128
Views
17
CrossRef citations to date
0
Altmetric
REVIEW

Epidermal Growth Factor Receptor-Targeted Therapy for Pancreatic Cancer

, MD & , MD
Pages 647-657 | Published online: 11 Jun 2009

REFERENCES

  • Hubbard S. R. EGF receptor activation: push comes to shove. Cell 2006; 125: 1029–1031
  • Yarden Y., Sliwkowski M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001; 2: 127–137
  • Xiong H. Q., Abbruzzese J. L. Epidermal growth factor receptor-targeted therapy for pancreatic cancer. Semin. Oncol. 2002; 29: 31–37, (5 Suppl. 14)
  • L'Allemain G., et al. Signal transduction in hamster fibroblasts overexpressing the human EGF receptor. Growth Factors 1989; 1(4)311–321
  • Velu T. J., et al. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science 1987; 238(4832)1408–1410
  • Quon H., Liu F. F., Cummings B. J. Potential molecular prognostic markers in head and neck squamous cell carcinomas. Head Neck 2001; 23(2)147–159
  • Skirnisdottir I., et al. Clinical and biological characteristics of clear cell carcinomas of the ovary in FIGO stages I-II. Int. J. Oncol. 2005; 26(1)177–183
  • Skirnisdottir I., Seidal T., Sorbe B. A new prognostic model comprising p53, EGFR, and tumor grade in early stage epithelial ovarian carcinoma and avoiding the problem of inaccurate surgical staging. Int. J. Gynecol. Cancer 2004; 14(2)259–270
  • Pawlowski V., et al. Prognostic value of the type I growth factor receptors in a large series of human primary breast cancers quantified with a real-time reverse transcription-polymerase chain reaction assay. Clin. Cancer Res. 2000; 6(11)4217–4225
  • Mayer A., et al. The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer 1993; 71(8)2454–2460
  • Yamanaka Y., et al. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 1993; 13(3)565–569
  • Friess H., et al. Enhanced erbB-3 expression in human pancreatic cancer correlates with tumor progression. Clin. Cancer Res. 1995; 1(11)1413–1420
  • Dawson J. P., et al. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol. Cell Biol. 2005; 25(17)7734–7742
  • Klein P., et al. A structure-based model for ligand binding and dimerization of EGF receptors. Proc. Natl. Acad. Sci. U.S.A. 2004; 101(4)929–934
  • Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002; 110(6)669–672
  • Hubbard S. R. Autoinhibitory mechanisms in receptor tyrosine kinases. Front Biosci. 2002; 7: d330–d340
  • Hubbard S. R. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2004; 5(6)464–471
  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103(2)211–225
  • Burgess A. W., et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 2003; 12(12)3–541
  • Tibes R., Trent J., Kurzrock R. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 357–384
  • Huse M., Kuriyan J. The conformational plasticity of protein kinases. Cell 2002; 109(3)275–282
  • Hubbard S. R., Till J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 2000; 69: 373–398
  • Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61(2)203–212
  • Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell 1995; 80(2)213–223
  • Heldin C. H., Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 1999; 79(4)1283–1316
  • Burke C. L., Stern D. F. Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface. Mol. Cell Biol. 1998; 18(9)5371–5379
  • Gotoh N., et al. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 1992; 186(186)2–768
  • Moriki T., Maruyama H., Maruyama I. N. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J. Mol. Biol. 2001; 311(5)1011–1026
  • Stamos J., Sliwkowski M. X., Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002; 277(48)46265–46272
  • Zhang X., et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006; 125(125)6–1137
  • Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 2001; 37: S3–S8, (Suppl 4)
  • Minna J. D., et al. Cancer. A bull's eye for targeted lung cancer therapy. Science 2004; 304(304)5676–1458
  • Dowell J. E., Minna J. D. EGFR mutations and molecularly targeted therapy: a new era in the treatment of lung cancer. Nat. Clin. Pract. Oncol. 2006; 3(4)170–171
  • Lynch T. J., et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004; 350(350)21–2129
  • Xiong H. Q., et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J. Clin. Oncol. 2004; 22(22)13–2610
  • Bloomston M., et al. Epidermal Growth Factor Receptor Expression in Pancreatic Carcinoma Using Tissue Microarray Technique. Dig. Surg. 2006; 23(1–2)74–79
  • Funatomi H., et al. Amphiregulin antisense oligonucleotide inhibits the growth of T3M4 human pancreatic cancer cells and sensitizes the cells to EGF receptor-targeted therapy. Int. J. Cancer 1997; 72(3)512–517
  • Perrotte P., et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 1999; 5(5)2–257
  • Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem 1987; 56: 881–914
  • Ogiso H., et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002; 110(110)6–775
  • Prenzel N., et al. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 2001; 8(8)1–11
  • Masuda M., et al. The roles of JNK1 and Stat3 in the response of head and neck cancer cell lines to combined treatment with all-trans-retinoic acid and 5-fluorouracil. Jpn. J. Cancer Res. 2002; 93(93)3–329
  • Grandis J. R., et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J. Clin. Invest. 1998; 102(102)7–1385
  • Niu G., et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21(21)13–2000
  • Bancroft C. C., et al. Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K and MEK signal kinases on NF-kappaB and AP-1 activation and IL-8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int. J. Cancer 2002; 99(99)4–538
  • Le X., et al. Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J. Interferon. Cytokine. Res. 2000; 20(20)11–935
  • Shi Q., et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin. Cancer Res. 1999; 5(5)11–3711
  • Kim G. E., et al. Synchronous coexpression of epidermal growth factor receptor and cyclooxygenase-2 in carcinomas of the uterine cervix: a potential predictor of poor survival. Clin. Cancer Res. 2004; 10(10)4–1366
  • Shao J., et al. Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Res. 2003; 63(63)17–5218
  • Pai R., et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med. 2002; 8(8)3–289
  • Sales K. J., Maudsley S., Jabbour H. N. Elevated prostaglandin EP2 receptor in endometrial adenocarcinoma cells promotes vascular endothelial growth factor expression via cyclic 3′,5′-adenosine monophosphate-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 signaling pathways. Mol. Endocrinol. 2004; 18(6)1533–1545
  • Buchanan F. G., et al. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J. Biol. Chem. 2003; 278(278)37–35451
  • Shao J., Evers B. M., Sheng H. Prostaglandin E2 synergistically enhances receptor tyrosine kinase-dependent signaling system in colon cancer cells. J. Biol. Chem. 2004; 279(14)14287–14293
  • Turini M. E., DuBois R. N. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 2002; 53: 35–57
  • Masferrer J. L., Koki A., Seibert K. COX-2 inhibitors. A new class of antiangiogenic agents. Ann. N.Y. Acad. Sci. 1999; 889: 84–86
  • Wang D., DuBois R. N. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proc. Natl. Acad. Sci. U.S.A. 2004; 101(2)415–416
  • Gately S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis. Rev. 2000; 19(1–2)19–27
  • Wedge S. R., et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002; 62(62)16–4645
  • Ciardiello F., et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res. 2003; 9(9)4–1546
  • Tuccillo C., et al. Antitumor activity of ZD6474, a vascular endothelial growth factor-2 and epidermal growth factor receptor small molecule tyrosine kinase inhibitor, in combination with SC-236, a cyclooxygenase-2 inhibitor. Clin. Cancer Res. 2005; 11(11)3–1268
  • Landis S. H., et al. Cancer statistics, 1999. CA. Cancer J. Clin. 1999; 49(1)8–31; 1
  • Hawes R. H., et al. A multispecialty approach to the diagnosis and management of pancreatic cancer. Am. J. Gastroenterol. 2000; 95(95)1–17
  • Burris H. A., 3rd, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 1997; 15(6)2403–2413
  • Berlin J. D., et al. Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J. Clin. Oncol. 2002; 20(15)3270–3275
  • Oettle H., et al. A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann. Oncol. 2005; 16(16)10–1639
  • Rocha Lima C. M., et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J. Clin. Oncol. 2004; 22(18)3776–3783
  • Reni M., et al. Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet. Oncol. 2005; 6(6)6–369
  • Louvet C., et al. Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. J. Clin. Oncol. 2005; 23(23)15–3509
  • Mendelsohn J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer 2001; 8(1)3–9
  • Bruns C. J., et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 2000; 60(11)2926–2935
  • Aboud-Pirak E., et al. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J. Natl. Cancer Inst. 1988; 80(80)20–1605
  • Baselga J., Averbuch S. D. ZD1839 (‘Iressa’) as an anticancer agent. Drugs 2000; 60: 33–40, Suppl 1 discussion 41–2
  • Erlichman C., et al. The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res. 2001; 61(2)739–748
  • Brown D., Wang R., Russell P. Antiepidermal growth factor receptor antibodies augment cytotoxicity of chemotherapeutic agents on squamous cell carcinoma cell lines. Otolaryngol. Head Neck Surg. 2000; 122(1)75–83
  • Pollack V. A., et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther. 1999; 291(291)2–739
  • Rao G. S., Murray S., Ethier S. P. Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 2000; 48(5)1519–1528
  • Williams K. J., et al. ZD1839 (‘Iressa’), a specific oral epidermal growth factor receptor-tyrosine kinase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model. Br. J. Cancer 2002; 86(7)1157–1161
  • Krempien R., et al. Randomized phase II–study evaluating EGFR targeting therapy with cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer–PARC: study protocol [ISRCTN56652283]. BMC Cancer 2005; 5: 131
  • Inoue K., et al. Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin. Cancer Res. 2000; 6(6)12–4874
  • Herbst R. S., Shin D. M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 2002; 94(5)1593–1611
  • Morelli M. P., et al. Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann. Oncol. 2005; 16: iv61–iv68, (Suppl 4)
  • Lu Y., et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Natl. Cancer Inst. 2001; 93(93)24–1852
  • Viloria-Petit A., et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 2001; 61(61)13–5090
  • Chakravarti A., Loeffler J. S., Dyson N. J. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002; 62(1)200–207
  • Bianco R., et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 2003; 22(22)18–2812
  • She Q. B., et al. Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3′-kinase/Akt pathway signaling. Clin. Cancer Res. 2003; 9(9)12–4340
  • O'Reilly M. S. Targeting multiple biological pathways as a strategy to improve the treatment of cancer. Clin. Cancer Res. 2002; 8(11)3309–3310
  • Jemal A., et al. Cancer statistics, 2005. CA Cancer J. Clin. 2005; 55(55)1–10
  • Mendelsohn J., Fan Z. Epidermal growth factor receptor family and chemosensitization. J. Natl. Cancer Inst. 1997; 89(5)341–343
  • Melisi D., et al. Therapeutic integration of signal transduction targeting agents and conventional anti-cancer treatments. Endocr. Relat. Cancer 2004; 11(11)1–51
  • Crane C. H., et al. Is the therapeutic index better with gemcitabine-based chemoradiation than with 5-fluorouracil-based chemoradiation in locally advanced pancreatic cancer?. Int. J. Radiat. Oncol. Biol. Phys. 2002; 52(52)5–1293
  • Erickson B. A., Nag S. Biliary tree malignancies. J. Surg. Oncol. 1998; 67(3)203–210
  • Pino S. M., et al. Novel therapies for pancreatic adenocarcinoma. Curr. Gastroenterol Rep. 2004; 6(6)2–119
  • Dhar A., et al. Epidermal growth factor receptor: is a novel therapeutic target for pancreatic cancer?. Front Biosci. 2005; 10: 1763–1767
  • Ciardiello F., et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 2000; 6(6)5–2053
  • Ciardiello F., et al. ZD1839 (Iressa): preclinical studies and pharmacology. Tumori 2002; 88: S155–S157, (1 Suppl 1)
  • Hidalgo M., et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol. 2001; 19(13)3267–3279
  • Torrance C. J., et al. Combinatorial chemoprevention of intestinal neoplasia. Nat. Med. 2000; 6(6)9–1024
  • Raz D. J., et al. Current concepts in bronchioloalveolar carcinoma biology. Clin. Cancer Res. 2006; 12(12)12–3698
  • Bunn P. A., Jr., et al. Biological markers for non-small cell lung cancer patient selection for epidermal growth factor receptor tyrosine kinase inhibitor therapy. Clin. Cancer Res. 2006; 12(12)3652–3656
  • Inoue A., et al. Prospective Phase II Study of Gefitinib for Chemotherapy-Naive Patients With Advanced Non-Small-Cell Lung Cancer With Epidermal Growth Factor Receptor Gene Mutations. J. Clin. Oncol. 2006
  • Jackman D. M., et al. Exon 19 Deletion Mutations of Epidermal Growth Factor Receptor Are Associated with Prolonged Survival in Non-Small Cell Lung Cancer Patients Treated with Gefitinib or Erlotinib. Clin. Cancer Res. 2006; 12(13)3908–3914
  • Janne P. A. Gefitinib for Epidermal Growth Factor Receptor Mutant Lung Cancers: Searching for a Weapon of Mass Destruction. J. Clin. Oncol. 2006
  • Jiang J., et al. Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res. 2005; 65(65)19–8968
  • Mukohara T., et al. Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J. Natl. Cancer Inst. 2005; 97(97)16–1185
  • Baselga J., et al. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J. Clin. Oncol. 2005; 23(24)5568–5577
  • Bogart J. A., Govindan R. A randomized phase II study of radiation therapy, pemetrexed, and carboplatin with or without cetuximab in stage III non-small-cell lung cancer. Clin. Lung Cancer 2006; 7(4)285–287
  • Bourhis J., et al. Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. 2006; 24(24)18–2866
  • Chan A. T., et al. Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. J. Clin. Oncol. 2005; 23(23)15–3568
  • Combs S. E., et al. Treatment of Primary Glioblastoma Multiforme with Cetuximab, Radiotherapy and Temozolomide (GERT) - Phase I/II Trial: Study Protocol. BMC Cancer. 2006; 6(1)133
  • Herbst R. S., et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 2005; 23(24)5578–5587
  • Pfister D. G., et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined-modality paradigm. J. Clin. Oncol. 2006; 24(24)7–1072
  • Saltz L. B., et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 2004; 22(7)1201–1208
  • Thienelt C. D., et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J. Clin. Oncol. 2005; 23(34)8786–8793
  • Vincenzi B., et al. Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre phase II trial. Br. J. Cancer 2006; 94(94)6–792
  • SWOG S0502: Phase III Randomized Study of Gemcitabine With Versus Without Cetuximab as First-Line Therapy in Patients With Locally Advanced Unrestable or Metastatic Adenocarcinoma of the Pancreas. Clin. Adv. Hematol. Oncol. 2004; 2(4)201–252
  • Alberts S. R., Sinicrope F. A., Grothey A. N0147: a randomized phase III trial of oxaliplatin plus 5-fluorouracil/leucovorin with or without cetuximab after curative resection of stage III colon cancer. Clin. Colorectal Cancer. 2005; 5(3)211–213
  • Burtness B., et al. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J. Clin. Oncol. 2005; 23(34)8646–8654
  • Goldstein N. I., et al. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1995; 1(1)11–1311
  • Gill G. N., et al. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. 1984; 259(259)12–7755
  • Sato J. D., et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1983; 1(1)5–511
  • Modjtahedi H., et al. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br. J. Cancer 1996; 73(2)228–235
  • Modjtahedi H., et al. Targeting of cells expressing wild-type EGFR and type-III mutant EGFR (EGFRvIII) by anti-EGFR MAb ICR62: a two-pronged attack for tumour therapy. Int. J. Cancer 2003; 105(105)2–273
  • Foon K. A., et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int. J. Radiat. Oncol. Biol. Phys. 2004; 58(58)3–984
  • Lynch D. H., Yang X. D. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin. Oncol. 2002; 29: 47–50, (1 Suppl 4)
  • Ranson M. Technology evaluation: ABX-EGF, Abgenix/Amgen. Curr. Opin. Mol. Ther. 2003; 5(5)541–546
  • Rowinsky E. K., et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J. Clin. Oncol. 2004; 22(22)15–3003
  • Tyagi P. Recent results and ongoing trials with panitumumab (ABX-EGF), a fully human anti-epidermal growth factor receptor antibody, in metastatic colorectal cancer. Clin. Colorectal. Cancer 2005; 5(1)21–23
  • Yang X. D., et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit. Rev. Oncol. Hematol. 2001; 38(38)1–17
  • Bangard C., et al. Magnetic resonance imaging in an orthotopic rat model: blockade of epidermal growth factor receptor with EMD72000 inhibits human pancreatic carcinoma growth. Int. J. Cancer 2005; 114(114)1–131
  • Mamot C., et al. EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J. Drug Target 2006; 14(14)4–215
  • Vanhoefer U., et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J. Clin. Oncol. 2004; 22(1)175–184
  • Yang X. D., et al. Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. 1999; 59(59)6–1236
  • Bruns C. J., et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res. 2000; 6(6)5–1936
  • Smith K., et al. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. Cancer Res. 2005; 65(65)12–5221
  • Zhang M., et al. Silencing the epidermal growth factor receptor gene with RNAi may be developed as a potential therapy for non small cell lung cancer. Genet. Vaccines Ther. 2005; 3: 5
  • Ciardiello F., et al. Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin. Cancer Res. 2000; 6(6)9–3739
  • Baselga J., et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 2000; 18(4)904–914
  • Perez-Soler R., Saltz L. Cutaneous adverse effects with HER1/EGFR-targeted agents: is there a silver lining?. J. Clin. Oncol. 2005; 23(22)5235–5246
  • Goodin S. Erlotinib: optimizing therapy with predictors of response?. Clin. Cancer Res. 2006; 12(10)2961–2913
  • Giaccone G., et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 1. J. Clin. Oncol. 2004; 22(22)5–777
  • Herbst R. S., et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 2. J. Clin. Oncol. 2004; 22(22)5–785
  • Amador M. L., et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res. 2004; 64(64)24–9139
  • Fan Z., et al. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res. 1993; 53(53)19–4637
  • Robert F., et al. Phase I study of anti–epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol. 2001; 19(13)3234–3243
  • Folprecht G., et al. Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann. Oncol. 2006; 17(17)3–450
  • Cunningham D., et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004; 351(351)4–337
  • Wong S. F. Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin. Ther. 2005; 27(6)684–694
  • Marc Peeters E. V.C. Salvatore Siena, Yves Humblet, Alain Hendlisz, Bart Neyns, Jean Luc Canon, Jean Luc Van Laethem, Joan Maurel, Gary Richardson, The Panitumumab Study Team. A phase 3, multicenter, randomized controlled trial (RCT) of panitumumab plus best supportive care (BSC) vs BSC alone in patients (pts) with metastatic colorectal cancer (mCRC). Proceedings of the 97th American Association for Cancer Research Annual Meeting. 2006
  • FDA News FOR IMMEDIATE RELEASE P06-148 Media Inquiries: Megan Moynahan, 301-827-6242
  • Moore M. J., et al. Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer. 2005, A phase III trial of the National Cancer Institute of Canada Clinical Trial Group [NCIC-CTG]. Abstract #1
  • Pollack A. MARKET PLACE; Panel Backs One Drug, But Not 2nd. New York Times 2005; 3, New York

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.