167
Views
3
CrossRef citations to date
0
Altmetric
Review

Association between Single Nucleotide Polymorphisms and Glioma Risk: A Systematic Literature Review

ORCID Icon, , , , , , , , , , , , & show all
Pages 169-183 | Received 12 Nov 2019, Accepted 18 Jan 2020, Published online: 02 Mar 2020

References

  • Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosick FT. Effect of tamoxifen on DNA synthesis and proliferation of human malignant glioma lines in vitro. Cancer Res. 1990;50(22):7134–7138.
  • Patel S, DiBiase S, Meisenberg B, Flannery T, Patel A, Dhople A, et al. Phase I clinical trial assessing temozolomide and tamoxifen with concomitant radiotherapy for treatment of high-grade glioma. Int J Radiat Oncol Biol Phys. 2012;82(2):739–742. doi:10.1016/j.ijrobp.2010.12.053.
  • Tang P, Roldan G, Brasher PMA, Fulton D, Roa W, Murtha A, et al. A phase II study of carboplatin and chronic high-dose tamoxifen in patients with recurrent malignant glioma. J Neurooncol. 2006;78(3):311–316. doi:10.1007/s11060-005-9104-y.
  • Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K, Takahashi H, et al. Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol. 2005;72(3):231–238. doi:10.1007/s11060-004-2353-3.
  • Qian T, Zhang B, Qian C, He Y, Li Y. Association between common polymorphisms in ERCC gene and glioma risk. A meta-analysis of 15 studies. Medicine. 2017;96(20):e6832. doi:10.1097/MD.0000000000006832.
  • Gao X, Tang YJ, Zhang GF, Yu L, St Q. ERCC2 rs13181 polymorphism association with glioma susceptibility in a Chinese population. Genet Mol Res. 2016;15:1–10. doi:10.4238/gmr.15027585.
  • Fan SC, Zhou JG, and, Yin JG. Investigation of the role of XRCC1 genetic polymorphisms in the development of gliomas in a Chinese population. Genet Mol Res. 2016;15:1–10. doi:10.4238/gmr.15038268.
  • Xu GZ, Liu Y, Zhang Y, Yu J, Diao B. Correlation between VEGFR2 rs2071559 polymorphism and glioma risk among Chinese population. Int J Clin Exp Med. 2015;8(9):16724–16728.
  • Purnomo J, Coote K, Mao L, Fan L, Gold J, Ahmad R, et al. Using eHealth to engage and retain priority populations in the HIV treatment and care cascade in the Asia-Pacific region: a systematic review of literature. BMC Infect Dis. 2018;18(1):82. doi:10.1186/s12879-018-2972-5.
  • Thomas BH, Ciliska D, Dobbins M, Minucci S. A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. BMC Infect Dis. 2018;18176–184. doi:10.1111/j.1524-475X.2004.04006.x.
  • Li J, Qu Q, Qu J, Luo WM, Wang SY, He YZ, et al. Association between XRCC1 polymorphisms and glioma risk among Chinese population. Med Oncol. 2014;31(10):186–190. doi:10.1007/s12032-014-0186-2.
  • Rodriguez-Hernandez I, Perdomo S, Santos-Briz A, Garcia JL, Gomez-Moreta JA, Cruz JJ, et al. Analysis of DNA repair gene polymorphisms in glioblastoma. Gene. 2014;536(1):79–83. doi:10.1016/j.gene.2013.11.077.
  • Pan WR, Li G, Guan JH. Polymorphisms in DNA repair genes and susceptibility to glioma in a Chinese population. Int J Mol Sci. 2013;14(2):3314–3324. doi:10.3390/ijms14023314.
  • Gao K, Mu SQ, Wu ZX. Investigation of the effects of single-nucleotide polymorphisms in DNA repair genes on the risk of glioma. Genet Mol Res. 2014;13(1):1203–1211. doi:10.4238/2014.February.27.5.
  • Xu G, Wang M, Xie W, Bai X. DNA repair gene XRCC3 Thr241Met polymorphism and susceptibility to glioma: a case-control study. Oncol Lett. 2014;8(2):864–868. doi:10.3892/ol.2014.2192.
  • Luo KQ, Mu SQ, Wu ZX, Shi YN, Peng JC. Polymorphisms in DNA repair genes and risk of glioma and meningioma. Asian Pac J Cancer Prev. 2013;14(1):449–452. doi:10.7314/APJCP.2013.14.1.449.
  • Zhao P, Zou P, Zhao L, Yan W, Kang C, Jiang T, et al. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer. 2013;13(1):234–241. doi:10.1186/1471-2407-13-234.
  • Su Y, Qi S, Dou C, Shuang L, Yan H. Association of LIG4 and XRCC4 gene polymorphisms with the risk of human glioma in a Chinese population. Int J Clin Exp Pathol. 2015;8(2):2057–2062.
  • Feng X, Miao G, Han Y, Xu Y, Wu H. Glioma risks associate with genetic polymorphisms of XRCC1 gene in Chinese population. J Cell Biochem. 2014;115(6):1122–1127. doi:10.1002/jcb.24753.
  • Wang YX, Fan K, Tao DB, Dong X. Association between genetic polymorphism of XRCC1 gene and risk of glioma in а Chinese population. Asian Pac J Cancer Prev. 2013;14(10):5957–5960. doi:10.7314/APJCP.2013.14.10.5957.
  • Hui L, Yue S, Gao G, Chang H, Li X. Association of single-nucleotide polymorphisms in ERCC1 and ERCC2 with glioma risk. Tumor Biol. 2014;8:7451–7457. doi:10.1007/s13277-014-1969-y.
  • Yang L, Qu B, Xia X, Kuang Y, Li J, Fan K, et al. Impact of interaction between the G870A and EFEMP1 gene polymorphism on glioma risk in Chinese Han population. Oncotarget. 2017;8:37561–37567. doi:10.18632/oncotarget.16581.
  • Jiang N, Peng YP, Wang XY, Dou CW, He WH. Assessing the association between EFEMP1 rs3791679 polymorphism and risk of glioma in a Chinese Han population. Genet Mol Res. 2016;15:1–6. doi:10.4238/gmr.15038279.
  • Qin G, Qi S, Lu D, Yu J, Huang W, Yu L. EFEMP1 rs3791679 polymorphism was associated with susceptibility to glioma. Int J Clin Exp Pathol. 2015;8(11):15222–15227.
  • Zhang S, Ye Z, Song X, Chen G, Huai C, Wang Q, et al. Association of EFEMP1 gene polymorphisms with the risk of glioma: a hospital-based case–control study in a Chinese Han population. J Neuro Sci. 2015;349(1–2):54–59. doi:10.1016/j.jns.2014.12.025.
  • Yang B, Heng L, Du S, Yang H, Jin T, Lang H, et al. Association between RTEL1, PHLDB1, and TREH polymorphisms and glioblastoma risk: a case-control study. Med Sci Monit. 2015;21:1983–1988. doi:10.12659/MSM.893723.
  • Walsh KM, Anderson E, Hansen HM, Decker PA, Kosel ML, Kollmeyer T, et al. Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies. Genet Epidemiol. 2013;37(2):222–228. doi:10.1002/gepi.21707.
  • Lin RP, Yao CY, Ren DX. Association between genetic polymorphisms of PTGS2 and glioma in a Chinese population. Genet Mol Res. 2015;14(2):3142–3148. doi:10.4238/2015.April.10.25.
  • Shamran HA, Hamza SJ, Yaseen NY, Al-Juboory AA, Taub DD, Price RL, et al. Impact of single nucleotide polymorphism in IL-4, IL-4R genes and systemic concentration of IL-4 on the incidence of glioma in Iraqi patients. Int J Med Sci. 2014;11(11):1147–1153. doi:10.7150/ijms.9412.
  • Shamran HA, Ghazi HF, Al-Salman A, Al-Juboory AA, Taub DD, Price RL, et al. Single nucleotide polymorphisms in IL-10, IL-12p40, and IL-13 genes and susceptibility to glioma. Int J Med Sci. 2015;12(10):790–796. doi:10.7150/ijms.12609.
  • Wei XB, Jin TB, Li G, Geng TT, Zhang JY, Chen CP, et al. CCDC26 gene polymorphism and glioblastoma risk in the Han Chinese population. Asian Pac J Cancer Prev. 2014;15(8):3629–3633. doi:10.7314/APJCP.2014.15.8.3629.
  • Ozdogan S, Kafadar A, Yilmaz SG, Timirci-Kahraman O, Gormus U, Isbir T. Role of caspase-9 gene Ex5 + 32 G > A (rs1052576) variant in susceptibility to primary brain tumors. Anticancer Res. 2017;37(9):4997–5000. doi:10.21873/anticanres.11912.
  • Silveira FCA, Lopes BA, Fonseca CO, Quirico-Santos T, Icnp P, Amorim LMF. Analysis of EGF + 61A > G polymorphism and EGF serum levelsin Brazilian glioma patients treated with perillylalcohol-based therapy. J Cancer Res Clin Oncol. 2012;138:1347–1354. doi:10.1007/s00432-012-1203-5.
  • Coutinho P, Sandim V, Oliveira JA, Alves G, Hatagima A. Lack of association between glutathione S-transferase polymorphisms and primary glioma in a case-control study in Rio de Janeiro. Genet Mol Res. 2010;9(1):539–544. doi:10.4238/vol9-1gmr753.
  • Pinto GR, Yoshioka FKN, Clara CA, Santos MJ, Almeida JRW, Burbano RR, et al. WRN Cys1367Arg SNP is not associated with risk and prognosis of gliomas in Southeast Brazil. J Neurooncol. 2008;90(3):253–258. doi:10.1007/s11060-008-9664-8.
  • Zhang H, Shi WJ. Association of three common single nucleotide polymorphisms of SLC7A7 with the development of glioma in a Chinese population. Genet Mol Res. 2017;16:1–7. doi:10.4238/gmr16029026.
  • Pandith AA, Qasim I, Zahoor W, Shah P, Bhat AR. ACE I/D sequence variants but not MTHFR C677T, is strongly linked to malignant glioma risk and its variant DD genotype may act as a promising predictive biomarker for overall survival of glioma patients. Gene. 2018;639:62–68. doi:10.1016/j.gene.2017.10.013.
  • Zhao Y, Yun D, Zou X, Jiang T, Li G, Hu L, et al. Whole exome-wide association study identifies amissense variant in SLC2A4RG associated with glioblastoma risk. Am J Cancer Res. 2017;7:1937–1947.
  • Wang N, Deng Z, Wang M, Li R, Xu G, Bao G. Additional evidence supports association of common genetic variants in VTI1A and ETFA with increased risk of glioma susceptibility. J Neuro Sci. 2017;375:282–288. doi:10.1016/j.jns.2017.02.013.
  • Xavier-Magalhães A, Oliveira AI, de Castro JV, Pojo M, Gonçalves CS, Lourenço T, et al. Effects of the functional HOTAIR rs920778 and rs12826786 genetic variants in glioma susceptibility and patient prognosis. J Neurooncol. 2017;132(1):27–34. doi:10.1007/s11060-016-2345-0.
  • Fu JW, Wang KW, St Q. Role of IL-8 gene polymorphisms in glioma development in a Chinese population. Genet Mol Res. 2016;15:1–6. doi:10.4238/gmr.15038127.
  • Sibin MK, Dhananjaya IB, Narasingarao KVL, Harshitha SM, Jeru-Manoj M, Chetan GK. Two gene polymorphisms (rs4977756 and rs11515) in CDKN2A/B and glioma risk in South Indian population. Meta Gene. 2016;9:215–218. doi:10.1016/j.mgene.2016.07.010.
  • Chang SF, Li SL, Yang B, Yao KM, Miao RH, Liang GF, et al. CXCL12 G801A polymorphism and susceptibility to glioma: a case-control study. Genet Mol Res. 2015;14(4):17399–17405. doi:10.4238/2015.December.21.9.
  • Franceschi S, Tomei S, Mazzanti CM, Lessi F, Aretini P, La Ferla M, et al. Association between RAD 51 rs1801320 and susceptibility to glioblastoma. J Neurooncol. 2016;126(2):265–270. doi:10.1007/s11060-015-1974-z.
  • Pooyan H, Ahmad E, Azadeh R. 4G/5G and A-844G polymorphisms of plasminogen activator inhibitor-1 associated with glioblastoma in Iran - a case-control study. Asian Pac J Cancer Prev. 2015;16(15):6327–6330. doi:10.7314/APJCP.2015.16.15.6327.
  • Liu H, Song Z, Liao DG, Zhang TY, Liu F, Zheng W, et al. Cyclin D1 G870A polymorphism and glioma risk in a Chinese population. Int J Clin Exp Med. 2015;8(6):9991–9995.
  • Liu H, Mao P, Xie C, Xie W, Wang M, Jiang H. Association between interleukin 8–251 T/A and +781 C/T polymorphisms and glioma risk. Diagn Pathol. 2015;10(1):138–142. doi:10.1186/s13000-015-0378-x.
  • Zhou P, Zhang S, Chen H, Chen Y, Liu X, Sun B. No association of VAMP8 gene polymorphisms with glioma in a Chinese Han population. Int J Clin Exp Pathol. 2015;8(5):5681–5687.
  • Gonzalez-Herrera L, Gamas-Trujillo PA, Medina-Escobedo G, Oaxaca-Castillo D, Perez-Mendoza G, Williams-Jacquez D, et al. The paraoxonase 1 gene c-108C > T SNP in the promoter is associated with risk for glioma in Mexican patients, but not the p.L55M or p.Q192R polymorphisms in the coding region. Genet Test Mol Bioma. 2015;19:494–499. doi:10.1089/gtmb.2014.0322.
  • Zhang J, Yang J, Chen Y, Mao Q, Li S, Xiong W, et al. Genetic variants of VEGF (rs201963 and rs3025039) and KDR(rs7667298, rs2305948, and rs1870377) are associated with glioma risk in a Han Chinese population: a case-control study. Mol Neurobiol. 2016;53(4):2610–2618. doi:10.1007/s12035-015-9240-0.
  • Fahmideh AM, Lavebratt C, SchüZ J, Röösli M, Tynes T, Grotzer MA, et al. CCDC26, CDKN2BAS, RTEL1 and TERT polymorphisms in pediatric brain tumor susceptibility. Carcinogenesis. 2015;36:876–882. doi:10.1093/carcin/bgv074.
  • Castro JV, Gonçalves SC, Costa S, Linhares P, Vaz R, Nabiço R, et al. Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis. Tumor Biol. 2015;36:6525–6532. doi:10.1007/s13277-015-3343-0.
  • Shen Z, Chen B, Hou X, Chen P, Zhao G, Fan J. Polymorphism -433 C > T of the osteopontin gene is associated with the susceptibility to develop gliomas and their prognosis in a Chinese cohort. Cell Physiol Biochem. 2014;34(4):1190–1198. doi:10.1159/000366331.
  • Zhou WK, Huang LY, Hui L, Wang ZW, Jin BZ, Zhao XL, et al. Association of polymorphisms of the xerodermapigmentosum complementation group F gene with increased glioma risk. Genet Mol Res. 2014;13(2):3826–3831. doi:10.4238/2014.May.16.7.
  • Liu YL, Liu PF, Liu HE, Ma LX, Li G. Association between STAT5 polymorphisms and glioblastoma risk in Han Chinese population. Pathol Res Pract. 2014;210(9):582–585. doi:10.1016/j.prp.2014.04.019.
  • Chen YD, Lu C, Wei J, Han S, Wang H, Jiang T, et al. 1p34.2 rs621559 and 14q21 rs398652 leukocyte telomere length-related genetic variants contribute to glioma susceptibility. J Neurooncol. 2014;119(1):71–79. doi:10.1007/s11060-014-1466-6.
  • Li W, Qian C, Wang L, Teng H, Zhang L. Association of BCL2-938C > A genetic polymorphism with glioma risk in Chinese Han population. Tumor Biol. 2014;35(3):2259–2264. doi:10.1007/s13277-013-1299-5.
  • Jiang H, Lian M, Xie J, Li J, Wang M. Three single nucleotide polymorphisms of the vascular endothelial growth factor (VEGF) gene and glioma risk in a Chinese population. J Int Med Res. 2013;41(5):1484–1494. doi:10.1177/0300060513498667.
  • Jin TB, Li XL, Yang H, Jiri M, Shi XG, Yuan DY, et al. Association of polymorphisms in FLT3, EGFR, ALOX5, and NEIL3 with glioblastoma in the Han Chinese population. Med Oncol. 2013;30(4):718–722. doi:10.1007/s12032-013-0718-1.
  • Cheng HB, Xie C, Zhang RY, Hu SS, Wang Z, Yue W. Xeroderma Pigmentosum Complementation Group F Polymorphisms Influence Risk of Glioma. Asian Pac J Cancer Prev. 2013;14(7):4083–4087. doi:10.7314/APJCP.2013.14.7.4083.
  • Toptas B, Kafadar A, Cacina C, Turan S, Yurdum LM, Yigitbas N, et al. The vitamin D receptor (VDR) gene polymorphisms in Turkish brain cancer patients. Biomed Res Int. 2013;2013:1–6. doi:10.1155/2013/295791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.