258
Views
12
CrossRef citations to date
0
Altmetric
Articles

In Vitro: Cytotoxicity, Apoptosis and Ameliorative Potential of Lawsonia inermis Extract in Human Lung, Colon and Liver Cancer Cell Line

, , , , , & ORCID Icon show all
Pages 476-485 | Received 30 Jan 2020, Accepted 13 Aug 2020, Published online: 14 Sep 2020

References

  • Nair L, Mahesh S, Smitha L, Sujathan K, Remani P. Expression of Canavalia gladiata lectin in leukemic cells. J Cancer Sci Ther. 2011;3:4.
  • Bali A, Pal Singh M, Khorate M, Ahmed J. Malignant fibrous histiocytoma: an unusual transformation from benign to malignant. J Cancer Sci Ther. 2010;2(2):53–57. doi:10.4172/1948-5956.1000023.
  • Ogale S, Yadav KS, Navale S. Screening of endophytic bacteria from the pharmacologically important medicinal plant Gloriosa superba for their multiple plant growth promoting properties. J Pharm Innov. 2018;7:208–214.
  • Rosnah M, Asmah R, Maznah I, Asmah Y, Zanariah J, van Zurinah W. Effect of Lawsonia inermis (henna) on tumor marker enzyme activities during hepatocarcinogenesis in rats. J Biochem Mol Biol. 1998;3:25–29.
  • Gupta S, Ali M, Alam MSJP. A naphthoquinone from Lawsonia inermis stem bark. Phytochemistry. 1993;33(3):723–724. doi:10.1016/0031-9422(93)85484-9.
  • Semwal RB, Semwal DK, Combrinck S, Cartwright-Jones C, Viljoen A. Lawsonia inermis L. (henna): ethnobotanical, phytochemical and pharmacological aspects. J Ethnopharmacol. 2014;155(1):80–103. doi:10.1016/j.jep.2014.05.042.
  • De Araújo MV, De Souza PS, De Queiroz AC, Da Matta CB, Leite AB, Da Silva AE, et al. Synthesis, leishmanicidal activity and theoretical evaluations of a series of substituted bis-2-hydroxy-1,4-naphthoquinones. Molecules. 2014;19(9):15180–15195. doi:10.3390/molecules190915180.
  • Pradhan R, Dandawate P, Vyas A, Padhye S, Biersack B, Schobert R, et al. From body art to anticancer activities: perspectives on medicinal properties of henna. Curr Drug Targets. 2012;13(14):1777–1798. doi:10.2174/138945012804545588.
  • Vargo-Gogola T, Rosen J. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7(9):659–672. doi:10.1038/nrc2193.
  • Ferreira D, Adega F, Chaves R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing. In: Oncogenomics and cancer proteomics: novel approaches in biomarkers discovery and therapeutic targets in cancer. London (UK): IntechOpen; 2013.
  • Singh DK, Luqman S. Lawsonia inermis (L.): a perspective on anticancer potential of mehndi/henna. Biomed Res Ther. 2014;1(4):112–120. doi:10.7603/s40730-014-0018-1.
  • Trigui M, Hsouna AB, Hammami I, Culioli G, Ksantini M, Tounsi S, et al. Efficacy of Lawsonia inermis leaves extract and its phenolic compounds against olive knot and crown gall diseases. Crop Prot. 2013;45:83–88. doi:10.1016/j.cropro.2012.11.014.
  • Rahmat A, Edrini S, Ismail P, Taufiq Y, Yun H, Abu Bakar M. Chemical constituents, antioxidant activity and cytotoxic effects of essential oil from Strobilanthes crispus and Lawsonia inermis. J Biol Sci. 2006;6(6):1005–1010. doi:10.3923/jbs.2006.1005.1010.
  • Chirinos R, Rogez H, Campos D, Pedreschi R, Larondelle YJS, Technology P. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep Purif Technol. 2007;55(2):217–225. doi:10.1016/j.seppur.2006.12.005.
  • Lafka T-I, Sinanoglou V, Lazos E. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007;104(3):1206–1214. doi:10.1016/j.foodchem.2007.01.068.
  • Sadeghi-Aliabadi H, Ghasemi N, Kohi M. Cytotoxic effect of Convolvulus arvensis extracts on human cancerous cell line. Trop J Pharma Res. 2009;3(1):31–34.
  • Oda Y, Nakashima S, Kondo E, Nakamura S, Yano M, Kubota C, et al. Comparison of lawsone contents among Lawsonia inermis plant parts and neurite outgrowth accelerators from branches. J Nat Med. 2018;72(4):890–896. doi:10.1007/s11418-018-1221-y.
  • Gundala SR, Yang C, Mukkavilli R, Paranjpe R, Brahmbhatt M, Pannu V, et al. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol Appl Pharmacol. 2014;280(1):86–96. doi:10.1016/j.taap.2014.07.012.
  • Schumacker P. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–176. doi:10.1016/j.ccr.2006.08.015.
  • Szatrowski TP, Nathan C. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–798.
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–591. doi:10.1038/nrd2803.
  • Spitz DR, Azzam EI, Li JJ, Gius DJC, Reviews M. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 2004;23(3–4):311–322. doi:10.1023/B:CANC.0000031769.14728.bc.
  • Conklin K. Cancer chemotherapy and antioxidants. J Nutr. 2004;134(11):3201S–3204S. doi:10.1093/jn/134.11.3201S.
  • Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48(6):749–762. doi:10.1016/j.freeradbiomed.2009.12.022.
  • Simon H-U, Haj-Yehia A, Levi-Schaffer FJA. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415–418. doi:10.1023/A:1009616228304.
  • Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol Med. 2008;45(10):1403–1412. doi:10.1016/j.freeradbiomed.2008.08.014.
  • Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther. 2007;6(9):2544–2553. doi:10.1158/1535-7163.MCT-06-0788.
  • Métivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I, et al. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett. 1998;61(2–3):157–163. doi:10.1016/S0165-2478(98)00013-3.
  • Zuliani T, Duval R, Jayat C, Schnébert S, André P, Dumas M, et al. Sensitive and reliable JC-1 and TOTO-3 double staining to assess mitochondrial transmembrane potential and plasma membrane integrity: interest for cell death investigations. Cytometry A. 2003;54(2):100–108. doi:10.1002/cyto.a.10059.
  • Kamei H, Koide T, Kojima T, Hashimoto Y, Hasegawa M. Inhibition of cell growth in culture by quinones. Cancer Biother Radiopharm. 1998;13(3):185–188. doi:10.1089/cbr.1998.13.185.
  • Chien C-M, Lin K-L, Su J-C, Chuang P-W, Tseng C-H, Chen Y-L, et al. Naphtho[1,2-b]furan-4,5-dione induces apoptosis of oral squamous cell carcinoma: involvement of EGF receptor/PI3K/Akt signaling pathway. Eur J Pharmacol. 2010;636(1–3):52–58. doi:10.1016/j.ejphar.2010.03.030.
  • Xavier MR, Santos MMS, Queiroz MG, de Lima Silva MS, Goes AJS, De Morais Jr MA. Lawsone, a 2-hydroxy-1,4-naphthoquinone from Lawsonia inermis (henna), produces mitochondrial dysfunctions and triggers mitophagy in Saccharomyces cerevisiae. Mol Biol Rep. 2020;47(2):1173–1185. doi:10.1007/s11033-019-05218-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.