , Ph.D.
Pages 502-513 | Published online: 11 Jun 2009

REFERENCES

  • Hershko A., Ciechanover A. The ubiquitin system. Annu. Rev. Biochem. 1998; 67: 425–479
  • Hershko A., Heller H., Elias S., Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 1983; 258: 8206–8214
  • Hoppe T. Multiubiquitylation by E4 enzymes: ‘one size’ doesn't fit all. Trends Biochem. Sci. 2005; 30: 183–187
  • Koegl M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 1999; 96: 635–644
  • Hicke L., Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 2003; 19: 141–172
  • Pickart C. M., Fushman D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 2004; 8: 610–616
  • Hicke L., Schubert H. L., Hill C. P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 2005; 6: 610–621
  • Kirkpatrick D. S., Hathaway N. A., Hanna J., Elsasser S., Rush J., et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 2006; 8: 700–710
  • Hofmann R. M., Pickart C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1990; 96: 645–653
  • Deng L., Wang C., Spencer E., Yang L., Braun A., You J., et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361
  • Ardley H. C., Robinson P. A. E3 ubiquitin ligases. Essays Biochem. 2005; 41: 15–30
  • Xia Z. P., Chen Z. J. TRAF2: a double-edged sword?. Sci STKE 2005; e7
  • Fang S., Jensen J. P., Ludwig R. L., Vousden K. H., Weissman A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 2000; 275: 8945–8951
  • Skowyra D., Craig K. L., Tyers M., Elledge S. J., Harper J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997; 91: 209–219
  • Deshaies R. J. SCF and Cullin/Ring H2–based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 1999; 15: 435–467
  • Jiang J., Ballinger C. A., Wu Y., Dai Q., Cyr D. M., Hohfeld J., Patterson C. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 2001; 276: 42938–42944
  • Murata S., Minami Y., Minami M., Chiba T., Tanaka K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2001; 2: 1133–1138
  • Lu Z., Xu S., Joazeiro C., Cobb M. H., Hunter T., The P HD. domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 2002; 9: 945–956
  • Wertz I. E., O'Rourke K. M., Zhou H., Eby M., Aravind L., et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430: 694–699
  • Zhou H., Wertz I., O'Rourke K., Ultsch M., Seshagiri S., et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427: 167–171
  • Kaelin W. G. Proline hydroxylation and gene expression. Annu. Rev. Biochem. 2005; 74: 115–128
  • Ohh M., Park C. W., Ivan M., Hoffman M. A., Kim T. Y., et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2000; 2: 423–427
  • Kibel A., Iliopoulos O., DeCaprio J. A., Kaelin W. G., Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin BC. Science 1995; 269: 1444–1446
  • Duan D. R., Pause A., Burgess W. H., Aso T., Chen D. Y., et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995; 269: 1402–1406
  • Pause A., Lee S., Worrell R. A., Chen D. Y., Burgess W. H., Linehan W. M., Klausner R. D. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl. Acad. Sci. USA 1997; 94: 2156–2161
  • Kamura T., Koepp D. M., Conrad M. N., Skowyra D., Moreland R. J., et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999; 284: 657–661
  • Maxwell P. H., Wiesener M. S., Chang G. W., Clifford S. C., Vaux E. C., et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275
  • Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468
  • Jaakkola P., Mole D. R., Tian Y. M., Wilson M. I., Gielbert J., et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472
  • Yu F., White S. B., Zhao Q., Lee F. S. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA 2001; 98: 9630–9635
  • Masson N., Willam C., Maxwell P. H., Pugh C. W., Ratcliffe P. J. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 2001; 20: 5197–5206
  • Kondo K., Klco J., Nakamura E., Lechpammer M., Kaelin W. G., Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1: 237–246
  • Maranchie J. K., Vasselli J. R., Riss J., Bonifacino J. S., Linehan W. M., Klausner R. D. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1: 247–255
  • Kondo K., Kim W. Y., Lechpammer M., Kaelin W. G., Jr. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003; 1: E83
  • Zimmer M., Doucette D., Siddiqui N., Iliopoulos O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/-tumors. Mol. Cancer Res. 2004; 2: 89–95
  • Kim W., Kaelin W. G., Jr. The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. Curr. Opin. Genet. Dev. 2003; 13: 55–60
  • Hergovich A., Lisztwan J., Barry R., Ballschmieter P., Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat. Cell Biol. 2003; 5: 64–70
  • Na X., Duan H. O., Messing E. M., Schoen S. R., Ryan C. K., et al. Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel-Lindau protein. EMBO J. 2003; 22: 4249–4259
  • Calzada M. J., Esteban M. A., Feijoo-Cuaresma M., Castellanos M. C., et al. von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res. 2006; 66: 1553–1560
  • Nakamura E., Abreu-e-Lima P., Awakura Y., Inoue T., Kamoto T., et al. Clusterin is a secreted marker for a hypoxia-inducible factor-independent function of the von Hippel-Lindau tumor suppressor protein. Am. J. Pathol. 2006; 168: 574–584
  • Thien C. B., Langdon W. Y. c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem. J. 2005; 391: 153–166
  • Joazeiro C. A., Wing S. S., Huang H., Leverson J. D., Hunter T., Liu Y. C. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999; 286: 309–312
  • Levkowitz G., Waterman H., Ettenberg S. A., Katz M., Tsygankov A. Y., et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 1999; 4: 1029–1040
  • Rao N., Ghosh A. K., Ota S., Zhou P., Reddi A. L., et al. The non-receptor tyrosine kinase Syk is a target of Cbl-mediated ubiquitylation upon B-cell receptor stimulation. EMBO J. 2001; 20: 7085–7095
  • Haglund K., Sigismund S., Polo S., Szymkiewicz I., Di Fiore P. P., Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 2003; 5: 461–466
  • Peschard P., Park M. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 2003; 3: 519–523
  • Kong-Beltran M., Seshagiri S., Zha J., Zhu W., Bhawe K., et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006; 66: 283–289
  • Thien C. B., Walker F., Langdon W. Y. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol. Cell 2001; 7: 355–365
  • Vogelstein B., Lane D., Levine A. J. Surfing the p53 network. Nature 2000; 408: 307–310
  • Brooks C. L., Gu W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 2006; 21: 307–315
  • Leng R. P., Lin Y., Ma W., Wu H., Lemmers B., Chung S., Parant J. M., Lozano G., Hakem R., Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112: 779–791
  • Dornan D., Bheddah S., Newton K., Ince W., Frantz G. D., Dowd P., Koeppen H., Dixit V. M., French D. M. COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res. 2004; 64: 7226–7230
  • Chen D., Kon N., Li M., Zhang W., Qin J., Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121: 1071–1083
  • Jones S. N., Roe A. E., Donehower L. A., Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208
  • Montes d e, Oca Luna R., Wagner D. S., Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206
  • Momand J., Jung D., Wilczynski S., Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998; 26: 3453–3459
  • Bond G. L., Hu W., Bond E. E., Robins H., Lutzker S. G., Arva N. C., et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591–602
  • Menin C., Scaini M. C., De Salvo G. L., Biscuola M., Quaggio M., et al. Association between MDM2-SNP309 and age at colorectal cancer diagnosis according to p53 mutation status. J. Natl. Cancer Inst. 2006; 98: 285–288
  • Bougeard G., Baert-Desurmont S., Tournier I., Vasseur S., Martin C., et al. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J. Med. Genet. 2006; 43: 531–533
  • Williams S. A., McConkey D. J. The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res. 2003; 63: 7338–7344
  • Abbas A. R., Baldwin D., Ma Y., Ouyang W., Gurney A., et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 2005; 6: 319–331
  • Steller H. Mechanisms and genes of cellular suicide. Science 1995; 267: 1445–1449
  • Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462
  • Salvesen G. S., Duckett C. S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 2002; 3: 401–410
  • LaCasse E. C., Baird S., Korneluk R. G., MacKenzie A. E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998; 17: 3247–3259
  • Tamm I., Kornblau S. M., Segall H., Krajewski S., Welsh K., et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 2000; 6: 1796–1803
  • Tamm I., Richter S., Scholz F., Schmelz K., Oltersdorf D., et al. XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol. J. 2004; 5: 489–495
  • Vaux D. L., Silke J. IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell Biol. 2005; 6: 287–297
  • MacFarlane M., Merrison W., Bratton S. B., Cohen G. M. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J. Biol. Chem. 2002; 277: 36611–36616
  • Bartke T., Pohl C., Pyrowolakis G., Jentsch S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 2004; 14: 801–811
  • Hao Y., Sekine K., Kawabata A., Nakamura H., Ishioka T., et al. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat. Cell Biol. 2004; 6: 849–860
  • Suzuki Y., Nakabayashi Y., Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl. Acad. Sci. USA 2001; 98: 8662–8667
  • Huang H., Joazeiro C. A., Bonfoco E., Kamada S., Leverson J. D., Hunter T. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 2000; 275: 26661–26664
  • Vaux D. L., Silke J. IAPs–the ubiquitin connection. Cell Death Differ. 2005; 12: 1205–1207
  • Silke J., Kratina T., Chu D., Ekert P. G., Day C. L., et al. Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proc. Natl. Acad. Sci. USA 2005; 102: 16182–16187
  • Yang Q. H., Du C. Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J. Biol. Chem. 2004; 279: 16963–16970
  • Wilson R., Goyal L., Ditzel M., Zachariou A., Baker D. A., et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat. Cell Biol. 2002; 14: 14
  • Ditzel M., Wilson R., Tenev T., Zachariou A., Paul A., Deas E., Meier P. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat. Cell Biol. 2003; 5: 467–473
  • Lisi S., Mazzon I., White K. Diverse Domains of THREAD/DIAP1 Are Required to Inhibit Apoptosis Induced by REAPER and HID in Drosophila. Genetics 2000; 154: 669–678
  • Goyal L., McCall K., Agapite J., Hartwieg E., Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 2000; 19: 589–597
  • Cory S., Huang D. C., Adams J. M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003; 22: 8590–8607
  • Breitschopf K., Zeiher A. M., Dimmeler S. Ubiquitin-mediated degradation of the proapoptotic active form of bid. a functional consequence on apoptosis induction. J. Biol. Chem. 2000; 275: 21648–21652
  • Dimmeler S., Breitschopf K., Haendeler J., Zeiher A. M. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J. Exp. Med. 1999; 189: 1815–1822
  • Lim M. S., Elenitoba-Johnson K. S. Ubiquitin ligases in malignant lymphoma. Leuk. Lymphoma. 2004; 45: 1329–1339
  • Marshansky V., Wang X., Bertrand R., Luo H., Duguid W., et al. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J. Immunol. 2001; 166: 3130–3142
  • Zhong Q., Gao W., Du F., Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005; 121: 1085–1095
  • Shmueli A., Oren M. Life, death, and ubiquitin: taming the mule. Cell 2005; 121: 963–965
  • Micheau O., Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190
  • Tschopp J., Irmler M., Thome M. Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol. 1998; 10: 552–558
  • Chang L., Kamata H., Solinas G., Luo J. L., Maeda S., et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124: 601–613
  • Li Q., Verma I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2002; 2: 725–734
  • Karin M., Cao Y., Greten F. R., Li Z. W. NF-kappaB in cancer: from innocent bystander to major culprit. Nature Rev. 2002; 2: 301–310
  • Gao M., Karin M. Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol. Cell 2005; 19: 581–593
  • Liu Y. C., Penninger J., Karin M. Immunity by ubiquitylation: a reversible process of modification. Nat. Rev. Immunol. 2005; 5: 941–952
  • Arch R. H., Gedrich R. W., Thompson C. B. Tumor necrosis factor receptor-associated factors (TRAFs)–a family of adapter proteins that regulates life and death. Genes Dev. 1998; 12: 2821–2830
  • Kelliher M. A., Grimm S., Ishida Y., Kuo F., Stanger B. Z., Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8: 297–303
  • Tada K., Okazaki T., Sakon S., Kobarai T., Kurosawa K., et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa Bactivation and protection from cell death. J. Biol. Chem. 2001; 276: 36530–36534
  • Ea C. K., Deng L., Xia Z. P., Pineda G., Chen Z. J. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 2006; 22: 245–257
  • Wu C. J., Conze D. B., Li T., Srinivasula S. M., Ashwell J. D. NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-kappaB activation. Nat. Cell Biol. 2006; 8: 398–406
  • Kanayama A., Seth R. B., Sun L., Ea C. K., Hong M., et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 2004; 15: 535–548
  • Li H., Kobayashi M., Blonska M., You Y., Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J. Biol. Chem. 2006; 281: 13636–13643
  • Li X., Yang Y., Ashwell J. D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002; 416: 345–347
  • Krappmann D., Scheidereit C. A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep. 2005; 6: 321–326
  • Uren A. G., O'Rourke K., Aravind L. A., Pisabarro M. T., Seshagiri S., Koonin E. V., Dixit V. M. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 2000; 6: 961–967
  • Ruefli-Brasse A. A., French D. M., Dixit V. M. Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science 2003; 302: 1581–1584
  • Ruland J., Duncan G. S., Wakeham A., Mak T. W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 2003; 19: 749–758
  • Newton K., Dixit V. M. Mice lacking the CARD of CARMA1 exhibit defective B lymphocyte development and impaired proliferation of their B and T lymphocytes. Curr. Biol. 2003; 13: 1247–1251
  • Egawa T., Albrecht B., Favier B., Sunshine M. J., Mirchandani K., et al. Requirement for CARMA1 in antigen receptor-induced NF-kappa Bactivation and lymphocyte proliferation. Curr. Biol. 2003; 13: 1252–1258
  • Jun J. E., Wilson L. E., Vinuesa C. G., Lesage S., Blery M., et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 2003; 18: 751–762
  • Hara H., Wada T., Bakal C., Kozieradzki I., Suzuki S., Suzuki N., et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 2003; 18: 763–775
  • Isaacson P. G. Update on MALT lymphomas. Best Pract. Res. Clin. Haematol. 2005; 18: 57–68
  • Akagi T., Motegi M., Tamura A., Suzuki R., Hosokawa Y., et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18: 5785–5794
  • Dierlamm J., Baens M., Wlodarska I., Stefanova-Ouzounova M., Hernandez J. M., et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21)p6ssociated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93: 3601–3609
  • Morgan J. A., Yin Y., Borowsky A. D., Kuo F., Nourmand N., et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 1999; 59: 6205–6213
  • Zhou H., Du M. Q., Dixit V. M. Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 2005; 7: 425–431
  • Nakayama K. I., Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. 2006; 6: 369–381
  • Kaiser P., Wohlschlegel J. Identification of ubiquitination sites and determination of ubiquitin-chain architectures by mass spectrometry. Methods Enzymol. 2005; 399: 266–277
  • Welcker M., Singer J., Loeb K. R., Grim J., Bloecher A., et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol. Cell 2003; 12: 381–392
  • Welcker M., Orian A., Jin J., Grim J. E., Harper J. W., et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. USA 2004; 101: 9085–9090
  • Yada M., Hatakeyama S., Kamura T., Nishiyama M., Tsunematsu R., et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004; 23: 2116–2125
  • Wei W., Jin J., Schlisio S., Harper J. W., Kaelin W. G., Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8: 25–33
  • Bahram F., von der Lehr N., Cetinkaya C., Larsson L. G. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 2000; 95: 2104–2110
  • Rajagopalan H., Jallepalli P. V., Rago C., Velculescu V. E., Kinzler K. W., Vogelstein B., Lengauer C. Inactivation of hCDC4 can cause chromosomal instability. Nature 2004; 428: 77–81
  • Spruck C. H., Strohmaier H., Sangfelt O., Muller H. M., Hubalek M., et al. hCDC4 gene mutations in endometrial cancer. Cancer Res. 2002; 62: 4535–4539
  • Kemp Z., Rowan A., Chambers W., Wortham N., Halford S., et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 2005; 65: 11361–11366
  • Bloom J., Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 2003; 13: 41–47
  • Hao B., Zheng N., Schulman B. A., Wu G., Miller J. J., Pagano M., Pavletich N. P. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell 2005; 20: 9–19
  • Kitajima S., Kudo Y., Ogawa I., Bashir T., Kitagawa M., et al. Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am. J. Pathol. 2004; 165: 2147–2155
  • Shapira M., Ben-Izhak O., Linn S., Futerman B., Minkov I., Hershko D. D. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer 2005; 103: 1336–1346
  • Slotky M., Shapira M., Ben-Izhak O., Linn S., Futerman B., Tsalic M., Hershko D. D. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res. 2005; 7: R737–744
  • Thornton B. R., Ng T. M., Matyskiela M. E., Carroll C. W., Morgan D. O., Toczyski D. P. An architectural map of the anaphase-promoting complex. Genes Dev. 2006; 20: 449–460
  • Ohta T., Michel J. J., Schottelius A. J., Xiong Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 1999; 3: 535–541
  • Leverson J. D., Joazeiro C. A., Page A. M., Huang H., Hieter P., Hunter T. The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol. Biol. Cell 2000; 11: 2315–2325
  • Gmachl M., Gieffers C., Podtelejnikov A. V., Mann M., Peters J. M. The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 2000; 97: 8973–8978
  • Visintin R., Prinz S., Amon A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 1999; 278: 460–463
  • Reimann J. D., Freed E., Hsu J. Y., Kramer E. R., Peters J. M., Jackson P. K. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 2001; 105: 645–655
  • Golan A., Yudkovsky Y., Hershko A. The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J. Biol. Chem. 2002; 277: 15552–15557
  • Kraft C., Herzog F., Gieffers C., Mechtler K., Hagting A., Pines J., Peters J. M. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 2003; 22: 6598–6609
  • Vodermaier H. C. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 2004; 14: R787–796
  • Eldridge A. G., Loktev A. V., Hansen D. V., Verschuren E. W., Reimann J. D., Jackson P. K. The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 2006; 124: 367–380
  • Parvin J. D. Overview of history and progress in BRCA1 research: the first BRCA1 decade. Cancer Biol. Ther. 2004; 3: 505–508
  • Billack B., Monteiro A. N. BRCA1 in breast and ovarian cancer predisposition. Cancer Lett. 2005; 227: 1–7
  • Wu L. C., Wang Z. W., Tsan J. T., Spillman M. A., Phung A., et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 1996; 14: 430–440
  • Xia Y., Pao G. M., Chen H. W., Verma I. M., Hunter T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 2003; 278: 5255–5263
  • Starita L. M., Parvin J. D. The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr. Opin. Cell Biol. 2003; 15: 345–350
  • Nishikawa H., Ooka S., Sato K., Arima K., Okamoto J., et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 2004; 279: 3916–3924
  • Wu-Baer F., Lagrazon K., Yuan W., Baer R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 2003; 278: 34743–34746
  • Brzovic P. S., Meza J., King M. C., Klevit R. E. The cancer-predisposing mutation C61G disrupts homodimer formation in the NH2-terminal BRCA1 RING finger domain. J. Biol. Chem. 1998; 273: 7795–7799
  • Brzovic P. S., Meza J. E., King M. C., Klevit R. E. BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions. J. Biol. Chem. 2001; 276: 41399–41406
  • Goldenberg S. J., Cascio T. C., Shumway S. D., Garbutt K. C., Liu J., Xiong Y., Zheng N. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 2004; 119: 517–528
  • Read M. A., Brownell J. E., Gladysheva T. B., Hottelet M., Parent L. A., et al. Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol. Cell Biol. 2000; 20: 2326–2333
  • Wu K., Chen A., Pan Z. Q. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J. Biol. Chem. 2000; 275: 32317–32324
  • Lyapina S., Cope G., Shevchenko A., Serino G., Tsuge T., et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 2001; 292: 1382–1385
  • Liu J., Furukawa M., Matsumoto T., Xiong Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 2002; 10: 1511–1518
  • Zheng J., Yang X., Harrell J. M., Ryzhikov S., Shim E. H., et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 2002; 10: 1519–1526
  • Cope G. A., Deshaies R. J. Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. BMC Biochem. 2006; 7: 1
  • Richardson K. S., Zundel W. The emerging role of the COP9 signalosome in cancer. Mol. Cancer Res. 2005; 3: 645–653
  • Bignell G. R., Warren W., Seal S., Takahashi M., Rapley E., et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet. 2000; 25: 160–165
  • Massoumi R., Chmielarska K., Hennecke K., Pfeifer A., Fassler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 2006; 125: 665–677
  • Trompouki E., Hatzivassiliou E., Tsichritzis T., Farmer H., Ashworth A., Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793–796
  • Brummelkamp T. R., Nijman S. M., Dirac A. M., Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797–801
  • Kovalenko A., Chable-Bessia C., Cantarella G., Israel A., Wallach D., Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801–805
  • Reiley W. W., Zhang M., Jin W., Losiewicz M., Donohue K. B., Norbury C. C., Sun S. C. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 2006; 7: 411–417
  • Jiang Y. H., Beaudet A. L. Human disorders of ubiquitination and proteasomal degradation. Curr. Opin. Pediatr. 2004; 16: 419–426
  • Haglund K., Dikic I. Ubiquitylation and cell signaling. EMBO J. 2005; 24: 3353–3359
  • Hoeller D., Hecker C. M., Dikic I. Ubiquitin and ubiquitin–like proteins in cancer pathogenesis. Nature Rev. 2006; 6: 776–788
  • Fang S., Lorick K. L., Jensen J. P., Weissman A. M. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin. Cancer Biol. 2003; 13: 5–14
  • Goy A., Gilles F. Update on the proteasome inhibitor bortezomib in hematologic malignancies. Clin. Lymphoma 2004; 4: 230–237
  • Adams J., Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest. 2004; 22: 304–311
  • Yang Y., Ludwig R. L., Jensen J. P., Pierre S. A., Medaglia M. V., et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7: 547–559
  • Weissman A. M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2001; 2: 169–178
  • Vassilev L. T. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 2004; 3: 419–421
  • Vassilev L. T., Vu B. T., Graves B., Carvajal D., Podlaski F., et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848
  • Marine J. C., Francoz S., Maetens M., Wahl G., Toledo F., Lozano G. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 2006; 13: 927–934
  • Shim J. H., Xiao C., Paschal A. E., Bailey S. T., Rao P., et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 1 2005; 9: 2668–2681

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.