430
Views
5
CrossRef citations to date
0
Altmetric
Articles

The Landscape of Chromosome Instability in Breast Cancers and Associations with the Tumor Mutation Burden: An Analysis of Data from TCGA

ORCID Icon
Pages 25-38 | Received 06 Jun 2020, Accepted 09 Dec 2020, Published online: 22 Dec 2020

References

  • Voutsadakis IA. Clinical implications of chromosomal instability (CIN) and kinetochore abnormalities in breast cancers. Mol Diagn Ther. 2019;23(6):707–21. doi:10.1007/s40291-019-00420-2.
  • McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13(6):528–38. doi:10.1038/embor.2012.61.
  • Danielsen HE, Pradhan M, Novelli M. Revisiting tumour aneuploidy - the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol. 2016;13(5):291–304. doi:10.1038/nrclinonc.2015.208.
  • Xu J, Huang L, Li J. DNA aneuploidy and breast cancer: a meta-analysis of 141,163 cases. Oncotarget. 2016;7(37):60218–29. doi:10.18632/oncotarget.11130.
  • Szász AM, Li Q, Eklund AC, Sztupinszki Z, Rowan A, Tőkés AM, et al. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS ONE. 2013;8(2):e56707. doi:10.1371/journal.pone.0056707.
  • Pfister K, Pipka JL, Chiang C, Liu Y, Clark RA, Keller R, et al. Identification of drivers of aneuploidy in breast tumors. Cell Rep. 2018;23(9):2758–69. doi:10.1016/j.celrep.2018.04.102.
  • Stopsack KH, Whittaker CA, Gerke TA, Loda M, Kantoff PW, Mucci LA, et al. Aneuploidy drives lethal progression in prostate cancer. Proc Natl Acad Sci U S A. 2019;116(23):11390–5. doi:10.1073/pnas.1902645116.
  • Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al., Cancer Genome Atlas Research Network. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018;33(4):676–89. doi:10.1016/j.ccell.2018.03.007.
  • The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490:61–70.
  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. doi:10.1158/2159-8290.CD-12-0095.
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6:269.
  • Colli LM, Machiela MJ, Myers TA, Jessop L, Yu K, Chanock SJ, et al. Burden of nonsynonymous mutations among TCGA cancers and candidate immune checkpoint inhibitor responses. Cancer Res. 2016;76(13):3767–72. doi:10.1158/0008-5472.CAN-16-0170.
  • Voutsadakis IA. Polymerase epsilon mutations and concomitant β2-microglobulin mutations in cancer. Gene. 2018;647:31–8. doi:10.1016/j.gene.2018.01.030.
  • Veneris JT, Lee EK, Goebel EA, Nucci MR, Lindeman N, Horowitz NS, et al. Diagnosis and management of a recurrent polymerase-epsilon (POLE)-mutated endometrial cancer. Gynecol Oncol. 2019;153(3):471–8. doi:10.1016/j.ygyno.2019.03.247.
  • Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneuploidy-selective antiproliferation compounds. Cell. 2011;144(4):499–512. doi:10.1016/j.cell.2011.01.017.
  • Manchado E, Malumbres M. Targeting aneuploidy for cancer therapy. Cell. 2011;144(4):465–6. doi:10.1016/j.cell.2011.01.037.
  • Tang YC, Yuwen H, Wang K, Bruno PM, Bullock K, Deik A, et al. Aneuploid cell survival relies upon sphingolipid homeostasis. Cancer Res. 2017;77(19):5272–86. doi:10.1158/0008-5472.CAN-17-0049.
  • Hortobagyi GN, Chen D, Piccart M, Rugo HS, Burris HA, Pritchard KI, et al. Correlative analysis of genetic alterations and everolimus benefit in hormone receptor-positive, Human Epidermal Growth Factor Receptor 2-negative advanced breast cancer: results from BOLERO-2. J Clin Oncol. 2016;34(5):419–26. doi:10.1200/JCO.2014.60.1971.
  • Voutsadakis IA. High tumor mutation burden and other immunotherapy response predictors in breast cancers: associations and therapeutic opportunities. Target Oncol. 2020;15(1):127–38. doi:10.1007/s11523-019-00689-7.
  • Oltmann J, Heselmeyer-Haddad K, Hernandez LS, Meyer R, Torres I, Hu Y, et al. Aneuploidy, TP53 mutation, and amplification of MYC correlate with increased intratumor heterogeneity and poor prognosis of breast cancer patients. Genes Chromosomes Cancer. 2018;57(4):165–75. doi:10.1002/gcc.22515.
  • Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al., METABRIC Group. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. doi:10.1038/nature10983.
  • Pereira B, Chin SF, Rueda OM, Vollan HKM, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479. doi:10.1038/ncomms11479.
  • Russnes HG, Lingjaerde OC, Børresen-Dale AL, Caldas C. Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am J Pathol. 2017;187(10):2152–62. doi:10.1016/j.ajpath.2017.04.022.
  • Aylon Y, Oren M. p53: guardian of ploidy. Mol Oncol. 2011;5(4):315–23. doi:10.1016/j.molonc.2011.07.007.
  • Burds AA, Schulze Lutum A, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A. 2005;102(32):11296–301. doi:10.1073/pnas.0505053102.
  • Murali R, Wiesner T, Scolyer RA. Tumours associated with BAP1 mutations. Pathology. 2013;45(2):116–26. doi:10.1097/PAT.0b013e32835d0efb.
  • Smith CL, Migliaccio I, Chaubal V, Wu MF, Pace MC, Hartmaier R, et al. Elevated nuclear expression of the SMRT corepressor in breast cancer is associated with earlier tumor recurrence. Breast Cancer Res Treat. 2012;136(1):253–65. doi:10.1007/s10549-012-2262-7.
  • Légaré S, Basik M. Minireview: the link between ERα corepressors and histone deacetylases in tamoxifen resistance in breast cancer. Mol Endocrinol. 2016;30(9):965–76. doi:10.1210/me.2016-1072.
  • Smid M, Hoes M, Sieuwerts AM, Sleijfer S, Zhang Y, Wang Y, et al. Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat. 2011;128(1):23–30. doi:10.1007/s10549-010-1026-5.
  • Davies V, Voutsadakis IA. Amplification of chromosome 17 centromere (CEP17) in breast cancer patients with a result of HER2 2± by Immunohistochemistry. Cancer Invest. 2020;38(2):94–101. doi:10.1080/07357907.2020.1720223.
  • Halilovic A, Verweij DI, Simons A, Stevens-Kroef MJPL, Vermeulen S, Elsink J, et al. HER2, chromosome 17 polysomy and DNA ploidy status in breast cancer; a translational study. Sci Rep. 2019;9(1):11679. doi:10.1038/s41598-019-48212-2.
  • Lee K, Kim HJ, Jang MH, Lee S, Ahn S, Park SY, et al. Centromere 17 copy number gain reflects chromosomal instability in breast cancer. Sci Rep. 2019;9(1):17968. doi:10.1038/s41598-019-54471-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.