188
Views
37
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLEImaging, Diagnosis, Prognosis

Overexpression of High Mobility Group (HMG) B1 and B2 Proteins Directly Correlates with the Progression of Squamous Cell Carcinoma in Skin

, &
Pages 843-851 | Published online: 11 Jun 2009

REFERENCES

  • Thomas J. O. HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans 2001; 29: 395–401
  • Pallier C., Scaffidi P., Chopineau-Proust S., Agresti A., Nordmann P., Bianchi M. E., Marechal V. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol Biol Cell 2003; 3414–3426
  • Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 1999; 19(8)5237–5246
  • Landsman D., Bustin M. A signature for the HMG-1 box DNA-binding proteins. Bioessays 1993; 15: 539–46
  • Jain A., Akanchha S., Rajeswari M. R. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein. Biochimie 2005; 87: 781–90
  • Muller S., Scaffidi P., Degryse B., Bonaldi T., Ronfani L., Agresti A., Beltrame M., Bianchi M. E. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 2001; 20: 4337–40
  • Zappavigna V., Falciola L., Helmer-Citterich M., Mavilio F., Bianchi M. E. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J 1996; 15: 4981–91
  • Boonyaratanakornkit V., Melvin V., Prendergast P., Altmann M., Ronfani L., Bianchi M. E., Taraseviciene L., Nordeen S. K., Allegretto E. A., Edwards D. P. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 1998; 18: 4471–87
  • Uramoto H, Izumi H, Nagatani G, Ohmori H, Nagasue N, Ise T, Yoshida T, Yasumoto K, Kohno K. Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression. Biochem J 2003; 371: 301–10
  • Chao J. C., Wan X. S., Engelsberg B. N., Rothblum L. I, Billings P. C. Intracellular distribution of HMG1, HMG2 and UBF change following treatment with cisplatin. Biochim Biophys Acta 1996; 1307: 213–219
  • McMurry M. T., Hernandez-Munain C., Lauzurica P., Krangel M. S. Enhancer control of local accessibility to V(D)J recombinase. Mol Cell Biol 1997; 17: 4553–61
  • Lotze M. T., Tracey K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5: 331–42
  • Yang H., Wang H., Czura C. J., Tracey K. J. HMGB1 as a cytokine and therapeutic target. J Endotoxin Res 2002; 8: 469–72
  • Taguchi A., Blood D. C., del Toro G., Canet A., Lee D. C., Qu W., Tanji N., Lu Y., Lalla E., Fu C., Hofmann M. A., Kislinger T., Ingram M., Lu A., Tanaka H., Hori O., Ogawa S., Stern D. M., Schmidt A. M. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405: 354–60
  • Balasubramani M., Day B. W., Schoen R. E., Getzenberg R. H. Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer. Cancer Res, 66: 763–9
  • Kawahara N., Tanaka T., Yokomizo A., Nanri H., Ono M., Wada M., Kohno K., Takenaka K., Sugimachi K., Kuwano M. Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res 1996; 56: 5330–3
  • He Q., Liang C. H., Lippard S. J. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA 2000; 97: 5768–72
  • Maeda S., Hikiba Y., Shibata W., Ohmae T., Yanai A., Ogura K., Yamada S., Omata M. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem Biophys Res Commun 2007; 360: 394–400
  • Pardo M., García A., Thomas B., Piñeiro A., Akoulitchev A., Dwek R. A., Zitzmann N. The characterization of the invasion phenotype of uveal melanoma tumour cells shows the presence of MUC18 and HMG-1 metastasis markers and leads to the identification of DJ-1 as a potential serum biomarker. Int J Cancer 2006; 119: 1014–22
  • Anon., American Cancer Society. Cancer Facts and Figure. New York 2003
  • Rajeswari M. R., Singh D., Jain A., Ray R. Elevated levels of high-mobility-group chromosomal proteins, HMGA1, in murine skin carcinoma. Cancer Lett 2001; 173: 93–9
  • Rajeswari M. R., Jain A., Sharma A., Singh D., Jagannathan N. R., Sharma U., Degaonkar M. N. Evaluation of skin tumors by magnetic resonance imaging. Lab Invest 2003; 83: 1279–1283
  • Ghosh I., Chowdhury A. R., Rajeswari M. R., Datta K. Differential expression of Hyaluronic Acid Binding Protein 1 (HABP1)/P32/C1QBP during progression of epidermal carcinoma. Mol Cell Biochem 2004; 267: 133–9
  • Kawamori T., Uchiya N., Sugimura T., Wakabayashi K. Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogen 2003; 24: 985–90
  • Singh D., Rajeswari M. R. Enhanced Expression of HMG-Y proteins in Proliferating Tissues. Ind J Clin Biochem 2001; 16: 72–76
  • Li J., Tang M. S., Liu B., Shi X., Huang C. A. Critical role of PI-3K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 2004; 23: 3932–44
  • Bjelogrlic N. M., Mäkinen M., Stenbäck F., Vähäkangas K. Benzo[a]pyrene-7, 8-diol-9,10-epoxide-DNA adducts and increased p53 protein in mouse skin. Carcinogen 1994; 15: 771–4
  • Suh M., Ariese F., Small G. J., Jankowiak R., Hewer A., Phillips D. H. Formation and persistence of benzo[a]pyrene-DNA adducts in mouse epidermis in vivo: importance of adduct conformation. Carcinogen 1995; 16: 2561–9
  • Humble M. C., Trempus C. S., Spalding J. W., Cannon R. E., Tennant R. W. Biological, cellular, and molecular characteristics of an inducible transgenic skin tumor model: a review. Oncogene 2005; 24: 8217–28
  • Li D., Wang L. E., Chang P., E.l-Naggar A. K., Sturgis E. M., Wei Q. In vitro benzo[a]pyrene diol epoxide-induced DNA adducts and risk of squamous cell carcinoma of head and neck. Cancer Res 2007; 67: 5628–34
  • Hays F. A., Teegarden A., Jones Z. J., Harms M., Raup D., Watson J., Cavaliere E, Ho P. S. How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc Natl Acad Sci USA 2005; 102: 7157–62
  • Bhana S., Lloyd D. R. The role of p53 in DNA damage-mediated cytotoxicity overrides its ability to regulate nucleotide excision repair in human fibroblasts. Mutagenesis 2008; 23: 43–50
  • Rajeswari M. R., Jain A. High-mobility-group chromosomal proteins, HMGA1 as potential tumor markers. Current Sci 2002; 82: 838–844
  • Hock R., Furusawa T., Ueda T., Bustin M. HMG chromosomal proteins in development and disease. Trends Cell Biol 2007; 17: 72–9
  • Raucci A., Palumbo R., Bianchi M. E. HMGB1: a signal of necrosis. Autoimmunity 2007; 40: 285–289
  • Scaffidi P., Misteli T., Bianchi M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191–195
  • Bustin M. At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Sci STKE 2002; PE39
  • Ito N., DeMarco R. A., Mailliard R. B., Han J., Rabinowich H., Kalinski P., Stolz D. B., Lotze M. T. Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol 2007; 81: 75–83
  • Akaike H., Kono K., Sugai H., Takahashi A., Mimura K., Kawaguchi Y., Fujii H. Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res 2007; 27: 449–57
  • Poser I., Golob M., Buettner R., Bosserhoff A. K. Upregulation of HMG1 leads to melanoma inhibitory activity expression in malignant melanoma cells and contributes to their malignancy phenotype. Mol Cell Biol 2003; 23: 2991–8
  • Rovere-Querini P., Capobianco A., Scaffidi P., Valentinis B., Catalanotti F., Giazzon M., Dumitriu I. E., Muller S., Iannacone M., Traversari C., Bianchi M. E., Manfredi A. A. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 2004; 5: 825–830
  • Riuzzi F., Sorci G., Donato R. RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. Am J Pathol 2007; 171: 947–61
  • Taguchi A., Blood D. C., del Toro G., Canet A., Lee D. C., Qu W., Tanji N., Lu Y., Lalla E., Fu C., Hofmann M. A., Kislinger T., Ingram M., Lu A., Tanaka H., Hori O., Ogawa S., Stern D. M., Schmidt A. M. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405: 354–60
  • Sasahira T., Kirita T., Bhawal U. K., Ikeda M., Nagasawa A., Yamamoto K., Kuniyasu H. The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch 2007; 450: 287–95
  • Palumbo R., Galvez B. G., Pusterla T., De Marchis F., Cossu G., Marcu K. B., Bianchi M. E. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-{kappa}B activation. J Cell Biol 2007; 179: 33–40
  • Andersson U., Erlandsson-Harris H., Yang H., Tracey K. J. HMGB1 as a DNA-binding cytokine. J Leukoc Biol 2002; 72: 1084–91
  • Ellerman J. E., Brown C. K., de Vera M., Zeh H. J., Billiar T., Rubartelli A., Lotze M. T. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 2007; 13: 2836–48
  • Lotze M. T., DeMarco R. A. Dealing with death: HMGB1 as a novel target for cancer therapy. Curr Opin Investig Drugs 2003; 4: 1405–1409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.