133
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES Clinical Translational Therapeutics

Expression Profiling of Nucleotide Metabolism-Related Genes in Human Breast Cancer Cells After Treatment with 5-Fluorouracil

&
Pages 561-567 | Published online: 20 Jul 2009

REFERENCES

  • Heidelberger C., Chaudhuri N. K., Danneberg P., Mooren D., Griesbach L., Duschinsky R., Schnitzer R. J., Pleven E., Scheiner J. Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. Nature 1957; 4561: 663–666
  • Tuchman M., Ramnaraine M. L., O'Dea R. F. Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase. Cancer Res 1985; 45: 5553–5556
  • Malet-Martino M., Martino R. Clinical studies of three prodrugs of 5-fluorouracil (Capecitabine, UFT, S-1): a review. Oncologist 2002; 7: 288–323
  • Longley D. B., Harkin D. P., Johnston P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3: 330–338
  • Wohlhueter R. M., Mclvor R. S., Plagemann P. G. Facilitated transport of uracil and 5-fluorouracil and permeation of orotic acid into cultured mammalian cells. J Cell Physiol 1980; 104: 309–319
  • Salonga D., Danenberg K. D., Johnson M., Metzger R., Groshen S., Tsao-Wei D. D., Lenz H. J., Leichman C. G., Leichman L., Diasio R. B., Danenberg P. V. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322–1327
  • Van Kuilenburg A. B.P., Meinsma R., Zonnenberg B. A., Zoetekouw L., Baas F., Matsuda K., Tamaki N., Van Gennip A. H. Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 2003; 9: 4363–4367
  • Sommer H., Santi D. V. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2′-deoxyuridylate and methylenetetrahydrofolate. Biochem Biophys Res Commun 1974; 57: 689–695
  • Spiegelman S., Sawyer R., Nayak R., Ritzi E., Stolfi R., Martin D. Improving antitumor activity of 5-fluorouracil by increasing its incorporation into RNA via metabolic modulation. Proc Natl Acad Sci USA 1980; 77: 4966–4970
  • Santi D. V., Hardy L. W. Catalytic mechanism and inhibitor of tRNA (uracil-5)-methyltransferase: evidence for covalent catalysis. Biochemistry 1987; 26: 8599–8606
  • Ghoshal K., Jacob S. T. Specific inhibition of pre-ribosomal RNA processing in extracts from the lymphosarcoma cells treated with 5-fluorouracil. Cancer Res 1994; 54: 632–636
  • Sawyer R., Stolfi R. L., Martin D. S., Spiegelman S. Incorporation of 5-fluorouracil into Murine Bone Marrow DNA in vivo. Cancer Res 1984; 44: 1847–1851
  • Yoshioka A., Tanaka S., Hiraoka O., Koyama Y., Hirota Y., Ayusawa D., Seno T., Garrett C., Wataya Y. Deoxyribonucleoside triphosphate imbalance. 5-Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J Biol Chem 1987; 262: 8235–8241
  • Nayak R. Thymidine inhibits the incorporation of 5-fluoro-2′-deoxyuridine to DNA of mouse mammary tumor. Biochem Biophys Res Commun 1992; 184: 467–470
  • Houghton J. A., Tilman D. M., Hardwood F. G. Ratio of 2′-deoxyadenosine-5′-triphosphate/thymidine-5′-triphosphate influences the commitment of human colon carcinoma cells to thymine less death. Clin Cancer Res 1995; 1: 723–730
  • Heggie G. D., Sommadossi J. P., Cross D. S., Huster W. J., Diasio R. B. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma. Cancer Res 1987; 47: 2003–2006
  • Hull W. E., Port R. E., Hermann R., Britsch B., Kunz W. Metabolites of 5-fluorouracil in plasma urine as monitored by 19H nuclear magnetic resonance spectroscopy for patients receiving chemotherapy with and without methotrexate pretreatment. Cancer Res 1988; 48: 1680–1688
  • Scudiero D. A., Shoemaker R. H., Paull K. D., Monks A., Tierney S., Nofziger T. H., Currens M. J., Seniff D., Boyd M. R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988; 48: 4827–4833
  • Han T., Fernandez M., Sarkar M., Agarwal R. P. 2′,3′-Dideoxycytidine represses thymidine kinase 1 and 2 expression in T-lymphoid cells. Life Sci 2004; 74: 835–842
  • Park J. S., Young Y. S., Kim J. M., Yeom Y. I., Kim Y. S., Kim N. S. Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett 2004; 214: 19–33
  • Harris B. E., Song R., Soong S. J., Diasio R. B. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 1990; 50: 197–201
  • Fleming R. A., Milano G., Thyss A., Etienne M. C., Renee N., Schneider M., Demard F. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res 1992; 52: 2899–2902
  • Maring J. G., Van Kuilenburg A. B.P., Haasjes J., Piersma H., Groen H. J.M., Uges D. R.A., Van Gennip A. H., De Vries E. G.E. Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br J Cancer 2002; 86: 1028–1033
  • Beck A., Etienne M. C., Cheradame S., Fischel J. L., Formento P., Renee N., Milano G. A. A role of dihydropyrimidine dehydrogenase and thymidylate synthase in tumor sensitivity to fluorouracil. Eur J Cancer 1994; 30: 1517–1522
  • Etienne M. C., Cheradame S., Fischel J. L., Formento P., Renee N., Schneider M., Thyss A., Dermard F., Milano G. A. Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 1995; 13: 1663–1670
  • Ishikawa Y., Kubota T., Otani Y., Watanabe M., Teramoto T., Kumai K., Kitajima M., Takechi T., Okabe H., Fukushima M. Dihydropyrimidine dehydrogenase activity and messenger RNA level may be related to the antitumor effect of 5-fluorouracil on human tumor xenografts in nude mice. Clin Cancer Res 1999; 5: 883–889
  • Backus H. H.J., Wouters D., Ferreira C. G., Van Houten V. M.M., Brakenhoff R. H., Pinedo H. M., Peters G. J. Thymidylate synthase inhibition triggers apoptosis via caspases-8 and -9 in both wild type and mutant p53 colon cancer cell lines. Eur J Cancer 2003; 39: 1310–1317

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.