1,887
Views
111
CrossRef citations to date
0
Altmetric
REVIEW

Hypoxia: A Double-Edged Sword in Cancer Therapy

, &
Pages 536-545 | Received 06 Jul 2016, Accepted 27 Sep 2016, Published online: 08 Nov 2016

References

  • McKeown S. Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br J Radiol 2014;87(1035):20130676.
  • Melillo G.Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 2007;26(2):341–352. doi:10.1007/s10555-007-9059-x.
  • Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 2007;26(2):319–331.
  • Braun RD, Lanzen JL, Snyder SA, Dewhirst MW. Comparison of tumor and normal tissue oxygen tension measurements using oxyLite or microelectrodes in rodents. Am J Physiol Heart Circul Physiol 2001;280(6):H2533–H2544.
  • Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nature Rev Cancer 2011;11(6):393–410. doi:10.1038/nrc3064.
  • Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 2009;107(6):1053–1062. doi:10.1002/jcb.22214.
  • Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 2004;9(Supplement 5):4–9.
  • Armitage EG, Kotze HL, Williams KJ. Cancer hypoxia and the tumour microenvironment as effectors of cancer metabolism. In: Correlation-based network analysis of cancer metabolism. New York: Springer; 2014. doi:10.1007/978-1-4939-0615-4_2.
  • Brown M, Henry S. Kaplan Distinguished Scientist Award Lecture 2007. The remarkable yin and yang of tumour hypoxia. Int J Radiat Biol 2010;86(11):907–917. doi:10.3109/09553002.2010.492492.
  • Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003;94(12):1021–1028.
  • Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Papers 2015;159(2):166–177.
  • Harada H. Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res 2016;57:i99-i105. doi:10.1093/jrr/rrw012.
  • Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A, Shinomiya K, et al. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nature Commun 2012;3:783. doi:10.1038/ncomms1786.
  • Yoshimura M, Itasaka S, Harada H, Hiraoka M. Microenvironment and radiation therapy. Bio Med Res Int 2013;2013:685308. doi:10.1155/2013/685308.
  • Esfahani M, Karimi F, Afshar S, Niknazar S, Sohrabi S, Najafi R. Prolyl hydroxylase inhibitors act as agents to enhance the efficiency of cell therapy. Expert Opin Biol Ther 2015;15(12):1739–1755. doi:10.1517/14712598.2015.1084281.
  • Jing S-W, Wang Y-D, Kuroda M, Su J-W, Sun G-G, Liu Q, et al. HIF-1α contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via inhibiting E-cadherin and promoting MMP-2 expression. Acta Med Okayama 2012;66(5):399–407.
  • Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochimica et Biophys Acta 2005;1755(2):107–120.doi:10.1016/j.bbcan.2005.05.001.
  • Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000;35(2):71–103.
  • Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 1988;35:95–125.
  • Dale W. Direct and indirect effects of ionizing radiations. In Strahlenbiologie/Radiation Biology. New York, NY: Springer, 1966; 1–38.
  • Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol (Northwood, London, England) 2001;18(4):243–259. doi:10.1385/mo:18:4:243.
  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004;266(1–2):37–56.
  • Held KD, Harrop HA, Michael B. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA: II. Glutathione, cysteine and cysteamine. Int J Radiat Biol Relat Stud Phys Chem Med 1984;45(6):615–626.
  • Moeller B, Dewhirst M. HIF-1 and tumour radiosensitivity. Br J Cancer 2006;95(1):1–5.
  • Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 2009;107(6):1053–1062.
  • Karakashev SV, Reginato MJ. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy. Cancer Manage Res 2015;7:253–264. doi:10.2147/cmar.s58285.
  • Carmeliet P, Dor Y, Herbert J-M, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;394(6692):485–490.
  • Harada H, Kizaka-Kondoh S, Li G, Itasaka S, Shibuya K, InoueM, et al. Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 2007;26(54):7508–7516.
  • Shen G, Li X, Jia Y-f, Piazza GA, Xi Y. Hypoxia-regulated microRNAs in human cancer. Acta Pharma Sin 2013;34(3):336–341.
  • Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resistance Updates 2011;14(3):191–201.
  • Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, et al. Hypoxia-inducible factor-1α contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 2008;99(1):121–128.
  • Roberts AM, Watson IR, Evans AJ, Foster DA, Irwin MS, Ohh M. Suppression of hypoxia-inducible factor 2α restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res 2009;69(23):9056–9064.
  • KumarV, GabrilovichDI. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 2014;143(4):512–519.
  • Elia AR, Cappello P, Puppo M, Fraone T, Vanni C, Eva A, et al. Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukocyte Biol 2008;84(6):1472–1482.
  • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res 2010;70(19):7465–7475.
  • Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004;104(8):2224–2234.
  • Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009;182(8):4499–4506.
  • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014;211(5):781–790.
  • Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, et al. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 2011;71(24):7433–7441.
  • Noman MZ, Chouaib S. Targeting hypoxia at the forefront of anticancer immune responses. Oncoimmunology 2014;3(12):e954463.
  • Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nature Med 2003;9(5):562–567.
  • Denny WA. Tumor-activated prodrugs—a new approach to cancer therapy. Cancer Invest 2004;22(4):604–619. doi:10.1081/CNV-200027148.
  • Frei E, Teicher BA, Holden SA, Cathcart KN, Wang Y. Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res 1988;48(22):6417–6423.
  • Vaupel P, Mayer A. Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Clinique et Biol 2005;12(1):5–10.
  • Teicher BA. Physiologic mechanisms of therapeutic resistance. Blood flow and hypoxia. Hematol Oncol Clin North Am 1995;9(2):475–506.
  • Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998;58(7):1408–1416.
  • Kasai S, Nagasawa H, Yamashita M, Masui M, Kuwasaka H, Oshodani T, et al. New antimetastatic hypoxic cell radiosensitizers: design, synthesis, and biological activities of 2-nitroimidazole-acetamide, TX-1877, and its analogues. Bioorg Med Chem 2001;9(2):453–464.
  • Brown JM.Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 2000;6(4):157–162.
  • Sun JD, Liu Q, Wang J, Ahluwalia D, Ferraro D, Wang Y, et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res 2012;18(3):758–770.
  • Liu S, Minton N, Giaccia A, Brown J. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther 2002;9(4):291–296.
  • Semenza GL.Targeting HIF-1 for cancer therapy. Nature Rev Cancer 2003;3(10):721–732.
  • Kim HA, Mahato RI, Lee M. Hypoxia-specific gene expression for ischemic disease gene therapy. Adv Drug Deliv Rev 2009;61(7):614–622.
  • Harada H, Kizaka-Kondoh S, Hiraoka M. Mechanism of hypoxia-specific cytotoxicity of procaspase-3 fused with a VHL-mediated protein destruction motif of HIF-1α containing Pro564. FEBS Lett 2006;580(24):5718–5722.
  • Denny WA. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol 2010;6(3):419–428.
  • DennyWA.The role of hypoxia-activated prodrugs in cancer therapy. Lancet Oncol 2000;1(1):25–9.
  • Phillips RM.Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol 2016;77:441–457. doi:10.1007/s00280-015-2920-7.
  • Foehrenbacher A, Secomb TW, Wilson WR, Hicks KO. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling. Front Oncol 2013;3:314. doi:10.3389/fonc.2013.00314.
  • Denny WA, Wilson WR. Bioreducible mustards: a paradigm for hypoxia-selective prodrugs of diffusible cytotoxins (HPDCs). Cancer Metastasis Rev 1993;12(2):135–151.
  • Evans SM, Schrlau AE, Chalian AA, Zhang P, Koch CJ. Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. J Invest Dermatol 2006;126(12):2596–2606. doi:10.1038/sj.jid.5700451.
  • Parliament M, Wiebe L, Franko A. Nitroimidazole adducts as markers for tissue hypoxia: mechanistic studies in aerobic normal tissues and tumour cells. Br J Cancer 1992;66(6):1103.
  • Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using PO2 histography. Antioxidants Redox Signaling 2007;9(8):1221–1236.
  • Lee AE, Wilson WR. Hypoxia-dependent retinal toxicity of bioreductive anticancer prodrugs in mice. Toxicol Appl Pharmacol 2000;163(1):50–59.
  • Meng F, Evans JW, Bhupathi D, Banica M, Lan L, Lorente G, et al. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol Cancer Therapeu 2012;11(3):740–751.
  • Ahn G, Brown M. Targeting tumors with hypoxia-activated cytotoxins. Front Biosci 2006;12:3483–501.
  • Guise CP, Mowday AM, Ashoorzadeh A, Yuan R, Lin W-H, WuD-H, et al. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin J Cancer 2014;33(2):80–6.
  • Denny W, Wilson W, Hay M. Recent developments in the design of bioreductive drugs. Br J Cancer Suppl 1996;27:S32.
  • Sun JD, Liu Q, Ahluwalia D, Li W, Meng F, Wang Y, et al. Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer. Cancer Biol Ther 2015;16(3):438–449.
  • Shibata T, Giaccia A, Brown J. Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 2000;7(6):493–498.
  • Hollander AP, Corke KP, Freemont AJ, Lewis CE. Expression of hypoxia-inducible factor 1α by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 2001;44(7):1540–14.
  • Shibata T, Giaccia AJ, Brown JM. Hypoxia-inducible regulation of a prodrug-activating enzyme for tumor-specific gene therapy. Neoplasia 2002;4(1):40–48.
  • Brown NL, Lemoine NR. Clinical trials with GDEPT. In: Springer CJ, Ed. Suicide Gene Therapy: Methods and Reviews. New York: Springer; 2014.
  • Van Mellaert L, Barbé S, Anné J. Clostridium spores as anti-tumour agents. Trends Microbiol 2006;14(4):190–196.
  • Patyar S, Joshi R, Byrav DP, Prakash A, Medhi B, Das B. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 2010;17(1):1.
  • Minton NP. Clostridia in cancer therapy. Nat Rev Micro 2003;1(3):237–242.
  • Fox M, Lemmon M, Mauchline M, DavisT, GiacciaA, Minton N, et al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 1996;3(2):173–178.
  • Zhao Y, Wu S, Wu J, Jia P, Gao S, Yan X, et al. Introduction of hypoxia-targeting p53 fusion protein for the selective therapy of non-small cell lung cancer. Cancer Biol Ther 2011;11(1):95–107.
  • Harada H, Hiraoka M, Kizaka-Kondoh S. Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 2002;62(7):2013–2018.
  • YeoE-J, ChunY-S, ParkJ-W. New anticancer strategies targeting HIF-1. Biochem Pharmacol 2004;68(6):1061–1069. doi:10.1016/j.bcp.2004.02.040.
  • Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 2010;16(24):5928–5935.
  • Park S-Y, Billiar TR, Seol D-W. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Biochem Biophys Res Commun 2002;291(1):150–153.
  • Isaacs JS, Jung Y-J, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem 2002;277(33):29936–29944.
  • Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res 2002;62(9):2478–2482.
  • Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 2002;62(15):4316–4324.
  • Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003;3(4):363–375.
  • Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 2000;6(12):1335–1340.
  • Weinmann M, Belka C, Plasswilm L. Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours. Oncol Res Treat 2004;27(1):83–90.
  • Brown JM, Lemmon MJ. Tumor hypoxia can be exploited to preferentially sensitize tumors to fractionated irradiation. Int J Radiat Oncol Biol Phys 1991;20(3):457–461. doi:10.1016/0360-3016(91)90057-B.
  • Harris AL, Zhang H, Moghaddam A, Fox S, Scott P, Pattison A, et al. Breast cancer angiogenesis—new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res Treat 1996;38(1):97–108.
  • Wilson WR, Hicks KO, Pullen SM, Ferry DM, Helsby NA, Patterson AV. Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. Radiat Res 2007;167(6):625–636.
  • Renfrew AK. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics 2014;6(8):1324–1335.
  • Ware DC, Palmer BD, Wilson WR, Denny WA. Hypoxia-selective antitumor agents. 7. Metal complexes of aliphatic mustards as a new class of hypoxia-selective cytotoxins. Synthesis and evaluation of cobalt (III) complexes of bidentate mustards. J Med Chem 1993;36(13):1839–1846.
  • Dobrowsky W, Huigol NG, Jayatilake RS, Okkan S, Kagiya VT, Tatsuzaki H. AK-2123 (Sanazol) as a radiation sensitizer in the treatment of stage III cervical cancer: results of an IAEA multicentre randomised trial. Radiother Oncol 2007;82(1):24–29.
  • Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 1998;46(2):135–146.
  • Karasawa K, Sunamura M, Okamoto A, Nemoto K, Matsuno S, Nishimura Y, et al. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: long-term results of a placebo-controlled randomised study. Radiother Oncol 2008;87(3):326–330.
  • Weiss GJ, Infante JR, Chiorean EG, Borad MJ, Bendell JC, Molina JR, et al. Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin Cancer Res 2011;17(9):2997–3004.
  • Chawla SP, Cranmer LD, Van Tine BA, Reed DR, Okuno SH, Butrynski JE, et al. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J Clin Oncol 2014 (JCO 2013);54:3660.
  • Albertella MR, Loadman PM, Jones PH, Phillips RM, Rampling R, Burnet N, et al. Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin Cancer Res. 2008;14(4):1096–1104.
  • Marcu L, Olver I. Tirapazamine: from bench to clinical trials. Curr Clin Pharmacol 2006;1(1):71–79.
  • Schellens JH, Andre ST, van Acker BA, Loos WJ, de Boer-Dennert M, van der Burg ME, et al. Phase I and pharmacologic study of the novel indoloquinone bioreductive alkylating cytotoxic drug E09. J Natl Cancer Inst 1994;86(12):906–912.
  • Dirix L, Tonnesen F, Cassidy J, Epelbaum R, ten Bokkel Huinink W, Pavlidis N, et al. EO9 phase II study in advanced breast, gastric, pancreatic and colorectal carcinoma by the EORTC Early clinical studies group. Eur J Cancer 1996;32(11):2019–2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.