843
Views
22
CrossRef citations to date
0
Altmetric
Articles

Nanobodies and Cancer: Current Status and New Perspectives

ORCID Icon, , , , &
Pages 221-237 | Received 12 Feb 2017, Accepted 26 Mar 2018, Published online: 16 Apr 2018

References

  • Teillaud JL. From whole monoclonal antibodies to single domain antibodies: Think Small. In: Dirk Saerens and Serge Muyldermans, editors. Single Domain Antibodies: Methods and Protocols, Methods in Molecular Biology. Vol. 911. New Jersey (USA) © Springer Science+Business Media, LLC; 2012. doi:10.1007/978-1-61779-968-6_1.
  • Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther. 2005;5:111–124. doi:10.1517/14712598.5.1.111.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–448. doi:10.1038/363446a0.
  • Muyldermans S. Single domain camel antibodies: current status. Rev Mol Biotechnol. 2001;74:277–302. doi:10.1016/S1389-0352(01)00021-6.
  • Wolfson W. Ablynx makes nanobodies from Llama bodies. Chem Biol. 2006;13:1243–1244. doi:10.1016/j.chembiol.2006.12.003.
  • Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new word camelids. Clin Diagn Lab Immunol. 2005;12:380–386.
  • Maas DR, Sepulveda J, Pernthaner A, Shoemaker CB. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods. 2007;324:13–25 doi:10.1016/j.jim.2007.04.008.
  • Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PM, Ferguson KM. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure. 2013;21:1214–1224. doi:10.1016/j.str.2013.05.008.
  • Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Harald K. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol. 2015;38:21–8. doi:10.3109/08923973.2015.1102934.
  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A New antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 1995;374:168–173. doi:10.1038/374168a0.
  • Nuttall SD, Krishnan UV, Hattarki M, DeGori R, Irving RA, Hudson PJ. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol. 2001;38:313–326. doi:10.1016/S0161-5890(01)00057-8.
  • Nuttall SD, Humberstone KS, Krishnan UV, Carmichael JA, Doughty L, Hattarki M, Coley AM, Casey JL, Anders RF, Foley M, et al. Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMA1. Proteins. 2004;55:187–197. doi:10.1002/prot.20005.
  • Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ, Kolmar H. Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs. 2015;7:15–25. doi:10.4161/19420862.2015.989032.
  • Barelle C, Gill DS, Charlton K. Shark novel antigen receptors-the next generation of biologic therapeutics? Adv Exp Med Biol. 2009;655:49–62. doi:10.1007/978-1-4419-1132-2_6.
  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science. 2004;305:1770–1773. doi:10.1126/science.1101148.
  • Dooley H, Stanfield RL, Brady RA, Flajnik MF. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci USA. 2006;103:1846–1851. doi:10.1073/pnas.0508341103.
  • Smolarek D, Bertrand O, Czerwinski M. Variable fragments of heavy chain antibodies (VHHs): a new magic bullet molecule of medicine? Postepy Hig Med Dosw (online). 2012;66:348–358. doi:10.5604/17322693.1000334.
  • Baral TN, MacKenzie R, Ghahroudi MA. Single-domain antibodies and their utility. Curr Protocols Immunol. 2013;103:1–57. doi:10.1002/0471142735.im0217s103.
  • Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Hölzer W, De Genst E, Wyns L, Muyldermans S. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998;17:3512–3520. doi:10.1093/emboj/17.13.3512.
  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U.S.A. 2006;103:4586–4591 doi:10.1073/pnas.0505379103.
  • De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014;32(5):263–270. doi:10.1016/j.tibtech.2014.03.001.
  • Baral TN, Murad Y, Nguyen TD, Iqbal U, Zhang J. Isolation of functional single domain antibody by whole cell immunization: implications for cancer treatment. J. Immunol Methods. 2011;371:70–80. doi:10.1016/j.jim.2011.06.017.
  • Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PMP. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond.) 2015;10(1):161–174 doi:10.2217/nnm.14.178.
  • Vincke C, Gutiérrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. Methods Mol Biol. 2012;907:145–176 doi:10.1007/978-1-61779-974-7_8.
  • Peyvandi F, Callewaert F. Caplacizumab for acquired thrombotic thrombocytopenic Purpura. N Engl J Med. 2016;374(25):2497–2498 doi:10.1056/NEJMc1603180.
  • Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Kremer Hovinga JA, et al. Results of the randomized, double-blind, placebo-controlled, Phase 3 hercules study of caplacizumab in patients with acquired thrombotic thrombocytopenic purpura. ASH meeting 59th Annual Meeting Atlanta GA December 9–12 2017 Paper109057
  • Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release. 2012;161(2):429–445. doi:10.1016/j.jconrel.2011.11.028.
  • Van Audenhove I, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMed. 2016;8:40–48 doi:10.1016/j.ebiom.2016.04.028.
  • He B, Chadburn A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol. 2004;172:3268–3279. doi:10.4049/jimmunol.172.5.3268.
  • Stohl W. Biologic differences between various inhibitors of the BLyS/BAFFpathway: should we expect differences between belimumab and other inhibitors in development? Curr Rheumatol Rep. 2012;14 (4):303–309. doi:10.1007/s11926-012-0254-6.
  • Häsler J, Flajnik MF, Williamsd G, Walsha FS, Rutkowskia JL. VNAR single-domain antibodies specific for BAFF inhibit B cell development by molecular mimicry. Mol Immunol. 2016;75:28–37 doi:10.1016/j.molimm.2016.05.009.
  • Wu W, Li S, Zhang W, Sun J, Ren G, Dong Q. A novel VHH antibody targeting the B Cell-activating factor for B-Cell Lymphoma. Int J Mol Sci. 2014;15:9481–9496; doi:10.3390/ijms15069481.
  • Wild J, Schmiedel BJ, Maurer A, Raab S, Prokop L, Stevanović S, Dörfel D, Schneider P, Salih HR. Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis. Leukemia. 2015;29 (8):1676–1683. doi:10.1038/leu.2015.50.
  • Fang T, Duarte JN, Ling J, Li Z, Guzman JS, Ploegh HL. Structurally defined aMHC-II Nanobody–Drug conjugates: A Therapeutic and Imaging System for B-cell lymphoma. Angew Chem Int Ed. 2016;55:2416–2420 doi:10.1002/anie.201509432.
  • Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CM, Wang XW, Xin D, Zhang P, et al. Immuno-targeting the multifunctional CD38 using nanobody. Scientific Reports. 2016;6:27055 doi:10.1038/srep27055.
  • Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A. Hepatocyte growth factor and its receptor c-MET in multiple myeloma. Blood. 1996;88(10):3998–4004.
  • Slørdahl TS, Denayer T, Moen SH, Standal T, Børset M, Ververken C, Rø TB. Anti-c-MET Nanobody® – A new potential drug in multiple myeloma treatment. Eur J Haematol. 2013;91:399–410 doi:10.1111/ejh.12185.
  • Lemaire M, D'Huyvetter M, Lahoutte T, Van Valckenborgh E, Menu E, De Bruyne E, Kronenberger P, Wernery U, Muyldermans S, Devoogdt N, et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia. 2014;28:444–447 doi:10.1038/leu.2013.292.
  • Van de Water JAJM, Bagci-Onder T, Agarwal AS, Wakimoto H, Roovers RC, Zhu Y, et al. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. PNAS. 2012;41:16642–16647. doi:10.1073/pnas.1202832109.
  • Roodink I, Franssen M, Zuidscherwoude M, Verrijp K, van der Donk T, Raats J, Leenders WP. Isolation of targeting nanobodies against co-opted tumor vasculature. Lab Invest. 2010;90:61–67 doi:10.1038/labinvest.2009.107.
  • Iqbal U, Albaghdadi H, Luo Y, Arbabi M, Desvaux C, Veres T, Stanimirovic D, Abulrob A. Molecular imaging of glioblastoma multiforme using anti-insulin-like growth factor-binding protein-7 single-domain antibodies. Br J Cancer. 2010;103:1606–1616. doi:10.1038/sj.bjc.6605937.
  • Jovcevska I, Zupanec N, Kocevar N, Cesselli D, Podergajs N, Stokin CL, et al. TRIM28 and b-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS One. 2014;9(11):e113688. doi:10.1371/journal.pone.0113688.
  • Zhou J, Fan X, Chen N, Zhou F, Dong J, Nie Y, Fan D. Identification of CEACAM5 as a biomarker for prewarning and prognosis in gastric cancer. J Histochem Cytochem. 2015;63:922–930. doi:10.1369/0022155415609098.
  • Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: it is clinically useful? Clin Chem. 2001;47:624–630.
  • Behar G, Chames P, Teulon I, Cornillon A, Alshoukr F, Roquet F, Pugnière M, Teillaud JL, Gruaz-Guyon A, Pèlegrin A, et al. Llama single-domain antibodies directed against nonconventional epitopes of tumor-associated carcinoembryonic antigen absent from nonspecific cross-reacting antigen. FEBS J. 2009;276:3881–3893. doi:10.1111/j.1742-4658.2009.07101.x.
  • Kuroki M, Matsuo Y, Kinugasa T, Matsuoka Y. Three different NCA species, CGM6/CD67, NCA-95, and NCA-90 are comprised in the major 90 to 100 kDa band of granulocyte NCA detectable upon SDS-polyacrylamide gel electrophoresis. Biochem Biophys Res Commun. 1992;182:501–506. doi:10.1016/0006-291X(92)91760-N.
  • Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (carcinoembryonic antigen). Cancer Res. 2005;65:8809. doi:10.1158/0008-5472.CAN-05-0420.
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–194. doi:10.3322/canjclin.55.3.178.
  • Huet HA, Growney JD, Johnson JA, Li J, Bilic S, Ostrom L, Zafari M, Kowal C, Yang G, Royo A, et al. Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction. mAbs. 2014;6:1560–1570 doi:10.4161/19420862.2014.975099.
  • Papadopoulos KP, Isaacs R, Bilic S, Kentsch K, Huet HA, Hofmann M, Rasco D, Kundamal N, Tang Z, Cooksey J, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemother Pharmacol. 2015;75(5):887–895. doi:10.1007/s00280-015-2712-0.
  • Feng M, Gao W, Wang R, Chen W, Man YG, Figg WD, Wang XW, Dimitrov DS, Ho M. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. PNAS. 2013;110:1083–1091. doi:10.1073/pnas.1217868110.
  • Shaker GH, Melake NA. Use of the single cell gel electrophoresis (comet assay) for comparing apoptotic effect of conventional antibodies versus nanobodies. Saudi Pharmaceutical J. 2012;20:221–227. doi:10.1016/j.jsps.2011.11.004.
  • Fekrazad R, Hakimiha N, Farokhi E, Rasaee MJ, Ardestani MS, Kalhori KA, Sheikholeslami F. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells. Int J Nanomed. 2011;6:2749–2755
  • Tian B, Wong WY, Hegmann E, Gaspar K, Kumar P, Chao H. Production and characterization of a camelid single domain antibody−urease enzyme conjugate for the treatment of cancer. Bioconjugate Chem.
  • McMurphy T, Xiao R, Magee D, Slater A, Zabeau L, Tavernier J, Cao L. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma. PLoS One. 2014;9(2):e89895. doi:10.1371/journal.pone.0089895.
  • Yu F, Wang Y, Xiao Y, He Y, Luo C, Duan D, Li C, S5 X, Xiang T. RP215 single chain fragment variable and single domain recombinantantibodies induce cell cycle arrest at G0/G1 phase in breast cancer. Mol Immunol. 2014;59:100–109 doi:10.1016/j.molimm.2014.01.007.
  • Turini M, Chames P, Bruhns P, Baty D, Kerfelec B. A FcgammaRIII-engaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy. Oncotarget. 2014;5:5304–5319. doi:10.18632/oncotarget.2093.
  • Li L, He P, Zhou C, Jing L, Dong B, Chen S, Zhang N, Liu Y, Miao J, Wang Z, et al. A novel bispecific antibody, S-Fab, induces potent cancer cell killing. J Immunother. 2015;38:350–356. doi:10.1097/CJI.0000000000000099.
  • Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy:An update review. Artif Cells Nanomed Biotechnol. 2016;44:769–779.
  • Gray MA, Tao RN, DePorter SM, Spiegel DA, McNaughton BR. A nanobody activation immunotherapeutic that selectively destroys HER2-positive breast cancer cells. Chem Bio Chem. 2016;17:155–158 doi:10.1002/cbic.201500591.
  • Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C, et al. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res. 2013;15:116 doi:10.1186/bcr3585.
  • Ramsey DM, McAlpine SR. Halting metastasis through CXCR4 inhibition. Bioorganic Med Chem Letters. 2013;23:20–25 doi:10.1016/j.bmcl.2012.10.138.
  • Maussang D, Mujić-Delić A, Descamps FJ, Stortelers C, Vanlandschoot P, Stigter-van Walsum M, Vischer HF, van Roy M, Vosjan M, Gonzalez-Pajuelo M, et al. Llama-derived single Variable Domains (Nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in Vivo. J Biol Chem. 2013;41:29562–29572 doi:10.1074/jbc.M113.498436.
  • Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178–183. doi:10.1016/j.vetimm.2008.10.299.
  • Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, WynsL, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem. 2004;279:1256–1261. doi:10.1074/jbc.M307341200.
  • Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, Muyldermans S, De Baetselier P. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2006;12:580–584. doi:10.1038/nm1395.
  • Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, Gobert M, Conrath K, Muyldermans S, De Baetselier P, Revets H. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer. 2002;98:456–462. doi:10.1002/ijc.10212.
  • Abulrob A, Sprong H, Van Bergen en Henegouwen P, Stanimirovic D. The blood-brain barrier transmigrating single domain antibody: Mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95:1201–1214. doi:10.1111/j.1471-4159.2005.03463.x.
  • Bell A, Wang ZJ, Arbabi-Ghahroudi M, Chang TA, Durocher Y, Trojahn U, Baardsnes J, Jaramillo ML, Li S, Baral TN, et al. Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett. 2010;289:81–90. doi:10.1016/j.canlet.2009.08.003.
  • Els Conrath K, Lauwereys M, Wyns L, Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem. 2011;276:7346–7350. doi:10.1074/jbc.M007734200.
  • Zhang J, Mackenzie CR. Multivalent display of single-domain antibodies. Methods Mol Biol. 2012;911:445–456.
  • Zhang J, Tanha J, Hirama T, Khieu NH, To R, Tong-Sevinc H, Stone E, Brisson JR, MacKenzie CR. Pentamerization of single-domain antibodies from phage libraries: Anovel strategy for the rapid generation of high avidity antibody reagents. J Mol Biol. 2004;335:49–56. doi:10.1016/j.jmb.2003.09.034.
  • Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004;64:2853–2857. doi:10.1158/0008-5472.CAN-03-3935.
  • van den Berg A, Dowdy SF. Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol. 2011;22(6):888–893 doi:10.1016/j.copbio.2011.03.008.
  • McNaughton BR, Cronican JJ, Thompson DB, Liu DR. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Sci USA. 2009;106(15):6111–6116. doi:10.1073/pnas.0807883106.
  • Blanco-Toribio A, Muyldermans S, Frankel G, Angel Fernandez L. Direct injection of functional single-domain antibodies from E. coli into human cells. PLoS One. 2010;5(12):e15227 doi:10.1371/journal.pone.0015227.
  • Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van de Wiele C, Staelens L, et al. Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis and Rheumatism. 2006;54:1856–1866. doi:10.1002/art.21827.
  • Sarker SA, Jäkel M, Sultana S, Alam NH, Bardhan PK, Chisti MJ, Salam MA, Theis W, Hammarström L, Frenken LG. Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial. Gastroenterology. 2013;145:740–748 doi:10.1053/j.gastro.2013.06.053.
  • Arbabi-Ghahroudi M, Tanha J, MacKenzie R. Prokaryotic expression of antibodies. Cancer Metastasis Rev. 2005;24:501–519 doi:10.1007/s10555-005-6193-1.
  • Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13–22 doi:10.1007/s00253-007-1142-2.
  • Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, Muyldermans S, Wyns L, Matagne A. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002;11:500–515. doi:10.1110/ps.34602.
  • Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Biochemistry. 2002;41:3628–3636. doi:10.1021/bi011239a.
  • Dolk E, van Vliet C, Perez JM, Vriend G, Darbon H, Ferrat G, Cambillau C, Frenken LG, Verrips T. Induced refolding of a temperature denatured llame heavy-chain antibody ragment by its antigen. Proteins. 2005;59:555–564. doi:10.1002/prot.20378.
  • Harmsen MM, van Solt CB, van Zijderveld-van Bemmel AM, Niewold TA, van Zijderveld FG. Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. Appl Microbiol Biotechnol. 2006;72:544–551 doi:10.1007/s00253-005-0300-7.
  • Harrison RA, Hasson SS, Harmsen M, Laing GD, Conrath K, Theakston RD. Neutralisation of venom-induced haemorrhage by IgG from camels and llamas immunised with viper venom and also by endogenous, non-IgG components in camelid sera. Toxicon. 2006;47:364–368. doi:10.1016/j.toxicon.2005.10.017.
  • Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T, de Haard HJ, Leemans CR, van Dongen GA. Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular nanobody technology. Mol. Cancer Ther. 2008;7:2288–2297. doi:10.1158/1535-7163.MCT-07-2384.
  • Vosjan MJ, Vercammen J, Kolkman JA, Stigter-van Walsum M, Revets H, van Dongen GA. Nanobodies targeting the hepatocyte growth factor: potential new drugs for molecular cancer therapy. Mol Cancer Ther. 2012;11:1017–1025. doi:10.1158/1535-7163.MCT-11-0891.
  • Allegra A, Penna G, Alonci A, Rizzo V, Russo S, Musolino C. Nanoparticles in oncology: the new theragnostic molecules. Anticancer Agents Med Chem. 2011;11(7):669–686. doi:10.2174/187152011796817682.
  • Heukers R, Altintas I, Raghoenath S, De Zan E, Pepermans R, Roovers RC, Haselberg R, Hennink WE, Schiffelers RM, Kok RJ, et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials. 2014;35:601–610. doi:10.1016/j.biomaterials.2013.10.001.
  • Zou T, Dembele F, Beugnet A, Sengmanivong L, Trepout S, Marco S, de Marco A, Li MH. Nanobody-functionalized PEG-b-PCL polymersomes and their targeting study. J Biotechnol. 2015;214:147–155. doi:10.1016/j.jbiotec.2015.09.034.
  • Sadeqzadeh E, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Parhamifar L, Moghimi SM. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of Bid transgene for directed killing of MUC1 over-expressing tumour cells. J Control Release. 2011;156:85–91. doi:10.1016/j.jconrel.2011.06.022.
  • Oliveira S, Schiffelers RM, van der Veeken J, van der Meel R, Vongpromek R, van Bergen en Henegouwen PM, et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Controlled Release. 2010;145:165–175. doi:10.1016/j.jconrel.2010.03.020.
  • van der Meel R, Oliveira S, Altintas I, Haselberg R, van der Veeken J, Roovers RC, van Bergen en Henegouwen PM, Storm G, Hennink WE, et al. Tumor-targeted nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J Control Release. 2012;159:281–289. doi:10.1016/j.jconrel.2011.12.027.
  • Talelli M, Rijcken CJ, Oliveira S, van der Meel R, van Bergen En Henegouwen PM, Lammers T, van Nostrum CF, Storm G, Hennink WE. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Control Release. 2011;151:183–192. doi:10.1016/j.jconrel.2011.01.015.
  • Talelli M, Oliveira S, Rijcken CJ, Pieters EH, Etrych T, Ulbrich K, van Nostrum RC, Storm G, Hennink WE, Lammers T. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy. Biomaterials. 2013;34:1255–1260. doi:10.1016/j.biomaterials.2012.09.064.
  • Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J, de Jong JR, de Vries EG, Lub-de Hooge MN. Development and characterization of clinical-grade 89Zr-trastuzumab for HHER2/ neu immunoPET imaging. J Nud Med. 2009;50:974–978. doi:10.2967/jnumed.108.060392.
  • Vaneycken I, D'huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, Caveliers V, Lahoutte T. Immuno-imaging using nanobodies. Curr Opin Biotechnol. 2011;22:877–881 doi:10.1016/j.copbio.2011.06.009.
  • Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En Henegouwen PM. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release. 2013;172:607–617 doi:10.1016/j.jconrel.2013.08.298.
  • Cuesta AM, Sainz-Pastor N, Bonet J, Oliva B, Alvarez-Vallina L. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol. 2010;28:355–362 doi:10.1016/j.tibtech.2010.03.007.
  • Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, Gobert M, Conrath K, Muyldermans S, De Baetselier P, Revets H. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer. 2002;98:456–462. doi:10.1002/ijc.10212.
  • Huang L, Muyldermans S, Saerens D. Nanobodies®: proficient tools in diagnostics. Expert Rev Mol Diagn. 2010;10(6):777–785 doi:10.1586/erm.10.62.
  • Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC, et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods. 2006;3(11):887–889. doi:10.1038/nmeth953.
  • Olichon A, Surrey T. Selection of genetically encoded fluorescent single domain antibodies engineered for efficient expression in Escherichia coli. J Biol Chem. 2007;282(50):36314–36320. doi:10.1074/jbc.M704908200.
  • van Driel PB, van der Vorst JR, Verbeek FP, Oliveira S, Snoeks TJ, Keereweer S, Chan B, Boonstra MC, Frangioni JV, van Bergen en Henegouwen PM, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer. 2014;134:2663–2673. doi:10.1002/ijc.28601.
  • Xavier C, Vaneycken I, D'huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–784. doi:10.2967/jnumed.112.111021.
  • Broisat A, Hernot S, Toczek J, De Vos J RLM, Martin S, Ahmadi M, Thielens N, Wernery U, Caveliers V, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110:927–937. doi:10.1161/CIRCRESAHA.112.265140.
  • Li T, Bourgeois JP, Celli S, Glacial F, Le Sourd AM, Mecheri S, Weksler B, Romero I, Couraud PO, Rougeon F, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH–GFP spontaneously cross the blood– brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J. 2012;26:3969–3979. doi:10.1096/fj.11-201384.
  • Rutgers KS, Nabuurs RJ, van den Berg SA, Schenk GJ, Rotman M, Verrips CT, et al. Transmigration of b amyloid specific heavy chain antibody fragments across the in vitro blood–brain barrier. Neuroscience. 2011;190:37–42. doi:10.1016/j.neuroscience.2011.05.076.
  • Muruganandam A, Tanha J, Narang S, Stanimirovic D. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J. 2002;16:240–242. doi:10.1096/fj.01-0343fje.
  • Abulrob A, Sprong H, Van Bergen en Henegouwen P, Stanimirovic D. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95:1201–1214. doi:10.1111/j.1471-4159.2005.03463.x.
  • Wang D, El-Amouri SS, Dai M, Kuan C-Y, Hui DY, Brady RO, Pan D. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc Natl Acad Sci U S A. 2013;110:2999–3004. doi:10.1073/pnas.1222742110.
  • Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab Dispos. 2012;40:2021–2025. doi:10.1124/dmd.112.046375.
  • Xiao G, Gan LS. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013:703545. doi:10.1155/2013/703545.
  • Chakravarty R, Goel S, Cai W. Nanobody: The “Magic Bullet” for molecular imaging? Theranostics. 2014;4(4):386–398 doi:10.7150/thno.8006.
  • Balkwill FR. The chemokine system and cancer. J. Pathol. 2012;226:148–157 doi:10.1002/path.3029.
  • Chatalic KLS, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, et al. A novel 111In-labeled anti–prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J Nucl Med. 2015;56:1094–1099 doi:10.2967/jnumed.115.156729.
  • Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108:1501–1516. doi:10.1021/cr0782426.
  • Alauddin MM. Positron emission tomography (PET) imaging with 18 F-based radiotracers. Am J Nucl Med Mol Imaging. 2012;2:55–76.
  • Holland JP, Cumming P, Vasdev N. PET radiopharmaceuticals for probing enzymes in the brain. Am J Nucl Med Mol Imaging. 2013;3:194–216.
  • Vosjan MJ, Perk LR, Roovers RC, Visser GW, Stigter-van Walsum M, van Bergen En Henegouwen PM, et al. Facile labelling of an anti-epidermal growth factor receptor nanobody with Ga-68 via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging. 2011;38(4):753–763. doi:10.1007/s00259-010-1700-1.
  • Sukhanova A, Even-Desrumeaux K, Kisserli A, Tabary T, Reveil B, Millot JM, Chames P, Baty D, Artemyev M, Oleinikov V, et al. Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine. 2012;8:516–525. doi:10.1016/j.nano.2011.07.007.
  • Gainkam LO, Caveliers V, Devoogdt N, Vanhove C, Xavier C, Boerman O, et al. Localization, mechanism and reduction of renal retention of technetium-99 m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging. 2011;6:85–92 doi:10.1002/cmmi.408.
  • Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, Bossuyt A, Revets H, Lahoutte T. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol. 2008;10(3):167–175. doi:10.1007/s11307-008-0133-8.
  • Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, Vanhove C, Revets H, De Baetselier P, Lahoutte T. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med. 2008;49(5):788–795. doi:10.2967/jnumed.107.048538.
  • Newkirk MM, Novick J, Stevenson MM, Fournier MJ, Apostolakos P. Differential clearance of glycoforms of IgG in normal and autoimmune-prone mice. Clin Exp Immunol. 1996;106(2):259–264 doi:10.1046/j.1365-2249.1996.d01-847.x.
  • Chapman AP, Antoniw P, Spitali M, West S, Stephens S, King DJ. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol. 1999;17(8):780–783 doi:10.1038/11717.
  • Quartarone E, Alonci A, Allegra A, Bellomo G, Calabrò L, D'Angelo A, Del Fabro V, Grasso A, Cincotta M, Musolino C. Differential levels of soluble angiopoietin-2 and Tie-2 in patients with haematological malignancies. Eur J Haematol. 2006;77(6):480–485. doi:10.1111/j.0902-4441.2006.t01-1-EJH2795.x.
  • Musolino C, Alonci A, Bellomo G, Loteta B, Quartarone E, Gangemi D, Massara E, Calabrò L. Levels of soluble angiogenin in chronic myeloid malignancies: clinical implications. Eur J Haematol. 2004;72(6):416–419 doi:10.1111/j.1600-0609.2004.00253.x.
  • Farajpour Z, Rahbarizadeh F, Kazemi B, Ahmadvand D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem Biophys Res Communications. 2014;446:132–136 doi:10.1016/j.bbrc.2014.02.069.
  • Behdani M, Zeinali S, Karimipour M, Khanahmad H, Schoonooghe S, Aslemarz A, Seyed N, Moazami-Godarzi R, Baniahmad F, Habibi-Anbouhi M, et al. Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. New Biotechnol. 2013;30:205–209 doi:10.1016/j.nbt.2012.09.002.
  • Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A. Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol Ther. 2017;169:47–56. doi:10.1016/j.pharmthera.2016.06.012.
  • Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V, Millar A, Power UF, Stortelers C, Allosery K, et al. Generation and Characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob Agents Chemother. 2015;60:6–13. doi:10.1128/AAC.01802-15.
  • Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, Sun Y, Xiao Y, Yu L. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomed. 2016;11:3287–3303. doi:10.2147/IJN.S107194.
  • Allegra A, Innao V, Gerace D, Vaddinelli D, Musolino C. Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis. 2016;62:49–63. doi:10.1016/j.bcmd.2016.11.001.
  • Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603 doi:10.3389/fimmu.2017.01603.
  • Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–876. doi:10.1016/j.copbio.2011.06.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.