89
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLEPreclinical Therapeutics

Immune Consequences of Protracted Host-Tumor Interactions in a Transgenic Mouse Model of Mammary Carcinoma

, &
Pages 237-249 | Published online: 11 Jun 2009

REFERENCES

  • Ben-Baruch A. Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res. 2003; 5: 31–36
  • Shekhar M. P., Pauley R., Heppner G. Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res. 2003; 5: 130–135
  • Ostrand-Rosenberg S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr. Opin. Immunol. 2004; 16(2)143–150
  • Gendler S. J., Mukherjee P. Spontaneous adenocarcinoma mouse models for immunotherapy. Trends Mol. Med. 2001; 7(10)471–475
  • Guy C. T., Cardiff R. D., Muller W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol. 1992; 12(3)954–961
  • Lin E. Y., Jones J. G., Li P., Zhu L., Whitney K. D., Muller W. J., Pollard J. W. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 2003; 163(5)2113–2126
  • Basu G. D., Pathangey L. B., Tinder T. L., Lagioia M., Gendler S. J., Mukherjee P. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol. Cancer Res. 2004; 2(11)632–642
  • Mukherjee P., Madsen C. S., Ginardi A. R., Tinder T. L., Jacobs F., Parker J., Agrawal B., Longenecker B. M., Gendler S. J. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J. Immunother. 2003; 26(1)47–62
  • Knutson K. L., Dang Y., Lu H., Lukas J., Almand B., Gad E., Azeke E., Disis M. L. IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J. Immunol. 2006; 177(1)84–91
  • Pannellini T., Forni G., Musiani P. Immunobiology of her-2/neu transgenic mice. Breast Dis. 2004; 20: 33–42
  • Reilly R. T., Machiels J. P., Emens L. A., Ercolini A. M., Okoye F. I., Lei R. Y., Weintraub D., Jaffee E. M. The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res. 2001; 61(3)880–883
  • Sakai Y., Morrison B. J., Burke J. D., Park J. M., Terabe M., Janik J. E., Forni G., Berzofsky J. A., Morris J. C. Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res. 2004; 64(21)8022–8028
  • Astolfi A., Rolla S., Nanni P., Quaglino E., De Giovanni C., Iezzi M., Musiani P., Forni G., Lollini P. L., Cavallo F., Calogero R. A. Immune prevention of mammary carcinogenesis in HER-2/neu transgenic mice: a microarray scenario. Cancer Immunol. Immunother. 2005; 54(6)599–610
  • Ellies L. G., Fishman M., Hardison J., Kleeman J., Maglione J. E., Manner C. K., Cardiff R. D., MacLeod C. L. Mammary tumor latency is increased in mice lacking the inducible nitric oxide synthase. Int. J. Cancer. 2003; 106(1)1–7
  • Knutson K. L., Lu H., Stone B., Reiman J. M., Behrens M. D., Prosperi C. M., Gad E. A., Smorlesi A., Disis M. L. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J. Immunol. 2006; 177(3)1526–1533
  • Niemeyer C. C., Spencer-Dene B., Wu J. X., Adamson E. D. Preneoplastic mammary tumor markers: Cripto and Amphiregulin are overexpressed in hyperplastic stages of tumor progression in transgenic mice. Int. J. Cancer 1999; 81(4)588–591
  • Qiu T. H., Chandramouli G. V., Hunter K. W., Alkharouf N. W., Green J. E., Liu E. T. Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res. 2004; 64(17)5973–5981
  • Degl'Innocenti E., Grioni M., Boni A., Camporeale A., Bertilaccio M. T., Freschi M., Monno A., Arcelloni C., Greenberg N. M., Bellone M., Peripheral T. cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur. J. Immunol. 2005; 35(1)66–75
  • Otahal P., Schell T. D., Hutchinson S. C., Knowles B. B., Tevethia S. S. Early immunization induces persistent tumor-infiltrating CD8+ T cells against an immunodominant epitope and promotes lifelong control of pancreatic tumor progression in SV40 tumor antigen transgenic mice. J. Immunol. 2006; 177(5)3089–3099
  • Park J. M., Terabe M., Sakai Y., Munasinghe J., Forni G., Morris J. C., Berzofsky J. A. Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J. Immunol. 2005; 174(7)4228–4236
  • Rowse G. J., Tempero R. M., VanLith M. L., Hollingsworth M. A., Gendler S. J. Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res. 1998; 58(2)315–321
  • Leek R. D., Harris A. L. Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia. 2002; 7(2)177–189
  • Luo Y., Zhou H., Krueger J., Kaplan C., Lee S. H., Dolman C., Markowitz D., Wu W., Liu C., Reisfeld R. A., Xiang R. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J. Clin. Invest. 2006; 116(8)2132–2141
  • Melani C., Chiodoni C., Forni G., Colombo M. P. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood. 2003; 102(6)2138–2145
  • Sinha P., Clements V. K., Miller S., Ostrand-Rosenberg S. Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol. Immunother. 2005; 54(11)1137–1142
  • Molling J. W., Kolgen W., van der Vliet H. J., Boomsma M. F., Kruizenga H., Smorenburg C. H., Molenkamp B. G., Langendijk J. A., Leemans C. R., von Blomberg B. M., Scheper R. J., van den Eertwegh A. J. Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int. J. Cancer. 2005; 116(1)87–93
  • Terabe M., Swann J., Ambrosino E., Sinha P., Takaku S., Hayakawa Y., Godfrey D. I., Ostrand-Rosenberg S., Smyth M. J., Berzofsky J. A. A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 2005; 202(12)1627–1633
  • Hueman M. T., Stojadinovic A., Storrer C. E., Foley R. J., Gurney J. M., Shriver C. D., Ponniah S., Peoples G. E. Levels of circulating regulatory CD4(+)CD25 (+) T cells are decreased in breast cancer patients after vaccination with a HER2/neu peptide (E75) and GM-CSF vaccine(bigstar). Breast Cancer Res Treat. 2006; 98(1)17–29
  • Liyanage U. K., Moore T. T., Joo H. G., Tanaka Y., Herrmann V., Doherty G., Drebin J. A., Strasberg S. M., Eberlein T. J., Goedegebuure P. S., Linehan D. C. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 2002; 169(5)2756–2761
  • Okita R., Saeki T., Takashima S., Yamaguchi Y., Toge T. CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol. Rep. 2005; 14(5)1269–1273
  • Jackson J. R., Seed M. P., Kircher C. H., Willoughby D. A., Winkler J. D. The codependence of angiogenesis and chronic inflammation. Faseb. J. 1997; 11(6)457–465
  • Speiser D. E., Miranda R., Zakarian A., Bachmann M. F., McKall-Faienza K., Odermatt B., Hanahan D., Zinkernagel R. M., Ohashi P. S. Self antigens expressed by solid tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 1997; 186(5)645–653
  • Stewart T. J., Greeneltch K. M., Lutsiak M. E., Abrams S. I. Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Rev. Mol. Med. 2007; 9(4)1–20
  • Ueno T., Toi M., Saji H., Muta M., Bando H., Kuroi K., Koike M., Inadera H., Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 2000; 6(8)3282–3289
  • Lebrecht A., Grimm C., Lantzsch T., Ludwig E., Hefler L., Ulbrich E., Koelbl H. Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol. 2004; 25(1–2)14–17
  • Fuentes M. E., Durham S. K., Swerdel M. R., Lewin A. C., Barton D. S., Megill J. R., Bravo R., Lira S. A. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J. Immunol. 1995; 155(12)5769–5776
  • Lu B., Rutledge B. J., Gu L., Fiorillo J., Lukacs N. W., Kunkel S. L., North R., Gerard C., Rollins B. J. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 1998; 187(4)601–608
  • Zhang L., Khayat A., Cheng H., Graves D. T. The pattern of monocyte recruitment in tumors is modulated by MCP-1 expression and influences the rate of tumor growth. Lab. Invest. 1997; 76(4)579–590
  • Burke F., Relf M., Negus R., Balkwill F. A cytokine profile of normal and malignant ovary. Cytokine. 1996; 8(7)578–585
  • Naylor M. S., Stamp G. W., Foulkes W. D., Eccles D., Balkwill F. R. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J. Clin. Invest. 1993; 91(5)2194–2206
  • Leek R. D., Landers R., Fox S. B., Ng F., Harris A. L., Lewis C. E. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br. J. Cancer 1998; 77(12)2246–2251
  • Malik S. T., Griffin D. B., Fiers W., Balkwill F. R. Paradoxical effects of tumour necrosis factor in experimental ovarian cancer. Int. J. Cancer 1989; 44(5)918–925
  • Malik S. T., Naylor M. S., East N., Oliff A., Balkwill F. R. Cells secreting tumour necrosis factor show enhanced metastasis in nude mice. Eur. J. Cancer 1990; 26(10)1031–1034
  • Moore R. J., Owens D. M., Stamp G., Arnott C., Burke F., East N., Holdsworth H., Turner L., Rollins B., Pasparakis M., Kollias G., Balkwill F. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat. Med. 1999; 5(7)828–831
  • Negus R. P., Stamp G. W., Hadley J., Balkwill F. R. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol. 1997; 150(5)1723–1734
  • Warzocha K., Salles G., Bienvenu J., Bastion Y., Dumontet C., Renard N., Neidhardt-Berard E. M., Coiffier B. Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients. J. Clin. Oncol. 1997; 15(2)499–508
  • Chen D., Xia J., Tanaka Y., Chen H., Koido S., Wernet O., Mukherjee P., Gendler S. J., Kufe D., Gong J. Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells. Immunology. 2003; 109(2)300–307
  • Lin E. Y., Pollard J. W. Macrophages: modulators of breast cancer progression. Novartis Found Symp. 2004; 256: 158–168, discussion 168–172, 259–169
  • Heys S. D., Eremin O. The relevance of tumor draining lymph nodes in cancer. Surg. Gynecol. Obstet. 1992; 174(6)533–540
  • Lores B., Garcia-Estevez J. M., Arias C. Lymph nodes and human tumors (review). Int. J. Mol. Med. 1998; 1(4)729–733
  • Bronte V., Serafini P., Apolloni E., Zanovello P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 2001; 24(6)431–446
  • Sinha P., Clements V. K., Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 2005; 174(2)636–645
  • Kay N. E., Leong T. L., Bone N., Vesole D. H., Greipp P. R., Van Ness B., Oken M. M., Kyle R. A. Blood levels of immune cells predict survival in myeloma patients: results of an Eastern Cooperative Oncology Group phase 3 trial for newly diagnosed multiple myeloma patients. Blood 2001; 98(1)23–28
  • Kuss I., Hathaway B., Ferris R. L., Gooding W., Whiteside T. L. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 2004; 10(11)3755–3762
  • Stewart T. J., Abrams S. I. Altered immune function during long-term Host-Tumor interactions can be modulated to retard autochthonous neoplastic growth. J. Immunol. 2007; 179(5)2851–2859
  • Baecher-Allan C., Anderson D. E. Immune regulation in tumor-bearing hosts. Curr. Opin. Immunol. 2006; 18(2)214–219
  • Leong P. P., Mohammad R., Ibrahim N., Ithnin H., Abdullah M., Davis W. C., Seow H. F. Phenotyping of lymphocytes expressing regulatory and effector markers in infiltrating ductal carcinoma of the breast. Immunol. Lett. 2006; 102(2)229–236
  • Ambrosino E., Spadaro M., Iezzi M., Curcio C., Forni G., Musiani P., Wei W. Z., Cavallo F. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res. 2006; 66(15)7734–7740
  • Yang L., DeBusk L. M., Fukuda K., Fingleton B., Green-Jarvis B., Shyr Y., Matrisian L. M., Carbone D. P., Lin P. C. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004; 6(4)409–421
  • Serafini P., De Santo C., Marigo I., Cingarlini S., Dolcetti L., Gallina G., Zanovello P., Bronte V. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. 2004; 53(2)64–72
  • Serafini P., Borrello I., Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 2006; 16(1)53–65
  • Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow?. Lancet 2001; 357(9255)539–545
  • Neumark E., Sagi-Assif O., Shalmon B., Ben-Baruch A., Witz I. P. Progression of mouse mammary tumors: MCP-1-TNFalpha cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. Int. J. Cancer 2003; 106(6)879–886
  • Bachelot T., Ray-Coquard I., Menetrier-Caux C., Rastkha M., Duc A., Blay J. Y. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer 2003; 88(11)1721–1726
  • Dehqanzada Z. A., Storrer C. E., Hueman M. T., Foley R. J., Harris K. A., Jama Y. H., Kao T. C., Shriver C. D., Ponniah S., Peoples G. E. Correlations between serum monocyte chemotactic protein-1 levels, clinical prognostic factors, and HER-2/neu vaccine-related immunity in breast cancer patients. Clin. Cancer Res. 2006; 12(2)478–486
  • Sheen-Chen S. M., Chen W. J., Eng H. L., Chou F. F. Serum concentration of tumor necrosis factor in patients with breast cancer. Breast Cancer Res. Treat. 1997; 43(3)211–215
  • Saji H., Koike M., Yamori T., Saji S., Seiki M., Matsushima K., Toi M. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 2001; 92(5)1085–1091
  • Peng L., Shu S., Krauss J. C. Monocyte chemoattractant protein inhibits the generation of tumor-reactive T cells. Cancer Res. 1997; 57(21)4849–4854
  • Gu L., Tseng S., Horner R. M., Tam C., Loda M., Rollins B. J. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404(6776)407–411
  • Rutledge B. J., Rayburn H., Rosenberg R., North R. J., Gladue R. P., Corless C. L., Rollins B. J. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 1995; 155(10)4838–4843
  • Amann B., Perabo F. G., Wirger A., Hugenschmidt H., Schultze-Seemann W. Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br. J. Urol. 1998; 82(1)118–121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.