293
Views
27
CrossRef citations to date
0
Altmetric
SPECIAL ARTICLE

Tumor Vaccines for Breast Cancer

Pages 361-368 | Published online: 20 Jul 2009

REFERENCES

  • Chaudhuri S., Cariappa A., Tang M., et al. Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may represent protective alleles. Proc Natl Acad Sci USA 2000; 97: 11451–11454
  • Marincola F. M., Jaffee E. M., Hicklin D. J., et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181–273
  • Campoli M., Chang CC, Oldford SA, et al. HLA antigen changes in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications. Breast Dis 2004; 20: 105–125
  • Aaltomaa S., Lipponen P., Eskelinen M., et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 1992; 28A: 859–864
  • Menard S., Tomasic G., Casalini P., et al. Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 1997; 3: 817–819
  • Jerome K. R., Domenech N., Finn O. J. Tumor-specific cytotoxic T -cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. J Immunol 1993; 151: 1654–1662
  • Disis M. L., Calenoff E., McLaughlin G., et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 1994; 54: 16–20
  • Bishop M. R., Fowler D. H., Marchigiani D., et al. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol 2004; 22: 3886–3892
  • Lundqvist A., Childs R. Allogeneic hematopoietic cell transplantation as immunotherapy for solid tumors: current status and future directions. J Immunother 2005; 28: 281–288
  • Carella A. M., Beltrami G., Corsetti M. T., et al. Reduced intensity conditioning for allograft after cytoreductive autograft in metastatic breast cancer. Lancet 2005; 366: 318–320
  • Janeway C.T. P., Walport M., Shlomchikm M. Immunobiology: The Immune System in Health and Disease. Garland Science Publishing, New York, NY 2005
  • Iwasaki A., Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987–995
  • Vollmer J. Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin Biol Ther 2005; 5: 673–682
  • Speiser D. E., Lienard D., Rufer N., et al. Rapid and strong human CD8+T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005; 115: 739–746
  • Diefenbach A., Raulet D. H. The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol Rev 2002; 188: 9–21
  • Smyth M. J., Swann J., Cretney E., et al. NKG2D function protects the host from tumor initiation. J Exp Med 2005; 202: 583–588
  • Bauer S., Groh V., Wu J., et al. Activation of NK cells and Tcells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727–729
  • Groh V., Rhinehart R., Secrist H., et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 1999; 96: 6879–6884
  • Groh V., Wu J., Yee C., et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738
  • Singer G., Rebmann V., Chen Y. C., et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res 2003; 9: 4460–4464
  • Zaks T. Z., Rosenberg S. A. Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+tumors. Cancer Res 1998; 58: 4902–4908
  • Vonderheide R. H., Hahn W. C., Schultze J. L., et al. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999; 10: 673–679
  • Maecker B., Sherr D. H., Vonderheide R. H., et al. The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 2003; 102: 3287–3294
  • Kao H., Marto J. A., Hoffmann T. K., et al. Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 2001; 194: 1313–1323
  • Khong H. T., Yang J. C., Topalian S. L., et al. Immunization of HLA-A_0201 and/or HLADPbeta1*04 patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. J Immunother 2004; 27: 472–477
  • Salazar L. G., Fikes J., Southwood S., et al. Immunization of cancer patients with HER-2/neu-derived peptides demonstrating high-affinity binding to multiple class II alleles. Clin Cancer Res 2003; 9: 5559–5565
  • Anderson K. S., LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 2005; 4: 1123–1133
  • MacLean G. D., Miles D. W., Rubens R. D., et al. Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphasis Tumor Immunol 1996; 19: 309–316
  • Sandmaier B. M., Oparin D. V., Holmberg L. A., et al. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine. J Immunother 1999; 22: 54–66
  • Holmberg L. A., Oparin D. V., Gooley T., et al. Clinical outcome of breast and ovarian cancer patients treated with high-dose chemotherapy, autologous stem cell rescue and THERATOPE STn-KLH cancer vaccine. Bone Marrow Transplant 2000; 25: 1233–1241
  • Musselli C., Livingston P. O., Ragupathi G. Keyhole limpet hemocyanin conjugate vaccines against cancer: the Memorial Sloan Kettering experience. J Cancer Res Clin Oncol 127 Suppl 2001; 2: R20–R26
  • Disis M. L., Pupa S. M., Gralow J. R., et al. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997; 15: 3363–3367
  • Stockert E., Jager E., Chen Y. T., et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998; 187: 1349–1354
  • Sioud M., Hansen M. H. Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur J Immunol 2001; 31: 716–725
  • Sugita Y., Wada H., Fujita S., et al. NY-ESO-1 expression and immunogenicity in malignant and benign breast tumors. Cancer Res 2004; 64: 2199–2204
  • Wang X., Yu J., Sreekumar A., et al. Autoantibody signatures in prostate cancer. N Engl J Med 2005; 353: 1224–1235
  • Hodi F. S., Schmollinger J. C., Soiffer R. J., et al. ATP6S1 elicits potent humoral responses associated with immune-mediated tumor destruction. Proc Natl Acad Sci USA 2002; 99: 6919–6924
  • Gnjatic S., Atanackovic D., Jager E., et al. Survey of naturally occurring CD4+T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci USA 2003; 100: 8862–8867
  • Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274
  • Zou W., Machelon V., Coulomb-L'Hermin A., et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7: 1339–1346
  • Rollins B. J. Inflammatory chemokines in cancer growth and progression. Eur J Cancer 2006; 42: 760–767
  • Greenwald R. J., Freeman G. J., Sharpe A. H. The B7 family revisited. Annu Rev Immunol 2005; 23: 515–548
  • Muschen M., Moers C., Warskulat U., et al. CD95 ligand expression as a mechanism of immune escape in breast cancer. Immunology 2000; 99: 69–77
  • Brown J. A., Dorfman D. M., Ma F. R., et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003; 170: 1257–1266
  • Tringler B., Zhuo S., Pilkington G., et al. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res 2005; 11: 1842–1848
  • Schuler G., Schuler-Thurner B., Steinman R. M. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15: 138–147
  • Wilcox R. A., Tamada K., Flies D. B., et al. Ligation of CD137 receptor prevents and reverses established anergy of CD8+cytolytic T lymphocytes in vivo. Blood 2004; 103: 177–184
  • Bansal-Pakala P., Jember A. G., Croft M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat Med 2001; 7: 907–912
  • O'Neill D. W., Adams S., Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104: 2235–2246
  • Gervais A., Leveque J., Bouet-Toussaint F., et al. Dendritic cells are defective in breast cancer patients: a potential role for polyamine in this immunodeficiency. Breast Cancer Res 2005; 7: R326–R335
  • Munn D. H., Sharma M. D., Lee J. R., et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297: 1867–1870
  • Mellor A. L., Munn D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4: 762–774
  • Nair S. K., Morse M., Boczkowski D., et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 2002; 235: 540–549
  • Nestle F. O., Alijagic S., Gilliet M., et al. Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332
  • Avigan D., Vasir B., Gong J., et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 2004; 10: 4699–4708
  • Holtl L., Zelle-Rieser C., Gander H., et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 2002; 8: 3369–3376
  • O'Rourke M. G., Johnson M., Lanagan C., et al. Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 2003; 52: 387–395
  • Small E. J. SPF., Higano C., Neumanaitis J., Valone F., Herschberg R. M. Immunotherapy (APC8015) for androgen independent prostate cancer (AIPC): Final survival data from a phase 3 randomized placebo-controlled trial. 2005 ASCO Prostate Cancer Symposium. 2005
  • Morse M. A., Clay T. M., Hobeika A. C., et al. Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin Cancer Res 2005; 11: 3017–3024
  • Morse M. A., Nair S. K., Mosca P. J., et al. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 2003; 21: 341–349
  • Brossart P., Wirths S., Stuhler G., et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide pulsed dendritic cells. Blood 2000; 96: 3102–3108
  • Wobser M., Keikavoussi P., Kunzmann V., et al. Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol Immunother 2006; 55: 1294–1298
  • Otto K., Andersen M. H., Eggert A., et al. Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 2005; 23: 884–889
  • Taylor-Papadimitriou J., Finn O. J. Biology, biochemistry and immunology of carcinomaassociated mucins. Immunol Today 1997; 18: 105–107
  • Goydos J. S., Elder E., Whiteside T. L., et al. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 1996; 63: 298–304
  • Reddish M., MacLean G. D., Koganty R. R., et al. Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. Int J Cancer 1998; 76: 817–823
  • Gilewski T., Adluri S., Ragupathi G., et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res 2000; 6: 1693–1701
  • Karanikas V., Thynne G., Mitchell P., et al. Mannan Mucin-1 Peptide Immunization: Influence of Cyclophosphamide and the Route of Injection. J Immunother 2001; 24: 172–183
  • Snijdewint F. G., von Mensdorff-Pouilly S., Karuntu-Wanamarta A. H., et al. Antibodydependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int J Cancer 2001; 93: 97–106
  • Karanikas V., Hwang L. A., Pearson J., et al. Antibody and Tcell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest 1997; 100: 2783–2792
  • Murray J. L., Gillogly M. E., Przepiorka D., et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+patients with metastatic breast and ovarian cancer. Clin Cancer Res 2002; 8: 3407–3418
  • Knutson K. L., Schiffman K., Cheever M. A., et al. Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide specific immunity. Clin Cancer Res 2002; 8: 1014–1018
  • Disis M. L., Gooley T. A., Rinn K., et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide based vaccines. J. Clin. Oncol. 2002; 20: 2624–2632
  • Knutson K. L., Schiffman K., Disis M. L. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 2001; 107: 477–484
  • Disis M. L., Schiffman K., Guthrie K., et al. Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein-based vaccine. J Clin Oncol 2004; 22: 1916–1925
  • Morse M. A., Clay T. M., Colling K., et al. HER2 dendritic cell vaccines. Clin Breast Cancer 3 Suppl 2003; 4: S164–S172
  • Peoples G. E., Gurney J. M., Hueman M. T., et al. Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 2005; 23: 7536–7545
  • Vonderheide R. H., Domchek S. M., Schultze J. L., et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+T lymphocytes. Clin Cancer Res 2004; 10: 828–839
  • Su Z., Dannull J., Yang B. K., et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+and CD4+T cell responses in patients with metastatic prostate cancer. J Immunol 2005; 174: 3798–3807
  • Parkhurst M. R., Riley J. P., Igarashi T., et al. Immunization of patients with the hTERT:540–548 peptide induces peptide reactive T lymphocytes that do not recognize tumors endogenously expressing telomerase. Clin Cancer Res 2004; 10: 4688–4698
  • Ho W. Y., Blattman J. N., Dossett M. L., et al. Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 2003; 3: 431–437
  • Mach N., Dranoff G. Cytokine-secreting tumor cell vaccines. Curr Opin Immunol 2000; 12: 571–575
  • Ahlert T., Sauerbrei W., Bastert G., et al. Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer. J Clin Oncol 1997; 15: 1354–1366
  • Wood G., Baynes R. Vaccination of Stage IV Breast Cancer Patients with Whole Autologous Malignant Cells and Granulocyte Mactrophage Colony Stimulating Factor. Proc Am Soc Clin Oncol 1999, abstr 168
  • Dillman R. O., Beutel L. D., Barth N. M., et al. Irradiated cells from autologous tumor cell lines as patient-specific vaccine therapy in 125 patients with metastatic cancer: induction of delayed-type hypersensitivity to autologous tumor is associated with improved survival. Cancer Biother Radiopharm 2002; 17: 51–66
  • Wiseman C. L. Inflammatory breast cancer. 10-year follow-up of a trial of surgery, chemotherapy, and allogeneic tumor cell/BCG immunotherapy. Cancer Invest 1995; 13: 267–271
  • Schoof D. D., Smith J. W., II, Disis M. L., et al. Immunization of metastatic breast cancer patients with CD80-modified breast cancer cells and GM-CSF. Adv Exp Med Biol 1998; 451: 511–518
  • Jiang X. P., Yang D. C., Elliott R. L., et al. Vaccination with a mixed vaccine of autogenous and allogeneic breast cancer cells and tumor associated antigens CA15–3, CEA and CA125–results in immune and clinical responses in breast cancer patients. Cancer Biother Radiopharm 2000; 15: 495–505
  • Avigan D. Fusions of breast cancer and dendritic cells as a novel cancer vaccine. Clin Breast Cancer 3 Suppl 2003; 4: S158–S163
  • Dranoff G., Jaffee E., Lazenby A., et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543
  • Wang R. F. Functional control of regulatory T cells and cancer immunotherapy. Semin Cancer Biol 2006; 16: 106–114
  • Khazaie K., von Boehmer H. The impact of CD4(+)CD25(+)Treg on tumor specific CD8(+) T cell cytotoxicity and cancer. Semin Cancer Biol 2006; 16: 124–136
  • Liyanage U. K., Moore T. T., Joo H. G., et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761
  • DeLong P., Carroll R. G., Henry A. C., et al. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther 2005; 4: 342–346
  • Curiel T. J., Coukos G., Zou L., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949
  • Dannull J., Su Z., Rizzieri D., et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633
  • Barnett B., Kryczek I., Cheng P., et al. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 2005; 54: 369–377
  • Waterhouse P., Penninger J. M., Timms E., et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla 4. Science 1995; 270: 985–988
  • Tivol E. A., Borriello F., Schweitzer A. N., et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3: 541–547
  • Leach D. R., Krummel M. F., Allison J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736
  • Hodi F. S., Mihm M. C., Soiffer R. J., et al. Biologic activity of cytotoxic T lymphocyteassociated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003; 100: 4712–4717
  • Ribas A., Camacho L. H., Lopez-Berestein G., et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 2005; 23: 8968–8977
  • Phan G. Q., Yang J. C., Sherry R. M., et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100: 8372–8377
  • Sanderson K., Scotland R., Lee P., et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005; 23: 741–750
  • Davis T.A.T.S., Korman A., et al. MDX-010 (human anti-CTLA4): a phase 1 trial in hormone refractory prostate carcinoma (HRPC). Proc Am Soc Clin Oncol 2002; 21: 2002, abstr 74
  • Attia P., Phan G. Q., Maker A. V., et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 2005; 23: 6043–6053
  • Hodi F. S., Seiden M., Butler M., et al. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody blockade in patients previously vaccinated with irradiated, autologous tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor (GM-CSF). J Clin Oncol 2004. ASCO Annual Meeting Proceedings 2004; 22(145)2536
  • Perou C. M., Sorlie T., Eisen M. B., et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752
  • Porter D. A., Krop I. E., Nasser S., et al. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res 2001; 61: 5697–5702
  • Altman J. D., Moss P. A., Goulder P. J., et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274: 94–96
  • Emens L. A., Jaffee E. M. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res 2005; 65: 8059–8064
  • Yang S., Haluska F. G. Treatment of melanoma with 5-fluorouracil or dacarbazine in vitro sensitizes cells to antigen-specific CTL lysis through perforin/granzyme- and Fasmediated pathways. J Immunol 2004; 172: 4599–4608
  • Keane M. M., Ettenberg S. A., Nau M. M., et al. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999; 59: 734–741
  • Lutsiak M. E., Semnani R. T., De Pascalis R., et al. Inhibition of CD4(+)25+Tregulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005; 105: 2862–2868
  • Gribben J. G., Ryan D. P., Boyajian R., et al. Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 2005; 11: 4430–4436

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.