143
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES Cellular and Molecular Biology

Autotaxin Promotes the Expression of Matrix Metalloproteinase-3 via Activation of the MAPK Cascade in Human Fibrosarcoma HT-1080 Cells

, &
Pages 384-390 | Published online: 20 Jul 2009

REFERENCES

  • Ferry G., Tellier E., Try A., Gres S., Naime I., Simon M. F., Rodriguez M., Boucher J., Tack I., Gesta S., Chomarat P., Dieu M., Raes M., Galizzi J. P., Valet P., Boutin J. A., Saulnier-Blache J. S. Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J. Biol. Chem. 2003; 278: 18162–18169
  • Stracke M. L., Liotta L. A., Schiffmann E. The role of autotaxin and other motility stimulating factors in the regulation of tumor cell motility. Symp. Soc. Exp. Biol. 1993; 47: 197–214
  • Nam S. W., Clair T., Campo C. K., Lee H. Y., Liotta L. A., Stracke M. L. Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene 2000; 19: 241–247
  • Lee H. Y., Bae G. U., Jung I. D., Lee J. S., Kim Y. K., Noh S. H., Stracke M. L., Park C. G., Lee H. W., Han J. W. Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells. FEBS Lett. 2002; 515: 137–140
  • Jung I. D., Lee J., Yun S. Y., Park C. G., Choi W. S., Lee H. W., Choi O. H., Han J. W., Lee H. Y. Cdc42 and Rac1 are necessary for autotaxin-induced tumor cell motility in A2058 melanoma cells. FEBS Lett. 2002; 532: 351–356
  • Song J., Clair T., Noh J. H., Eun J. W., Ryu S. Y., Lee S. N., Ahn Y. M., Kim S. Y., Lee S. H., Park W. S., Yoo N. J., Lee J. Y., Nam S. W. Autotaxin (lysoPLD/NPP2) protects fibroblasts from apoptosis through its enzymatic product, lysophosphatidic acid, utilizing albumin-bound substrate. Biochem. Biophys. Res. Commun. 2005; 337: 967–975
  • Nam S. W., Clair T., Kim Y. S., McMarlin A., Schiffmann E., Liotta L. A., Stracke M. L. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res. 2001; 61: 6938–6944
  • van Meeteren L. A., Ruurs P., Stortelers C., Bouwman P., van Rooijen M. A., Pradère J. P., Pettit T. R., Wakelam M. J., Saulnier-Blache J. S., Mummery C. L., Moolenaar W. H., Jonkers J. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell. Biol. 2006; 26: 5015–5022
  • Umezu-Goto M., Kishi Y., Taira A., Hama K., Dohmae N., Takio K., Yamori T., Mills G. B., Inoue K., Aoki J., Arai H. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell. Biol. 2002; 158: 227–233
  • Gerrard J. M., Clawson C. C., White J. G. Lysophosphatidic acids: III. Enhancement of neutrophil chemotaxis. Am. J. Pathol. 1980; 100: 609–618
  • Jalink K., Moolenaar W. H., Van Duijn, Lysophosphatidic B. acid is a chemoattractant for Dictyostelium discoideum amoebae. Proc. Natl. Acad. Sci. USA 1993; 90: 1857–1861
  • Satoh Y., Ohkawa R., Nakamura K., Higashi K., Kaneko M., Yokota H., Aoki J., Arai H., Yuasa Y., Yatomi Y. Lysophosphatidic acid protection against apoptosis in the human pre-B-cell line Nalm-6. Eur. J. Haematol. 2007; 78: 510–517
  • Hu Y. L., Tee M. K., Goetzl E. J., Auersperg N., Mills G. B., Ferrara N., Jaffe R. B. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J. Natl. Cancer Inst. 2001; 93: 762–768
  • Sako A., Kitayama J., Shida D., Suzuki R., Sakai T., Ohta H., Nagawa H. Lysophosphatidic acid (LPA)-induced vascular endothelial growth factor (VEGF) by mesothelial cells and quantification of host-derived VEGF in malignant ascites. J. Surg. Res. 2006; 130: 94–101
  • Xu Y., Shen Z., Wiper D. W., Wu M., Morton R. E., Elson P., Kennedy A. W., Belinson J., Markman M., Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998; 280: 719–723
  • Seckl M. J., Seufferlein T., Rozengurt E. Lysophosphatidic acid-depleted serum, hepatocyte growth factor and stem cell growth factor stimulate colony growth of small cell lung cancer cells through a calcium-independent pathway. Cancer Res. 1994; 54: 6143–6147
  • Tigyi G., Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 phenochromocytoma cells. J. Biol. Chem. 1992; 267: 21360–21367
  • Xu Y., Gaudette D. C., Boynton J. D., Frankel A., Fang X. J., Sharma A., Hurteau J., Casey G., Goodbody A., Mellors A. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin. Cancer Res. 1995; 1: 1223–1232
  • Moolenaar W. H. Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res 1999; 253: 230–238
  • Wojciak-Stothard B., Ridley A. J. Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol. 2002; 39: 187–199
  • Ye X., Ishii I., Kingsbury M. A., Chun J. Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim. Biophys. Acta. 2002; 1585: 108–113
  • van Leeuwen F.N., Giepmans B. N., van Meeteren L. A., Moolenaar W. H. Lysophosphatidic acid: mitogen and motility factor. Biochem. Soc. Trans. 2003; 31: 1209–1212
  • Radeff-Huang J., Seasholtz T. M., Matteo R. G., Brown J. H. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J. Cell. Biochem. 2004; 92: 949–966
  • Moolenaar W. H., van Meeteren L. A., Giepmans B. N. The ins and outs of lysophosphatidic acid signaling. Bioessays 2004; 26: 870–881
  • Saatian B., Zhao Y., He D., Georas S. N., Watkins T., Spannhake E. W., Natarajan V. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem. J. 2006; 393: 657–668
  • Woessner J. F. Jr. Matrix metalloproteinases and the inhibitors in connective tissue remodeling. FASEB J. 1991; 5: 2145–2154
  • Matrisian L. M. The matrix-degrading metalloproteinases. Bioassays 1992; 14: 455–463
  • Butticè G., Duterque-Coquillaud M., Basuyaux J. P., Carrère S., Kurkinen M., Stéhelin D. Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene 1996; 13: 2297–2306
  • Biondi M. L., Turri O., Leviti S., Seminati R., Cecchini F., Bernini M., Ghilardi G., Guagnellini E. MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin. Chem. 2000; 46: 2023–2024
  • Kusukawa J., Harada H., Shima I., Sasaguri Y., Kameyama T., Morimatsu M. The significance of epidermal growth factor receptor and matrix metalloproteinase-3 in squamous cell carcinoma of the oral cavity. Eur. J. Cancer Oral. Oncol. 1996; 32B: 217–221
  • Eum S.-Y., Lee Y.-W., Hennig B., Toborek M. Interplay between epidermal growth factor receptor and janus kinase 3 regulates polychlorinated biphenyl-Induced matrix metalloproteinase-3 expression and transendothelial migration of tumor Cells. Mol. Cancer Res. 2006; 4: 361–370
  • MacNaul K. L., Chartrain N., Lark M., Tocci M. J., Hutchinson N. I. Discoordinate expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases-1 in rheumatoid human synovial fibroblasts. J. Biol. Chem. 1990; 265: 17238–17245
  • Behera A. K., Thorpe C. M., Kidder J. M., Smith W., Hildebrand E., Hu L. T. Borrelia burgdorferi-Induced expression of matrix metalloproteinases from human chondrocytes requires mitogen-activated protein kinase and janus kinase/signal transducer and activator of transcription signaling pathways. Infect. Immun. 2004; 72: 2864–2871
  • Park C.-H., Lee M. J., Ahn J., Kim S., Kim H. H., Kim K. H., Eun H. C., Chung J. H. Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop. J. Invest Dermatol. 2004; 123: 1012–1019
  • Sweeney S. E., Hammaker D., Boyle D. L., Firestein G. S. Regulation of c-Jun phosphorylation by the IkB kinase-£complex in fibroblast-like synoviocytes. J. Immunol. 2005; 174: 6424–6430
  • Inoue T., Hammaker D., Boyle D. L., Firestein G. S. Regulation of JNK by MKK-7 in fibroblast-like synoviocytes. Arthritis Rheum. 2006; 54: 2127–2135
  • Haga A., Hashimoto K., Tanaka N., Nakamura K. T., Deyashiki Y. Scalable purification and characterization of the extracellular domain of human autotaxin from prokaryotic cells. Protein Expr. Purif. 2008; 59: 9–17
  • van Meeteren L. A., Ruurs P., Christodoulou E., Goding J. W., Takakusa H., Kikuchi K., Perrakis A., Nagano T., Moolenaar W. H. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J. Biol. Chem. 2005; 280: 21155–21161
  • Clair T., Koh E., Ptaszynska M., Bandle R. W., Liotta L. A., Schiffmann E., Stracke M. L. PMC L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin. Lipids Health Dis. 2005; 5: 1–18
  • Smyth S. S., Sciorra V. A., Sigal Y. J., Pamuklar Z., Wang Z., Xu Y., Prestwich G. D., Morris A. J. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity. J. Biol. Chem. 2003; 278: 43214–43223
  • Cui P., Tomsig J. L., McCalmont W. F., Lee S., Becker C. J., Lynch K. R., Macdonald T. L. Synthesis and biological evaluation of phosphonate derivatives as autotaxin (ATX) inhibitors. Bioorg. Med. Chem. Lett. 2007; 17: 1634–1640
  • Achterberg V., Gercken G. Metabolism of ether lysophospholipids in Leishmania donovani promastigotes. Mol. Biochem. Parasitol. 1987; 26: 277–287
  • Kawasaki T., Snyde F. The metabolism of lyso-platelet-activating factor (1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine) by a calcium-dependent lysophospholipase D in rabbit kidney medulla. Biochim. Biophys. Acta. 1987; 920: 85–93
  • Gijsbers R., Aoki J., Arai H., Bollen M. The hydrolysis of lysophospholipids and nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett. 2003; 538: 60–64
  • Zalatan J. G., Fenn T. D., Brunger A. T., Herschlag D. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Biochemistry 2006; 45: 9788–9803
  • Zhao Y., He D., Saatian B., Watkins T., Spannhake E. W., Pyne N. J., Natarajan V. Regulation of lysophosphatidic acid-induced epidermal growth factor receptor transactivation and interleukin-8 secretion in human bronchial epithelial cells by protein kinase C, Lyn kinase, and matrix metalloproteinases. J. Biol. Chem. 2006; 281: 19501–19511
  • Deng T., Karin M. c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 1994; 371: 171–175
  • Monje P., Marinissen M. J., Gutkind J. S. Phosphorylation of the carboxyl-terminal transactivation domain of c-Fos by extracellular signal-regulated kinase mediates the transcriptional activation of AP-1 and cellular transformation induced by platelet-derived growth factor. Mol. Cell. Biol. 2003; 23: 7030–7043
  • Shah B. H., Baukal A. J., Shah F. B., Catt K. J. Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol. Endocrinol. 2005; 19: 2535–2548
  • Nishida E., Gotoh Y., The M AP. kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 1993; 18: 128–131
  • Ip Y. T., Davis R. J. Signal transduction by the c-Jun N-terminal kinase (JNK)-from unflammation to development. Curr. Opin. Cell. Biol. 1998; 10: 205–219
  • Sambucetti L. C., Curren T. The Fos protein complex is associated with DNA in isolated nuclei and binds to DNA cellulose. Science 1986; 234: 1417–1419
  • Distel R. J., Ro H. S., Rosen B. S., Groves D. L., Spiegelman B. M. Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-Fos. Cell 1987; 49: 835–844
  • Bhomann D., Bos T. J., Admon A., Nishimura T., Vogt P. K., Tjian R. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 1987; 238: 1386–1392
  • Jeon E. S., Song H. Y., Kim M. R., Moon H. J., Bae Y. C., Jung J. S., Kim J. H. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J. Lipid Res. 2006; 47: 653–664
  • Lee Y. J., Shukla S. D. Pro- and anti-apoptotic roles of c-Jun N-terminal kinase (JNK) in ethanol and acetaldehyde exposed rat hepatocytes. Eur. J. Pharmacol. 2005; 31: 31–45
  • Korhonen R., Linker K., Pautz A., Förstermann U., Moilanen E., Kleinert H. Post-transcriptional regulation of human inducible nitric-oxide synthase expression by the Jun N-terminal kinase. Mol. Pharmacol. 2007; 71: 1427–1434
  • Gaire M., Magbanua Z., McDonnell S., McNeil L., Lovett D. H., Matrisian L. M. Structure and expression of the human gene for the matrix metalloproteinase matrilysin. J. Biol. Chem. 1994; 269: 2032–2040
  • Sato H., Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 1993; 8: 395–405
  • Uría J.A., Jiménez M. G., Balbín M., Freije J. M., López-Otín C. Differential effects of transforming growth factor-beta on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J. Biol. Chem. 1998; 273: 9769–9777
  • Stracke M. L., Krutzsch H. C., Unsworth E. J., Arestad A., Cioce V., Schiffmann E., Liotta L. A. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 1992; 267: 2524–2529
  • Murata J., Lee H. Y., Clair T., Krutzsch H. C., Arestad A. A., Sobel M. E., Liotta L. A., Stracke M. L. cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem. 1994; 269: 30479–30484
  • Clair T., Lee H. Y., Liotta L. A., Stracke M. L. Autotaxin is an exoenzyme possessing 5′ -nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities,. Biol J. Chem. 1997; 271: 996–1001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.