424
Views
37
CrossRef citations to date
0
Altmetric
REVIEW

The Role of the CTLA4 Blockade in the Treatment of Malignant Melanoma

, M.D., Ph.D. & , M.D.
Pages 613-631 | Published online: 11 Jun 2009

REFERENCES

  • Sabel M. S., Sondak V. K. Pros and cons of adjuvant interferon in the treatment of melanoma. Oncologist 2003; 8: 451–458
  • Kirkwood J. M., Tarhini A. A. Adjuvant high-dose interferon-alpha therapy for high-risk melanoma. Forum (Genova) 2003; 13: 127–140, quiz 187–128
  • Agarwala S. Improving survival in patients with high-risk and metastatic melanoma: immunotherapy leads the way. Am. J. Clin. Dermatol. 2003; 4(5)333–346
  • Anichini A., Vegetti C., Mortarini R. The paradox of T-cell-mediated antitumor immunity in spite of poor clinical outcome in human melanoma. Cancer Immunol. Immunother. 2004; 53(10)855–864
  • Monsurro V., Wang E., Panelli M. C., et al. Active-specific immunization against melanoma: is the problem at the receiving end?. Semin. Cancer Biol. 2003; 13(6)473–480
  • Khong H. T., Restifo N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol. 2002; 3(11)999–1005
  • Yamshchikov G. V., Mullins D. W., Chang C. C., et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J. Immunol. 2005; 174(11)6863–6871
  • Holmberg D., Cilio C. M., Lundholm M., Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease. Autoimmunity. 2005; 38(3)225–233
  • Chambers C. A., Kuhns M. S., Egen J. G., Allison J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 2001; 19: 565–594
  • Wang X. B., Giscombe R., Yan Z., Heiden T., Xu D., Lefvert A K. Expression of CTLA-4 by human monocytes. Scand. J. Immunol. 2002; 55(1)53–60
  • Blomhoff A., Kemp E. H., Gawkrodger D. J., et al. CTLA4 polymorphisms are associated with vitiligo, in patients with concomitant autoimmune diseases. Pigment Cell Res. 2005; 18(1)55–58
  • Blomhoff A., Lie B. A., Myhre A. G., et al. Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J. Clin. Endocrinol. Metab. 2004; 89(7)3474–3476
  • Sharpe A. H., Freeman G. J. The B7-CD28 superfamily. Nat. Rev. Immunol. 2002; 2(2)116–126
  • Lindsten T., Lee K. P., Harris E. S., et al. Characterization of CTLA-4 structure and expression on human T cells. J. Immunol. 1993; 151(7)3489–3499
  • Walunas T. L., Lenschow D. J., Bakker C. Y., et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1(5)405–413
  • Walunas T. L., Bakker C. Y., Bluestone J. A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 1996; 183(6)2541–2550
  • Finn P. W., He H., Wang Y., et al. Synergistic induction of CTLA-4 expression by costimulation with TCR plus CD28 signals mediated by increased transcription and messenger ribonucleic acid stability. J. Immunol. 1997; 158(9)4074–4081
  • Jago C. B., Yates J., Camara N. O., Lechler R. I., Lombardi G. Differential expression of CTLA-4 among T cell subsets. Clin. Exp. Immunol. 2004; 136(3)463–471
  • Chattopadhyay S., Chakraborty N. G., Mukherji B. Regulatory T cells and tumor immunity. Cancer Immunol. Immunother. 2005; 54(12)1153–1161
  • Birebent B., Lorho R., Lechartier H., et al. Suppressive properties of human CD4+CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur. J. Immunol. 2004; 34(12)3485–3496
  • Kataoka H., Takahashi S., Takase K., et al. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int. Immunol. 2005; 17(4)421–427
  • Tang Q., Boden E. K., Henriksen K. J., Bour-Jordan H., Bi M., Bluestone J. A. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 2004; 34(11)2996–3005
  • Hara T., Fu S. M., Hansen J. A. Human T cell activation. II. A new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J. Exp. Med. 1985; 161(6)1513–1524
  • Collins A. V., Brodie D. W., Gilbert R. J., et al. The interaction properties of costimulatory molecules revisited. Immunity 2002; 17(2)201–210
  • Sansom D. M. CD28, CTLA-4 and their ligands: who does what and to whom?. Immunology 2000; 101(2)169–177
  • Manzotti C. N., Tipping H., Perry L. C., et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur. J. Immunol. 2002; 32(10)2888–2896
  • Krummel M. F., Allison J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 1995; 182(2)459–465
  • Thompson C. B., Lindsten T., Ledbetter J. A., et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl. Acad. Sci. USA. 1989; 86(4)1333–1337
  • Lucas P. J., Negishi I., Nakayama K., Fields L. E., Loh D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 1995; 154(11)5757–5768
  • Boise L. H., Minn A. J., Noel P. J., et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995; 3(1)87–98
  • Sperling A. I., Auger J. A., Ehst B. D., Rulifson I. C., Thompson C. B., Bluestone J. A. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J. Immunol. 1996; 157(9)3909–3917
  • Wu L. X., La Rose J., Chen L., et al. CD28 regulates the translation of Bcl-xL via the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway. J. Immunol. 2005; 174(1)180–194
  • Krummel M. F., Allison J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 1996; 183(6)2533–2540
  • Brunner M. C., Chambers C. A., Chan F. K., Hanke J., Winoto A., Allison J. P. CTLA-4-Mediated inhibition of early events of T cell proliferation. J. Immunol. 1999; 162(10)5813–5820
  • Kubsch S., Graulich E., Knop J., Steinbrink K. Suppressor activity of anergic T cells induced by IL-10-treated human dendritic cells: association with IL-2- and CTLA-4-dependent G1 arrest of the cell cycle regulated by p27Kip1. Eur. J. Immunol. 2003; 33(7)1988–1997
  • Greenwald R. J., Oosterwegel M. A., van der Woude D., et al. CTLA-4 regulates cell cycle progression during a primary immune response. Eur. J. Immunol. 2002; 32(2)366–373
  • Vanasek T. L., Khoruts A., Zell T., Mueller D. L. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J. Immunol. 2001; 167(10)5636–5644
  • Greenwald R. J., Boussiotis V. A., Lorsbach R. B., Abbas A. K., Sharpe A. H. CTLA-4 regulates induction of anergy in vivo. Immunity. 2001; 14(2)145–155
  • Morgensztern D., McLeod H. L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 2005; 16(8)797–803
  • Contardi E., Palmisano G. L., Tazzari P L., et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer. 2005; 117(4)538–550
  • Tivol E. A., Borriello F., Schweitzer A. N., Lynch W. P., Bluestone J. A., Sharpe A. H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995; 3(5)541–547
  • Waterhouse P., Penninger J. M., Timms E., et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270(5238)985–988
  • Mandelbrot D. A., McAdam A. J., Sharpe A. H. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Exp. Med. 1999; 189(2)435–440
  • Tirapu I., Huarte E., Guiducci C., et al. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006; 66(4)2442–2450
  • Leach D. R., Krummel M. F., Allison J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996; 271(5256)1734–1736
  • Kwon E. D., Hurwitz A. A., Foster B. A., et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA. 1997; 94(15)8099–8103
  • Kwon E. D., Foster B. A., Hurwitz A. A., et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc. Natl. Acad. Sci. USA 1999; 96(26)15074–15079
  • Yang Y. F., Zou J. P., Mu J., et al. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res. 1997; 57(18)4036–4041
  • Shrikant P., Khoruts A., Mescher M. F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999; 11(4)483–493
  • LaBelle J. L., Hanke C. A., Blazar B. R., Truitt R. L. Negative effect of CTLA-4 on induction of T-cell immunity in vivo to B7-1+, but not B7-2+, murine myelogenous leukemia. Blood. 2002; 99(6)2146–2153
  • Hurwitz A. A., Yu T. F., Leach D. R., Allison J. P. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA. 1998; 95(17)10067–10071
  • Perrin P. J., Maldonado J. H., Davis T. A., June C. H., Racke M. K. CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J. Immunol. 1996; 157(4)1333–1336
  • Karandikar N. J., Vanderlugt C. L., Walunas T. L., Miller S. D., Bluestone J. A. CTLA-4: a negative regulator of autoimmune disease. J. Exp. Med. 1996; 184(2)783–788
  • Vijayakrishnan L., Slavik J. M., Illes Z., et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 2004; 20(5)563–575
  • Prud'homme G. J., Chang Y., Li X. Immunoinhibitory DNA vaccine protects against autoimmune diabetes through cDNA encoding a selective CTLA-4 (CD152) ligand. Hum. Gene Ther. 2002; 13(3)395–406
  • Bergman M. L., Cilio C. M., Penha-Goncalves C., et al. CTLA-4−/− mice display T cell-apoptosis resistance resembling that ascribed to autoimmune-prone non-obese diabetic (NOD) mice. J. Autoimmun. 2001; 16(2)105–113
  • Quattrocchi E., Dallman M. J., Feldmann M. Adenovirus-mediated gene transfer of CTLA-4Ig fusion protein in the suppression of experimental autoimmune arthritis. Arthritis Rheum. 2000; 43(8)1688–1697
  • Nierkens S., Aalbers M., Bol M., et al. Differential requirement for CD28/CTLA-4-CD80/CD86 interactions in drug-induced type 1 and type 2 immune responses to trinitrophenyl-ovalbumin. J. Immunol. 2005; 175(6)3707–3714
  • Cunnane G., Chan O. T., Cassafer G., et al. Prevention of renal damage in murine lupus nephritis by CTLA-4Ig and cyclophosphamide. Arthritis Rheum. 2004; 50(5)1539–1548
  • Walker L. S., Ausubel L. J., Chodos A., Bekarian N., Abbas A. K. CTLA-4 differentially regulates T cell responses to endogenous tissue protein versus exogenous immunogen. J. Immunol. 2002; 169(11)6202–6209
  • Bass K. K., Mastrangelo M. J. Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol. Immunother. 1998; 47(1)1–12
  • Berd D., Sato T., Cohn H., Maguire H. C., Jr., Mastrangelo M. J. Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. Int. J. Cancer. 2001; 94(4)531–539
  • Kleinknecht S., Bichler K. H., Strohmaier W. L. Immune modulating effects of low doses of cyclophosphamide and keyhole limpet hemocyanin on peripheral blood immune parameters in patients with metastatic renal cell carcinoma. Urol. Int. 1992; 48(1)1–8
  • Gorelik L., Prokhorova A., Mokyr M. B. Low-dose melphalan-induced shift in the production of a Th2-type cytokine to a Th1-type cytokine in mice bearing a large MOPC-315 tumor. Cancer Immunol. Immunother. 1994; 39(2)117–126
  • Mokyr M. B., Kalinichenko T., Gorelik L., Bluestone J. A. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res. 1998; 58(23)5301–5304
  • Faries M. B., Hsueh E. C., Shu S., Famatiga E., Morton D. L. Post-vaccination CTLA-4 expression correlates inversely with survival in patients vaccinated with allogeneic melanoma cell vaccine. J. Clin. Oncol. 2004; 22(14S), abstr. #2565
  • van Elsas A., Hurwitz A. A., Allison J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 1999; 190(3)355–366
  • Ji Q., Gondek D., Hurwitz A. A. Provision of granulocyte-macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response. J. Immunol. 2005; 175(3)1456–1463
  • van Elsas A., Sutmuller R. P., Hurwitz A. A., et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 2001; 194(4)481–489
  • Sutmuller R. P., van Duivenvoorde L. M., van Elsas A., et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 2001; 194(6)823–832
  • Gregor P. D., Wolchok J. D., Ferrone C. R., et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine. 2004; 22(13–14))1700–1708
  • White R. R., Sullenger B. A., Rusconi C. P. Developing aptamers into therapeutics. J. Clin. Invest. 2000; 106(8)929–934
  • Keler T., Halk E., Vitale L., et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J. Immunol. 2003; 171(11)6251–6259
  • Hanson D. C., Canniff P. C., Primiano M. J., et al. Preclinical in vitro characterization of anti-CTLA4 therapeutic antibody CP-675,206. Proc. Amer. Assoc. Cancer Res. 2004; 45, abstr 3802
  • Canniff P. C., Donovan C. B., Burkwit J. J., et al. CP-675,206 anti-CTLA4 antibody clinical candidate enhances IL-2 production in cancer patient T cells in vitro regardless of tumor type or stage of disease. Proc. Amer. Assoc. Cancer Res. 2004; 45, abstr 709
  • Ribas A., Bozon V. A., Lopez-Berestein G., et al. Phase 1 trial of monthly doses of the human anti-CTLA4 monoclonal antibody CP-675,206 in patients with advanced melanoma. J. Clin. Oncol. 2005; 23(16S)716s, abstr. 7524
  • Tchekmedyian S., Glasby J., Korman A., Keler T., Deo Y., Davis T. MDX-010 (human anti-CTLA4): a phase I trial in malignant melanoma. Proc. Am. Soc. Clin. Oncol. 2002; 21, (abstr 56)
  • Davis T. A., Tchekmedyian S., Korman A., et al. MDX-010 (human anti-CTLA4): a phase 1 trial in hormone refractory prostate carcinoma (HRPC). Proc. Am. Soc. Clin. Oncol. 2002; 21, abstr 74
  • Sanderson K., Scotland R., Lee P., et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 2005; 23(4)741–750
  • Weber J. S., Targan S., Scotland R., et al. Phase II trial of extended dose anti-CTLA-4 antibody ipilimumab (formerly MDX-010) with a multi-peptide vaccine for resected stages IIIC and IV melanoma. J. Clin. Oncol. 2006; 24(18s), 102s abstr 2510
  • Phan G. Q., Haworth L. R., Duray P. H., Davis T. A., Rosenberg S. A. Blockade of CTLA-4 with MDX-010 in humans can induce both autoimmunity and cancer regression. Proc. Am. Soc. Clin. Oncol. 2003; 22, abstr. 3424
  • Phan G. Q., Yang J. C., Sherry R. M., et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA. 2003; 100(14)8372–8377
  • Attia P., Phan G. Q., Maker A. V., et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. 2005; 23(25)6043–6053
  • Phan G. Q., Touloukian C. E., Yang J. C., et al. Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. J. Immunother. 2003; 26(4)349–356
  • Maker A. V., Attia P., Rosenberg S. A. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol. 2005; 175(11)7746–7754
  • Maker A. V., Phan G. Q., Attia P., et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann. Surg. Oncol. 2005; 12(12)1005–1016
  • Wang X. B., Zheng C. Y., Giscombe R., Lefvert A. K. Regulation of surface and intracellular expression of CTLA-4 on human peripheral T cells. Scand. J. Immunol. 2001; 54(5)453–458
  • Hersh E. M., Weber J., Powderly J., et al. A phase II, randomized multi-center study of MDX-010 alone or in combination with dacarbazine (DTIC) in stage IV metastatic malignant melanoma. J. Clin. Oncol. 2004; 22(14S), abstr. 7511
  • Fischkoff S. A., Hersh E. M., Weber J., et al. Durable responses and long-term progression-free survival observed in a phase II study of MDX-010 alone or in combination with dacarbazine (DTIC) in metastatic melanoma. J. Clin. Oncol. 2005; 23(16S)716S, abstr. 7525
  • Beck K. E., Blansfield J. A., Tran K. Q., et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 2006; 24(15)2283–2289
  • Camacho L. H., Ribas A., Glaspy J. A., et al. Phase 1 clinical trial of anti-CTLA4 human monoclonal antibody CP-675,206 in patients (pts) with advanced solid malignancies. J. Clin. Oncol. 2004; 22(14S), abstr. 2505
  • Ribas A., Camacho L. H., Lopez-Berestein G., et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol. 2005; 23(35)8968–8977
  • Bulanhagui C. A., Ribas A., Pavlov D., et al. Phase I clinical trials of ticilimumab: Tumor responses are sufficient but not necessary for prolonged survival. J. Clin. Oncol. 2006; 24(18s)461s, abstr. 8036
  • Reuben J. M., Lee B. N., Shen D. Y., et al. Therapy with human monoclonal anti-CTLA-4 antibody, CP-675,206, reduces regulatory T cells and IL-10 production in patients with advanced malignant melanoma (MM). J. Clin. Oncol. 2005; 23(16s)711s, abstr. 7505
  • Reuben J. M., Lee B. N., Li C., et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 2006; 106(11)2437–2444
  • Gomez-Navarro J., Sharma A., Bozon V. A., et al. Dose and schedule selection for the anti-CTLA4 monoclonal antibody ticilimumab in patients (pts) with metastatic melanoma. J. Clin. Oncol. 2006; 24(18s)460s, abstr. 8032
  • Ribas A., Comin-Anduix B., Bozon V. A., et al. Antigen-specific T cell responses in patients with melanoma treated with the CTLA4 blocking mAb ticilimumab. J. Clin. Oncol. 2006; 24(18s)461s, abstr. 8033
  • Fong L., Kavanagh B., Rini B. I., Shaw V., Weinberg V., Small E. J. A phase I trial of combination immunotherapy with CTLA-4 blockade and GM-CSF in hormone-refractory prostate cancer. J. Clin. Oncol. 2006; 24(18s), abstr. 2508
  • Gulley J. L., Theoret M. R., Dahut W., Pazdur W., Schlom J., Arlen M. Phase I trial of an enhanced PSA-based vaccine and anti-CTLA-4 antibody in patients (pts) with metastatic androgen independent prostate cancer (AIPC). Proc. Am. Soc. Clin. Oncol. 2006, 2006 Prostate Cancer Symposium), abstr. 355
  • Gerritsen W., Van Den Eertwegh A. J., De Gruijl T., et al. A dose-escalation trial of GM-CSF-gene transduced allogeneic prostate cancer cellular immunotherapy in combination with a fully human anti-CTLA antibody (MDX-010, ipilimumab) in patients with metastatic hormone-refractory prostate cancer (mHRPC). Proc. Am. Soc. Clin. Oncol. 2006; 24(18s), abstr 2500
  • Small E., Higano C., Tchekmedyian N., et al. Randomized phase II study comparing 4 monthly doses of ipilimumab (MDX-010) as a single agent or in combination with a single dose of docetaxel in patients with hormone-refractory prostate cancer. Proc. Am. Soc. Clin. Oncol. 2006; 24(18s), abstr 4609
  • Yang J. C., Beck K. E., Blansfield J. A., Tran K. Q., Lowy I., Rosenberg S. A. Tumor regression in patients with metastatic renal cancer treated with a monoclonal antibody to CTLA4 (MDX-010). J. Clin. Oncol. 2005; 23(16s), abstr. 2501
  • Hodi F. S., Seiden M., Butler M., et al. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody blockade in patients previously vaccinated with irradiated, autologous tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor (GM-CSF). J. Clin. Oncol. 2004; 22(14s), abstr. 2536
  • Bashey A., Loza O., Medina B., et al. BEAM Versus CEB Conditioning for Autologous Transplantation in Patients with Non-Hodgkin's Lymphoma and Hodgkin's Disease: A Single Center Comparative Study of 219 Patients. Blood 2005; 106, (ASH Annual Meeting Abstracts), abstr 2079
  • Zhong R. K., Loken M., Lane T. A., Ball E. D. CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy. 2006; 8(1)3–12
  • Comin-Anduix B., Gualberto A., Glaspy J. A., et al. Definition of an immunologic response using the major histocompatibility complex tetramer and enzyme-linked immunospot assays. Clin. Cancer. Res. 2006; 12(1)107–116
  • Hamid O., Urba W. J., Yellin M., et al. Kinetics of response to ipilimumab (MDX-010) in patients with stage III/IV melanoma. J. Clin. Oncol. 2007; 25(18s)478s, abstr. 8525
  • Ribas A., Antonia S., Sosman J., et al. Results of a phase II clinical trial of 2 doses and schedules of CP-675,206, an anti-CTLA4 monoclonal antibody, in patients (pts) with advanced melanoma. J. Clin. Oncol. 2007; 25(18s)118s, abstr. 3000
  • Gomez-Navarro J., Antonia S., Sosman J., et al. Survival of patients (pts) with metastatic melanoma treated with an anti-CTLA4 monoclonal antibody (mAb) CP-675,206 in a phase I/II study. J. Clin. Oncol. 2007; 25(18s)478s, abstr. 8524
  • Antonia J., Sosman J., Kirkwood J. M., et al. Natural history of diarrhea associated with the anti-CTLA4 monoclonal antibody CP-675, 206. J. Clin. Oncol. 2007; 25(18s)127s, abstr. 3038
  • Straatsma B. R., Nusinowitz S., Young T. A., et al. Surveillance of the eye and vision in clinical trials of CP-675,206 for metastatic melanoma. Amer. J. Ophthalmol. 2007; 143(6)958–969
  • Sharma A., Bumerts P., Gomez-Navarro J., et al. Clearance of monoclonal antibody (mAb) CP-675,206 by therapeutic plasma exchange (TPE) or plasmapheresis. J. Clin. Oncol. 2007; 25(18s)611s, abstr. 13515
  • Blansfield J. A., Beck K. E., Tran K., et al. Cytotoxic T-lymphocyte-associated antigen-4 blockade can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J. Immunother. 2005; 28(6)593–598
  • Jaber S. H., Cowen E. W., Haworth L. R., et al. Skin reactions in a subset of patients with stage IV melanoma treated with anti-cytotoxic T-lymphocyte antigen 4 monoclonal antibody as a single agent. Arch. Dermatol. 2006; 142(2)166–172

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.