107
Views
15
CrossRef citations to date
0
Altmetric
Articles

Candidate Gene Analysis of Breast Cancer in the Jordanian Population of Arab Descent: A Case-Control Study

, &
Pages 256-270 | Received 11 Aug 2016, Accepted 27 Jan 2017, Published online: 08 Mar 2017

References

  • Soini Y, Hurskainen T, Hoyhtya M, Oikarinen A, Autio-Harmainen H. 72 KD and 92 KD type IV collagenase, type IV collagen, and laminin mRNAs in breast cancer: a study by in situ hybridization. J Histochem Cytochem 1994;42:945–951.
  • Scorilas A, Karameris A, Arnogiannaki N, Ardavanis A, Bassilopoulos P, Trangas T, et al. Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer 2001;84:1488–1496.
  • Parkin D, Bray F, Ferlay J, Pisani P. Global Cancer Statistics, 2002. Cancer J Clin 2005;55:74–108.
  • MacMahon B. A biological framework for the risk factors for breast cancer. Adv Oncol 1994;10:3–9.
  • Steel M, Thompson A, Clayton J. Genetic aspects of breast cancer. Br Med Bull 1991;47:504–518.
  • Eisinger F, Nogues C, Guinebretiere J, Peyrat J, Bardou V, Noguchi T, et al. Novel indications for BRCA1 screening using individual clinical and morphological features. Int J Cancer 1999;84:263–267.
  • Loman N, Johannsson O, Kristoffersson U, Olsson H, Borg A. Family history of breast and ovarian cancers and BRCA1 and BRCA2 Mutations in a population-based series of early-onset breast cancer. J Natl Cancer Inst 2001;93:1215–1223.
  • Narod S, Foulkes W. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 2004;4:665–676.
  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal P, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994;266:66–71.
  • Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995;378:789–792.
  • Fanale D, Amodeo V, Corsini L, Rizzo S, Bazan V, Russo A. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene 2011;31:2121–2128.
  • Elematore I, Gonzalez-Hormazabal P, Reyes J, Blanco R, Bravo T, Peralta O, et al. Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population. Mol Biol Rep 2014;41:3715–3722.
  • Williams R. Structural consequences of a cancer-causing BRCA1-BRCT missense mutation. J Biol Chem 2002;278:2630–2635.
  • Tutt A, Ashworth A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med 2002;8:571–576.
  • Farmer H, McCabe N, Lord C, Tutt A, Johnson D, Richardson T, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434:917–921.
  • Antoniou A, Pharoah P, Narod S, Risch H, Eyfjord J, Hopper J, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Human Genet 2003;72:1117–1130.
  • Chen X, Truong T, Weaver J, Bove B, Cattie K, Armstrong B, et al. Intronic alterations in BRCA1 and BRCA2: effect on mRNA splicing fidelity and expression. Human Mutat 2006;27:427–435.
  • Easton D, Ford D, Bishop D. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast cancer linkage consortium. Am J Human Genet 1995;56:265.
  • Ford D, Easton D, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Human Genet 1998;62:676–689.
  • Ellisen LW, Haber DA. Hereditary breast cancer. Annu Rev Med 1998;49:425–436.
  • Antoniou A, Pharoah P, McMullan G, Day N, Stratton M, Peto J, et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 2002;86:76–83.
  • Cipollini G. Genetic alterations in hereditary breast cancer. Ann Oncol 2004;15:i7–i13.
  • Roa B, Boyd A, Volcik K, Richards C. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 1996;14:185–187.
  • Struewing J, Hartge P, Wacholder S, Baker S, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. New Engl J Med 1997;336:1401–1408.
  • Fodor F, Weston A, Bleiweiss I, McCurdy L, Walsh M, Tartter P, et al. Frequency and carrier risk associated with common BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer patients. Am J Human Genet 1998;63:45–51.
  • Grzybowska E, Zientek H, Jasinska A, Rusin M, Kozlowski P, Sobczak K, et al. High frequency of recurrent mutations inBRCA1 andBRCA2 genes in Polish families with breast and ovarian cancer. Human Mutat 2000;16:482–490.
  • Miller C, Mohandas T, Wolf D, Prokocimer M, Rotter V, Phillip Koeffler H. Human p53 gene localized to short arm of chromosome 17. Nature 1986;319:783–784.
  • Guimaraes D, Hainaut P. TP53: a key gene in human cancer. Biochimie 2002;84:83–93.
  • Dunning A, Healey C, Pharoah P, Teare M, Ponder B, Easton D. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1999;8:843–854.
  • Sjalander A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, et al. p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis 1996;17:1313–1316.
  • Tommiska J. Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 2005;11:5098–5103.
  • Toyama T, Zhang Z, Nishio M, Hamaguchi M, Kondo N, Iwase H, et al. Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res 2007;9:R34.
  • Deiss L, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 1995;9:15–30.
  • Feinstein E. The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem Sci 1995;20:342–344.
  • Bialik S, Kimchi A. The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 2006;75:189–210.
  • Eisenberg-Lerner A, Bialik S, Simon H, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 2009;16:966–975.
  • Raval A, Tanner S, Byrd J, Angerman E, Perko J, Chen S, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 2007;129:879–890.
  • Mason J, Yancy H, Lashley K, Jett M, Day A. Comparative study of matrix metalloproteinase expression between African American and Caucasian Women. J Carcinog 2004;3:15.
  • Saleem M, Kweon M, Johnson J, Adhami V, Elcheva I, Khan N, et al. S100A4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. Proc Nat Acad Sci 2006;103:14825–14830.
  • Ranuncolo S, Armanasco E, Cresta C, Bal de Kier Joffe E, Puricelli L. Plasma MMP9 (92 kDa-MMP) activity is useful in the follow-up and in the assessment of prognosis in breast cancer patients. Int J Cancer 2003;106:745–751.
  • Jones J, Glynn P, Walker R. Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol 1999;189:161–168.
  • Grieu F, Li W, Iacopetta B. Genetic polymorphisms in the MMP-2 and MMP9 genes and breast cancer phenotype. Breast Cancer Res Treat 2004;88:197–204.
  • Zhang B, Ye S, Herrmann S, Eriksson P, de Maat M, Evans A, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999;99:1788–1794.
  • Stacey S, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson S, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer. Nat Genet 2007;39:865–869.
  • James J, Evans A, Pinder S, Gutteridge E, Cheung K, Chan S, et al. Bone metastases from breast carcinoma: histopathological—radiological correlations and prognostic features. Br J Cancer 2003;89:660–665.
  • Smid M, Wang Y, Klijn J, Sieuwerts A, Zhang Y, Atkins D, et al. Genes associated with breast cancer metastatic to bone. J Clin Oncol 2006;24:2261–2267.
  • Antoniou A, Pharoah P, McMullan G, Day N, Ponder B, Easton D. Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol 2001;21:1–18.
  • Dittmer S, Kovacs Z, Yuan S, Siszler G, Kogl M, Summer H, et al. TOX3 is a neuronal survival factor that induces transcription depending on the presence of CITED1 or phosphorylated CREB in the transcriptionally active complex. J Cell Sci 2010;124:252–260.
  • Riaz M, Berns E, Sieuwerts A, Ruigrok-Ritstier K, de Weerd V, Groenewoud A, et al. Correlation of breast cancer susceptibility loci with patient characteristics, metastasis-free survival, and mRNA expression of the nearest genes. Breast Cancer Res Treat 2011;133:843–851.
  • Gudmundsdottir E, Barkardottir R, Arason A, Gunnarsson H, Amundadottir L, Agnarsson B, et al. The risk allele of SNP rs3803662 and the mRNA level of its closest genes TOX3 and LOC643714 predict adverse outcome for breast cancer patients. BMC Cancer 2012;12:621.
  • Jones J, Chin S, Wong-Taylor L, Leaford D, Ponder B, Caldas C, et al. TOX3 mutations in breast cancer. PLoS One 2013;8:e74102.
  • Seksenyan A, Kadavallore A, Walts A, de la Torre B, Berel D, Strom S, et al. TOX3 is expressed in mammary ER+ epithelial cells and regulates ER target genes in luminal breast cancer. BMC Cancer 2015;15:22.
  • Cowper-Sal·lari R, Zhang X, Wright J, Bailey S, Cole M, Eeckhoute J, et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 2012;44:1191–1198.
  • Baynes C, Healey C, Pooley K, Scollen S, Luben R, Thompson D, et al. Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res 2007;9:R27.
  • Tapper W, Hammond V, Gerty S, Ennis S, Simmonds P, Collins A, et al. The influence of genetic variation in thirty selected genes on the clinical characteristics of early onset breast cancer. Breast Cancer Res 2008;10:R108.
  • Cohen O. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 1997;16:998–1008.
  • Kissil J, Feinstein E, Cohen O, Jones P, Tsai Y, Knowles M, et al. DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene 1997;15:403–407.
  • Cohen O, Kimchi A. DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ 2001;8:6–15.
  • Natrajan R, Mackay A, Lambros M, Weigelt B, Wilkerson P, Manie E, et al. A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers. J Pathol 2012;227:29–41.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P. Molecular biology of the cell (4th ed.). New York and London: Garland Science; 2002.
  • Court M. A pharmacogenomics primer. J Clin Pharmacol 2007;47:1087–1103.
  • Guttmacher A, Collins F, Guttmacher A, Collins F. Genomic medicine—a primer. New Engl J Med 2002;347:1512–1520.
  • Wolfram S. Principles of nucleic acid structure. New York: Springer; 1984.
  • Baquero M, Lostritto K, Gustavson M, Bassi K, Appia F, Camp R, et al. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts. Breast Cancer Res 2011;13:R85.
  • Levy D. Death-associated protein kinase loss of expression is a new marker for breast cancer prognosis. Clin Cancer Res 2004;10:3124–3130.
  • Easton F, Pooley A, Dunning A, Pharoah P, Thompson D, Ballinger D, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007;447:1087–1093.
  • Hunter D, Kraft P, Jacobs K, Cox D, Yeager M, Hankinson S, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870–874.
  • Lei H, Hemminki K, Altieri A, Johansson R, Enquist K, Hallmans G, et al. Promoter polymorphisms in matrix metalloproteinases and their inhibitors: few associations with breast cancer susceptibility and progression. Breast Cancer Res Treat 2006;103:61–69.
  • Wang Z, Lu S, Liu C, Zhao B, Pei K, Tian L, et al. Expressional and epigenetic alterations of placental matrix metalloproteinase 9 in preeclampsia. Gynecol Endocrinol 2010;26:96–102.
  • Zhang B, Henney A, Eriksson P, Hamsten A, Watkins H, Ye S. Genetic variation at the matrix metalloproteinase-9 locus on chromosome 20q12.2-13.1. Human Genet 1999;105:418–423.
  • Langston A, Malone K, Thompson J, Daling J, Ostrander E. BRCA1 mutations in a population-based sample of young women with breast cancer. New Engl J Med 1996;334:137–142.
  • Krainer M, Silva-Arrieta S, FitzGerald M, Shimada A, Ishioka C, Kanamaru R, et al. Differential contributions of BRCA1 and BRCA2 to early-onset breast cancer. New Engl J Med 1997;336:1416–1422.
  • Børresen-Dale A. TP53 and breast cancer. Human Mutat 2003;21:292–300.
  • Neuhausen S. Ethnic differences in cancer risk resulting from genetic variation. Cancer 1999;86:2575–2582.
  • Weihrauch M, Bader M, Lehnert G, Wittekind C, Tannapfel A, Wrbitzky R. Carcinogen-specific mutation pattern in the p53 tumour suppressor gene in UV radiation-induced basal cell carcinoma. Int Arch Occup Environ Health 2002;75:272–276.
  • Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2004;21:263–265.
  • Corbex M, Harford J. Perspectives on breast cancer in Arab populations. Lancet 2013;14:e582.
  • Rothman N, Wacholder S, Caporaso N, Garcia-Closas M, Buetow K, Fraumeni J. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochimica et Biophysica Acta Rev Cancer 2001;1471:C1–C10.
  • Wacholder S. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 2000;92:1151–1158.
  • Jurinke C, Van Den Boom D, Cantor C, Köster H. Automated genotyping using the DNA MassArray™ technology. PCR Mutat Detect Protocols 2002:179–192.
  • Sweileh W, Zyoud S, Al-Jabi S, Sawalha A. Contribution of Arab countries to breast cancer research: comparison with non-Arab Middle Eastern countries. BMC Women's Health 2015;15:1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.