546
Views
52
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE Cellular and Molecular Biology

The Extracellular Matrix Protein 1: Its Molecular Interaction and Implication in Tumor Progression

, &
Pages 375-384 | Published online: 11 Jun 2009

REFERENCES

  • Mathieu E., Meheus L., Raymackers J., Merregaert J. Characterization of the osteogenic stromal cell line MN7: identification of secreted MN7 proteins using two-dimensional polyacrylamide gel electrophoresis, western blotting, and microsequencing. J Bone Miner Res 1994; 6: 903–913
  • Bhalerao J., Tylzanowski P., Filie J. D., Kozak C. A., Merregaert J. Molecular cloning, characterization, and genetic mapping of the cDNA coding for a novel secretory protein of mouse. Demonstration of alternative splicing in skin and cartilage. J Biol Chem 1995; 27: 16385–16394
  • Smits P., Ni J., Feng P., Wauters J., Van Hul W., Boutaibi M. E., Dillon P. J., Merregaert J. The human extracellular matrix gene 1 (ECM1): genomic structure, cDNA cloning, expression pattern, and chromosomal localization. Genomics 1997; 3(45)487–495
  • Johnson M. R., Wilkin D. J., Vos H. L., Ortiz de Luna R. I., Dehejia A. M., Polymeropoulos M. H., Francomano C. A. Characterization of the human extracellular matrix protein 1 gene on chromosome 1q21. Matrix Biol 1997; 5(16)289–292
  • Smits P., Poumay Y., Karperien M., Tylzanowski P., Wauters J., Huylebroeck D., Ponec M., Merregaert J. Differentiation-dependent alternative splicing and expression of the extracellular matrix protein 1 gene in human keratinocytes. J Invest Dermatol 2000; 4(114)718–724
  • Sander C. S., Sercu S., Ziemer M., Hipler U. C., Elsner P., Thiele J. J., Merregaert J. Expression of extracellular matrix protein 1 (ECM1) in human skin is decreased by age and increased upon ultraviolet exposure. Br J Dermatol 2006; 2(154)218–224
  • Mongiat M., Fu J., Oldershaw R., Greenhalgh R., Gown A. M., Iozzo R. V. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 2003; 19(278)17491–17499
  • Horev L., Potikha T., Ayalon S., Molho-Pessach V., Ingber A., Gany M. A., Edin B. S., Glaser B., Zlotogorski A. A novel splice-site mutation in ECM-1 gene in a consanguineous family with lipoid proteinosis. Exp Dermatol 2005; 12(14)891–897
  • Han Z., Ni J., Smits P., Underhill C. B., Xie B., Chen Y., Liu N., Tylzanowski P., Parmelee D., Feng P., Ding I., Gao F., Gentz R., Huylebroeck D., Merregaert J., Zhang L. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 2001; 6(15)988–994
  • Deckers M. M., Smits P., Karperien M., Ni J., Tylzanowski P., Feng P., Parmelee D., Zhang J., Bouffard E., Gentz R., Lowik C. W., Merregaert J. Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone 2001; 1(28)14–20
  • Wang L., Yu J., Ni J., Xu X. M., Wang J., Ning H., Pei X. F., Chen J., Yang S., Underhill C. B., Liu L., Liekens J., Merregaert J., Zhang L. Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 2003; 1(200)57–67
  • Hamada T. Lipoid proteinosis. Clin Exp Dermatol 2002; 8(27)624–629
  • Chan I. The role of extracellular matrix protein 1 in human skin. Clin Exp Dermatol 2004; 1(29)52–56
  • Hamada T., McLean W. H., Ramsay M., Ashton G. H., Nanda A., Jenkins T., Edelstein I., South A. P., Bleck O., Wessagowit V., Mallipeddi R., Orchard G. E., Wan H., Dopping-Hepenstal P. J., Mellerio J. E., Whittock N. V., Munro C. S., van Steensel M. A., Steijlen P. M., Ni J., Zhang L., Hashimoto T., Eady R. A., McGrath J. A. Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Mol Genet 2002; 7(11)833–840
  • Fujimoto N., Terlizzi J., Brittingham R., Fertala A., McGrath J. A., Uitto J. Extracellular matrix protein 1 interacts with the domain III of fibulin-1C and 1D variants through its central tandem repeat 2. Biochem Biophys Res Commun 2005; 4(333)1327–1333
  • Fujimoto N., Terlizzi J., Aho S., Brittingham R., Fertala A., Oyama N., McGrath J. A., Uitto J. Extracellular matrix protein 1 inhibits the activity of matrix metalloproteinase 9 through high-affinity protein/protein interactions. Exp Dermatol 2006; 4(15)300–307
  • Dunlevy J. R., Beales M. P., Berryhill B. L., Cornuet P. K., Hassell J. R. Expression of the keratan sulfate proteoglycans lumican, keratocan and osteoglycin/mimecan during chick corneal development. Exp Eye Res 2000; 3(70)349–362
  • Hamada T., Wessagowit V., South A. P., Ashton G. H., Chan I., Oyama N., Siriwattana A., Jewhasuchin P., Charuwichitratana S., Thappa D. M., Jeevankumar B., Lenane P., Krafchik B., Kulthanan K., Shimizu H., Kaya T. I., Erdal M. E., Paradisi M., Paller A. S., Seishima M., Hashimoto T., McGrath J. A. Extracellular matrix protein 1 gene (ECM1) mutations in lipoid proteinosis and genotype-phenotype correlation. J Invest Dermatol 2003; 3(120)345–350
  • Murdoch A. D., Liu B., Schwarting R., Tuan R. S., Iozzo R. V. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem 1994; 2(42)239–249
  • Handler M., Yurchenco P. D., Iozzo R. V. Developmental expression of perlecan during murine embryogenesis. Dev Dyn 1997; 2(210)130–145
  • Mongiat M., Sweeney S. M., San Antonio J. D., Fu J., Iozzo R. V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 2003; 6(278)4238–4249
  • Park J. E., Keller G. A., Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993; 12(4)1317–1326
  • Maeshima Y., Colorado P. C., Torre A., Holthaus K. A., Grunkemeyer J. A., Ericksen M. B., Hopfer H., Xiao Y., Stillman I. E., Kalluri R. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 2000; 28(275)21340–21348
  • Dhanabal M., LaRochelle W. J., Jeffers M., Herrmann J., Rastelli L., McDonald W. F., Chillakuru R. A., Yang M., Boldog F. L., Padigaru M., McQueeney K. D., Wu F., Minskoff S. A., Shimkets R. A., Lichenstein H. S. Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res 2002; 13(62)3834–3841
  • Folkman J., Shing Y. Angiogenesis. J Biol Chem 1992; 16(267)10931–10934
  • Brooks P. C., Montgomery A. M., Rosenfeld M., Reisfeld R. A., Hu T., Klier G., Cheresh D. A. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 7(79)1157–1164
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1(1)27–31
  • Argraves W. S., Greene L. M., Cooley M. A., Gallagher W. M. Fibulins: physiological and disease perspectives. EMBO Rep 2003; 12(4)1127–1131
  • Timpl R., Sasaki T., Kostka G., Chu M. L. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 2003; 6(4)479–489
  • Qing J., Maher V. M., Tran H., Argraves W. S., Dunstan R. W., McCormick J. J. Suppression of anchorage-independent growth and matrigel invasion and delayed tumor formation by elevated expression of fibulin-1D in human fibrosarcoma-derived cell lines. Oncogene 1997; 18(15)2159–2168
  • Ravanti L., Kahari V. M. Matrix metalloproteinases in wound repair (review). Int J Mol Med 2000; 4(6)391–407
  • Hangai M., Kitaya N., Xu J., Chan C. K., Kim J. J., Werb Z., Ryan S. J., Brooks P. C. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol 2002; 4(161)1429–1437
  • Xu J., Rodriguez D., Petitclerc E., Kim J. J., Hangai M., Moon Y. S., Davis G. E., Brooks P. C. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 2001; 5(154)1069–1079
  • Hamano Y., Zeisberg M., Sugimoto H., Lively J. C., Maeshima Y., Yang C., Hynes R. O., Werb Z., Sudhakar A., Kalluri R. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003; 6(3)589–601
  • Yu Q., Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 2(14)163–176
  • Olsen D. R., Chu M. L., Uitto J. Expression of basement membrane zone genes coding for type IV procollagen and laminin by human skin fibroblasts in vitro: elevated alpha 1 (IV) collagen mRNA levels in lipoid proteinosis. J Invest Dermatol 1988; 5(90)734–738
  • Bergers G., Brekken R., McMahon G., Vu T. H., Itoh T., Tamaki K., Tanzawa K., Thorpe P., Itohara S., Werb Z., Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 10(2)737–744
  • Belotti D., Paganoni P., Manenti L., Garofalo A., Marchini S., Taraboletti G., Giavazzi R. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003; 17(63)5224–5229
  • Blouw B., Song H., Tihan T., Bosze J., Ferrara N., Gerber H. P., Johnson R. S., Bergers G. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 2(4)133–146
  • Rahman M. A., Toi M. Anti-angiogenic therapy in breast cancer. Biomedicine & Pharmacotherapy 2003, 57: 463–470
  • Han Z., Ni J., Smits P., Underhill C. B., Xie B., Chen Y., Liu N., Tylzanowski P., Parmelee D., Feng P., Ding I., Gao F., Gentz R., Huylebroeck D., Merregaert J., Zhang L. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 2001; 6(15)988–994
  • Thomas K. A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 1996; 2(271)603–606
  • Nguyen M. Angiogenic factors as tumor markers. Invest New Drugs 1997; 1(15)29–37
  • Bachelder R. E., Crago A., Chung J., Wendt M. A., Shaw L. M., Robinson G., Mercurio A. M. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 2001; 15(61)5736–5740
  • Chung J., Bachelder R. E., Lipscomb E. A., Shaw L. M., Mercurio A. M. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol 2002; 1(158)165–174
  • Bates D. O., Harper S. J. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 2002; 4–5(39)225–237
  • Han Z., Lin G., Huang J., Chi F., Zhang L. The relationship between ECM1 and the angiogenesis and metastasis of laryngeal carcinoma. Lin. Chuang. Er. Bi Yan. Hou Ke. Za Zhi. 2006; 3(20)116–8; 121
  • Pauws E., Veenboer G. J., Smit J. W., de Vijlder J. J., Morreau H., Ris-Stalpers C. Genes differentially expressed in thyroid carcinoma identified by comparison of SAGE expression profiles. FASEB J 2004; 3(18)560–561
  • van de Velde C. J. H., van Krieken J. H. J. M., de Mulder P. H. M., Vermorken J. B. Oncologie. Bohn Stafleu van Loghum 2005
  • Su H., Hu N., Shih J., Hu Y., Wang Q. H., Chuang E. Y., Roth M. J., Wang C., Goldstein A. M., Ding T., Dawsey S. M., Giffen C., Emmert-Buck M. R., Taylor P. R. Gene expression analysis of esophageal squamous cell carcinoma reveals consistent molecular profiles related to a family history of upper gastrointestinal cancer. Cancer Res 2003; 14(63)3872–3876
  • Hu N., Qian L., Hu Y., Shou J. Z., Wang C., Giffen C., Wang Q. H., Wang Y., Goldstein A. M., Emmert-Buck M. R., Taylor P. R. Quantitative real-time RT-PCR validation of differential mRNA expression of SPARC FADD Fascin COL7A1 CK4 TGM3 ECM1 PPL EVPL in esophageal squamous cell carcinoma. BMC Cancer 2006, 6
  • Schlumberger M. J. Papillary and follicular thyroid carcinoma. N Engl. J Med 1998; 5(338)297–306
  • Krohn K., Paschke R. Somatic mutations in thyroid nodular disease. Mol Genet Metab 2002; 3(75)202–208
  • Tuttle R. M., Lemar H., Burch H. B. Clinical features associated with an increased risk of thyroid malignancy in patients with follicular neoplasia by fine-needle aspiration. Thyroid 1998; 5(8)377–383
  • Basu D., Jayaram G. A logistic model for thyroid lesions. Diagn Cytopathol 1992; 1(8)23–27
  • Tyler D. S., Winchester D. J., Caraway N. P., Hickey R. C., Evans D. B. Indeterminate fine-needle aspiration biopsy of the thyroid: identification of subgroups at high risk for invasive carcinoma. Surgery 1994; 6(116)1054–1060
  • Eldar S., Sabo E., Cohen A., Misselevich I., Abrahamson J., Cohen O., Kelner J., Boss J. H. The value of histomorphometric nuclear parameters in the diagnosis of well differentiated follicular carcinomas and follicular adenomas of the thyroid gland. Histopathology 1999; 5(34)453–461
  • Mazzaferri E. L., Robbins R. J., Spencer C. A., Braverman L. E., Pacini F., Wartofsky L., Haugen B. R., Sherman S. I., Cooper D. S., Braunstein G. D., Lee S., Davies T. F., Arafah B. M., Ladenson P. W., Pinchera A. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 2003; 4(88)1433–1441
  • Dean D. S., Hay I. D. Prognostic indicators in differentiated thyroid carcinoma. Cancer Control 2000; 3(7)229–239
  • Greaves T. S., Olvera M., Florentine B. D., Raza A. S., Cobb C. J., Tsao-Wei D. D., Groshen S., Singer P., Lopresti J., Martin S. E. Follicular lesions of thyroid: a 5-year fine-needle aspiration experience. Cancer 2000; 6(90)335–341
  • Baloch Z. W., Fleisher S., LiVolsi V. A., Gupta P. K. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol 2002; 1(26)41–44
  • Hooft L., Hoekstra O. S., Boers M., Van Tulder M. W., Van D. P., Lips P. Practice, efficacy, and costs of thyroid nodule evaluation: a retrospective study in a Dutch university hospital. Thyroid 2004; 4(14)287–293
  • Kebebew E., Peng M., Reiff E., McMillan A. Diagnostic and extent of disease multigene assay for malignant thyroid neoplasms. Cancer 2006; 12(106)2592–2597
  • Kebebew E., Peng M., Reiff E., Duh Q. Y., Clark O. H., McMillan A. ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg 2005; 3(242)353–361
  • Netzel-Arnett S., Hooper J. D., Szabo R., Madison E. L., Quigley J. P., Bugge T. H., Antalis T. M. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 2003; 2–3(22)237–258
  • Wallrapp C., Hahnel S., Muller-Pillasch F., Burghardt B., Iwamura T., Ruthenburger M., Lerch M. M., Adler G., Gress T. M. A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res 2000; 10(60)2602–2606
  • Kebebew E., Hwang J., Reiff E., Duh Q. Y., Clark O. H. Predictors of single-gland vs multigland parathyroid disease in primary hyperparathyroidism: a simple and accurate scoring model. Arch Surg 2006; 8(141)777–782
  • Kebebew E., Peng M., Reiff E., Duh Q. Y., Clark O. H., McMillan A. Diagnostic and prognostic value of cell-cycle regulatory genes in malignant thyroid neoplasms. World J Surg 2006; 5(30)767–774
  • Katoh R., Miyagi E., Kawaoi A., Hemmi A., Komiyama A., Oyama T., Shibuya M. Expression of vascular endothelial growth factor (VEGF) in human thyroid neoplasms. Hum Pathol 1999; 8(30)891–897
  • Klein M., Vignaud J. M., Hennequin V., Toussaint B., Bresler L., Plenat F., Leclere J., Duprez A., Weryha G. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab 2001; 2(86)656–658
  • Lennard C. M., Patel A., Wilson J., Reinhardt B., Tuman C., Fenton C., Blair E., Francis G. L., Tuttle R. M. Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery 2001; 5(129)552–558
  • Akslen L. A., LiVolsi V. A. Increased angiogenesis in papillary thyroid carcinoma but lack of prognostic importance. Hum Pathol 2000; 4(31)439–442
  • Bissell M. J., Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1(1)46–54
  • Liotta L. A., Kohn E. C. The microenvironment of the tumour-host interface. Nature 2001; 6835(411)375–379
  • Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 1990; 6303(348)699–704
  • Hewitt R., Dano K. Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 1996; 1–3(49)163–173
  • Hasan J., Byers R., Jayson G. C. Intra-tumoural microvessel density in human solid tumours. Br J Cancer 2002; 10(86)1566–1577
  • Sasano H., Ohashi Y., Suzuki T., Nagura H. Vascularity in human adrenal cortex. Mod Pathol 1998; 4(11)329–333
  • Hasan J., Byers R., Jayson G. C. Intra-tumoural microvessel density in human solid tumours. Br J Cancer 2002; 10(86)1566–1577
  • Hanahan D., Christofori G., Naik P., Arbeit J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 14(32A)2386–2393
  • Cadigan K. M., Nusse R. Wnt meeting 1996. Biochim Biophys Acta 1997; 1(1332)R1–R5
  • Hall C. L., Kang S., MacDougald O. A., Keller E. T. Role of Wnts in prostate cancer bone metastases. J Cell Biochem 2006; 4(97)661–672
  • Tsukamoto A. S., Grosschedl R., Guzman R. C., Parslow T., Varmus H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 4(55)619–625
  • Kenny P. A., Enver T., Ashworth A. Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells. BMC. Cancer 2005, 5: 3
  • Cairns R. A., Khokha R., Hill R. P. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 2003; 7(3)659–671
  • Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 3(2)161–174
  • Nabeshima K., Iwasaki H., Koga K., Hojo H., Suzumiya J., Kikuchi M. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol Int 2006; 7(56)359–367
  • Li J. Y. Epidemiology of esophageal cancer in China. Natl Cancer Inst Monogr 1982, 62: 113–120
  • Pawlak G., Helfman D. M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001; 1(11)41–47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.