215
Views
13
CrossRef citations to date
0
Altmetric
Articles

Epigenetic Regulatory Enzymes: mutation Prevalence and Coexistence in Cancers

ORCID Icon, , , &
Pages 257-273 | Received 18 Jun 2020, Accepted 04 Jan 2021, Published online: 03 Feb 2021

References

  • Vicens A, Posada D. Selective pressures on human cancer genes along the evolution of mammals. Genes. 2018;9(12):582. doi:10.3390/genes9120582.
  • Khatami F, Tavangar SM. A review of driver genetic alterations in thyroid cancers. Iran J Pathol. 2018;13(2):125–35. doi:10.30699/ijp.13.2.125.
  • Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol. 2019;3:7. doi:10.1038/s41698-019-0079-0.
  • Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013;13(7):497–510. doi:10.1038/nrc3486.
  • Sharma A, Stei MM, Fröhlich H, Holz FG, Loeffler KU, Herwig-Carl MC. Genetic and epigenetic insights into uveal melanoma. Clin Genet. 2018;93(5):952–961. doi:10.1111/cge.13136.
  • Jamil MA, Sharma A, Nuesgen N, Pezeshkpoor B, Heimbach A, Pavlova A, et al. F8 Inversions at Xq28 causing Hemophilia a are associated with specific methylation changes: implication for molecular epigenetic diagnosis. Front Genet. 2019;10:508. doi:10.3389/fgene.2019.00508.
  • Kaut O, Sharma A, Schmitt I, Hurlemann R, Wüllner U. DNA methylation of DLG4 and GJA-1 of human hippocampus and prefrontal cortex in major depression is unchanged in comparison to healthy individuals. J Clin Neurosci. 2017;43:261–263. doi:10.1016/j.jocn.2017.05.030.
  • Lonetti A, Pession A, Masetti R. Targeted therapies for pediatric AML: gaps and perspective. Front Pediatr. 2019;7:463. doi:10.3389/fped.2019.00463.
  • Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008. doi:10.1101/cshperspect.a001008.
  • Sharma A, Liu H, Tobar-Tosse F, Noll A, Dakal TC, Li H, et al. Genome organization in proximity to the BAP1 locus appears to play a pivotal role in a variety of cancers. Cancer Sci. 2020;111(4):1385–1391. doi:10.1111/cas.14319.
  • Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–492. doi:10.1038/nrc3068.
  • Lin R-K, Wu C-Y, Chang J-W, Juan L-J, Hsu H-S, Chen C-Y, et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 2010;70(14):5807–5817. doi:10.1158/0008-5472.CAN-09-4161.
  • Vicente-Dueñas C, Hauer J, Cobaleda C, Borkhardt A, Sánchez-García I. Epigenetic priming in cancer initiation. Trends Cancer. 2018;4(6):408–417. doi:10.1016/j.trecan.2018.04.007.
  • Fan H, Liu D, Qiu X, Qiao F, Wu Q, Su X, et al. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 2010;8(1):12. doi:10.1186/1741-7015-8-12.
  • Lee SJ. DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis. 2004;26(2):403–409. doi:10.1093/carcin/bgh307.
  • Park BL, Kim LH, Shin HD, Park YW, Uhm WS, Bae S-C, et al. Association analyses of DNA methyltransferase-1 (DNMT1) polymorphisms with systemic lupus erythematosus. J Hum Genet. 2004;49(11):642–646. doi:10.1007/s10038-004-0192-x.
  • El-Maarri O, Kareta MS, Mikeska T, Becker T, Diaz-Lacava A, Junen J, et al. A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation. Hum Mol Genet. 2009;18(10):1755–1768. doi:10.1093/hmg/ddp088.
  • Sharma A, et al. Skewed X-chromosome inactivation and XIST locus methylation levels do not contribute to the lower prevalence of Parkinson’s disease in females. Neurobiol Aging. 2017;57:248 e1–248 e5.
  • Kaut O, Sharma A, Schmitt I, Wüllner U. DNA methylation of imprinted loci of autosomal chromosomes and IGF2 is not affected in Parkinson’s disease patients’ peripheral blood mononuclear cells. Neurol Res. 2017;39(3):281–284. doi:10.1080/01616412.2017.1279424.
  • Li H, Li W, Liu S, Zong S, Wang W, Ren J, et al. DNMT1, DNMT3A and DNMT3B polymorphisms associated with gastric cancer risk: a systematic review and meta-analysis. EBioMedicine. 2016;13:125–131. doi:10.1016/j.ebiom.2016.10.028.
  • Li H, Liu J-W, Sun L-P, Yuan Y. A meta-analysis of the association between DNMT1 polymorphisms and cancer risk. Biomed Res Int. 2017;2017:3971259. doi:10.1155/2017/3971259.
  • Yan X-J, Xu J, Gu Z-H, Pan C-M, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–315. doi:10.1038/ng.788.
  • Xu J, Wang Y-Y, Dai Y-J, Zhang W, Zhang W-N, Xiong S-M, et al. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci USA. 2014;111(7):2620–2625. doi:10.1073/pnas.1400150111.
  • Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res. 2013;37(11):1445–50. doi:10.1016/j.leukres.2013.07.032.
  • Lin M-E, Hou H-A, Tsai C-H, Wu S-J, Kuo Y-Y, Tseng M-H, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics. 2018;10:42. doi:10.1186/s13148-018-0476-1.
  • Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376–3382. doi:10.1200/JCO.2011.40.7379.
  • Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 2003;192(1):75–82. doi:10.1016/S0304-3835(02)00689-4.
  • Zhu Y-M, Huang Q, Lin J, Hu Y, Chen J, Lai M-D, et al. Expression of human DNA methyltransferase 1 in colorectal cancer tissues and their corresponding distant normal tissues. Int J Colorectal Dis. 2007;22(6):661–666. doi:10.1007/s00384-006-0224-4.
  • Fennell L, Dumenil T, Wockner L, Hartel G, Nones K, Bond C, et al. Integrative genome-scale DNA methylation analysis of a large and unselected cohort reveals 5 distinct subtypes of colorectal adenocarcinomas. Cell Mol Gastroenterol Hepatol. 2019;8(2):269–290. doi:10.1016/j.jcmgh.2019.04.002.
  • Chao C, Chi M, Preciado M, Black MH. Methylation markers for prostate cancer prognosis: a systematic review. Cancer Causes Control. 2013;24(9):1615–1641. doi:10.1007/s10552-013-0249-2.
  • Barbano R, Muscarella LA, Pasculli B, Valori VM, Fontana A, Coco M, et al. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics. 2013;8(1):105–112. doi:10.4161/epi.23319.
  • Liu X, Brenner DA. Liver: DNA methylation controls liver fibrogenesis. Nat Rev Gastroenterol Hepatol. 2016;13(3):126–128. doi:10.1038/nrgastro.2016.16.
  • Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, et al. TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res. 2010;16(3):857–866. doi:10.1158/1078-0432.CCR-09-2604.
  • Klughammer J, Kiesel B, Roetzer T, Fortelny N, Nemc A, Nenning K-H, et al. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med. 2018;24(10):1611–1624. doi:10.1038/s41591-018-0156-x.
  • Cecotka A, Polanska J. Region-specific methylation profiling in acute myeloid leukemia. Interdiscip Sci. 2018;10(1):33–42. doi:10.1007/s12539-018-0285-4.
  • Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015;34(2):229–241. doi:10.1007/s10555-015-9563-3.
  • Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S, et al. Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene. 2001;20(26):3348–3353. doi:10.1038/sj.onc.1204438.
  • Montavon C, Gloss BS, Warton K, Barton CA, Statham AL, Scurry JP, et al. Prognostic and diagnostic significance of DNA methylation patterns in high grade serous ovarian cancer. Gynecol Oncol. 2012;124(3):582–588. doi:10.1016/j.ygyno.2011.11.026.
  • Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology. 2007;39(3):299–304. doi:10.1080/00313020701329906.
  • Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999;59(15):3730–3740.
  • Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–483. doi:10.1038/nature10866.
  • Wang P, Dong Q, Zhang C, Kuan P-F, Liu Y, Jeck WR, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32(25):3091–3100. doi:10.1038/onc.2012.315.
  • Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30(7):733–750. doi:10.1101/gad.276568.115.
  • Song C-X, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res. 2017;27(10):1231–1242. doi:10.1038/cr.2017.106.
  • Vasanthakumar A, Godley LA. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet. 2015;208(5):167–177. doi:10.1016/j.cancergen.2015.02.009.
  • Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–147. doi:10.1182/blood-2009-03-210039.
  • Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113(25):6403–6410. doi:10.1182/blood-2009-02-205690.
  • Kosmider O, Gelsi-Boyer V, Ciudad M, Racoeur C, Jooste V, Vey N, et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica. 2009;94(12):1676–1681. doi:10.3324/haematol.2009.011205.
  • Bediaga NG, Acha-Sagredo A, Guerra I, Viguri A, Albaina C, Ruiz Diaz I, et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res. 2010;12(5):R77. doi:10.1186/bcr2721.
  • Beatty GL, Li Y, Long KB. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017;17(2):175–186. doi:10.1080/14737140.2017.1270208.
  • Chand Dakal T, Dhabhai B, Agarwal D, Gupta R, Nagda G, Meena AR, et al. Mechanistic basis of co-stimulatory CD40-CD40L ligation mediated regulation of immune responses in cancer and autoimmune disorders. Immunobiology. 2019;225(2):151899. doi:10.1016/j.imbio.2019.151899.
  • Sharma A, Fröhlich H, Zhang R, Ebert A-K, Rösch W, Reis H, et al. Classic bladder exstrophy and adenocarcinoma of the bladder: methylome analysis provide no evidence for underlying disease-mechanisms of this association. Cancer Genet. 2019;235–236:18–20. doi:10.1016/j.cancergen.2019.05.004.
  • Sharma A, Dakal T, Ludwig M, Fröhlich H, Mathur R, Reutter H, et al. Towards a central role of ISL1 in the Bladder Exstrophy(-)Epispadias Complex (BEEC): computational characterization of genetic variants and structural modelling. Genes. 2018;9(12):609. doi:10.3390/genes9120609.
  • Bakhoum MF, Esmaeli B. Molecular characteristics of uveal melanoma: INSIGHTS from The Cancer Genome Atlas (TCGA) project. Cancers. 2019;11(8):1061. doi:10.3390/cancers11081061.
  • Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018;6(1):63. doi:10.1186/s40425-018-0367-1.
  • Raffone A, Travaglino A, Mascolo M, Carbone L, Guida M, Insabato L, et al. TCGA molecular groups of endometrial cancer: pooled data about prognosis. Gynecol Oncol. 2019;155(2):374–383. doi:10.1016/j.ygyno.2019.08.019.
  • Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68–A77. doi:10.5114/wo.2014.47136.
  • Creighton CJ. The clinical applications of The Cancer Genome Atlas project for bladder cancer. Expert Rev Anticancer Ther. 2018;18(10):973–80. doi:10.1080/14737140.2018.1508999.
  • Zhao X. The prognostic significance of low-frequency somatic mutations in metastatic cutaneous melanoma. Front Oncol. 2018;8:584. doi:10.3389/fonc.2018.00584.
  • López-Reig R, Fernández-Serra A, Romero I, Zorrero C, Illueca C, García-Casado Z, et al. Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel. Sci Rep. 2019;9(1):18093. doi:10.1038/s41598-019-54624-x.
  • Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–337. doi:10.1038/nature11252.
  • Demirkol Canlı S, Dedeoğlu E, Akbar MW, Küçükkaraduman B, İşbilen M, Erdoğan ÖŞ, et al. A novel 20-gene prognostic score in pancreatic adenocarcinoma. PLoS One. 2020;15(4):e0231835. doi:10.1371/journal.pone.0231835.
  • Li R, Yin Y-H, Jin J, Liu X, Zhang M-Y, Yang Y-E, et al. Integrative analysis of DNA methylation-driven genes for the prognosis of lung squamous cell carcinoma using MethylMix. Int J Med Sci. 2020;17(6):773–786. doi:10.7150/ijms.43272.
  • Kuang Y, Wang Y, Zhai W, Wang X, Zhang B, Xu M, et al. Genome-wide analysis of methylation-driven genes and identification of an eight-gene panel for prognosis prediction in breast cancer. Front Genet. 2020;11:301. doi:10.3389/fgene.2020.00301.
  • Liu J, Nie S, Li S, Meng H, Sun R, Yang J, et al. Methylation-driven genes and their prognostic value in cervical squamous cell carcinoma. Ann Transl Med. 2020;8(14):868. doi:10.21037/atm-19-4577.
  • Singh NP, Vinod PK. Integrative analysis of DNA methylation and gene expression in papillary renal cell carcinoma. Mol Genet Genomics. 2020;295(3):807–824. doi:10.1007/s00438-020-01664-y.
  • Wang Y, Wang Y, Wang Y, Zhang Y. Identification of prognostic signature of non-small cell lung cancer based on TCGA methylation data. Sci Rep. 2020;10(1):8575. doi:10.1038/s41598-020-65479-y.
  • Dakal TC, Kala D, Dhiman G, Yadav V, Krokhotin A, Dokholyan NV, et al. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Sci Rep. 2017;7(1):6525. doi:10.1038/s41598-017-06575-4.
  • Sharma A, Jamil MA, Nuesgen N, Dauksa A, Gulbinas A, Schulz WA, et al. Detailed methylation map of LINE-1 5′-promoter region reveals hypomethylated CpG hotspots associated with tumor tissue specificity. Mol Genet Genomic Med. 2019;7(5):e601. doi:10.1002/mgg3.601.
  • Cash HL, McGarvey ST, Houseman EA, Marsit CJ, Hawley NL, Lambert-Messerlian GM, et al. Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. Epigenetics. 2011;6(10):1257–1264. doi:10.4161/epi.6.10.17728.
  • Chen C, et al. Decreased LINE-1 methylation levels in aldosterone-producing adenoma. Int J Clin Exp Pathol. 2014;7(7):4104–4111.
  • Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, et al. Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenet. 2015;7(1):133. doi:10.1186/s13148-015-0164-3.
  • Nakkuntod J, Avihingsanon Y, Mutirangura A, Hirankarn N. Hypomethylation of LINE-1 but not Alu in lymphocyte subsets of systemic lupus erythematosus patients. Clin Chim Acta. 2011;412(15–16):1457–1461. doi:10.1016/j.cca.2011.04.002.
  • Nusgen N, Goering W, Dauksa A, Biswas A, Jamil MH, Dimitriou I, et al. Inter-locus as well as intra-locus heterogeneity in LINE-1 promoter methylation in common human cancers suggests selective demethylation pressure at specific CpGs. Clin Epigenetics. 2015;7:17.
  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500. doi:10.1038/nrg.2016.59.
  • Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004;32(3):959–976. doi:10.1093/nar/gkh252.
  • Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000;24(3):300–303. doi:10.1038/73536.
  • Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–239. doi:10.1038/nature09727.
  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature. 1995;376(6538):348–351. doi:10.1038/376348a0.
  • Adams H, Fritzsche FR, Dirnhofer S, Kristiansen G, Tzankov A. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin's lymphoma. Expert Opin Ther Targets. 2010;14(6):577–584. doi:10.1517/14728221003796609.
  • Hobara T, Uchida S, Otsuki K, Matsubara T, Funato H, Matsuo K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res. 2010;44(5):263–270. doi:10.1016/j.jpsychires.2009.08.015.
  • Jin Z, et al. Decreased expression of histone deacetylase 10 predicts poor prognosis of gastric cancer patients. Int J Clin Exp Pathol. 2014;7(9):5872–5879.
  • Korfei M, Skwarna S, Henneke I, MacKenzie B, Klymenko O, Saito S, et al. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax. 2015;70(11):1022–1032. doi:10.1136/thoraxjnl-2014-206411.
  • Krusche CA, Wülfing P, Kersting C, Vloet A, Böcker W, Kiesel L, et al. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat. 2005;90(1):15–23. doi:10.1007/s10549-004-1668-2.
  • Moreno DA, Scrideli CA, Cortez MAA, de Paula Queiroz R, Valera ET, da Silva Silveira V, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150(6):665–673. doi:10.1111/j.1365-2141.2010.08301.x.
  • Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T, et al. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer. 2004;112(1):26–32. doi:10.1002/ijc.20395.
  • Weichert W, Denkert C, Noske A, Darb-Esfahani S, Dietel M, Kalloger SE, et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia. 2008;10(9):1021–1027. doi:10.1593/neo.08474.
  • Weichert W, Röske A, Niesporek S, Noske A, Buckendahl A-C, Dietel M, et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 2008;14(6):1669–1677. doi:10.1158/1078-0432.CCR-07-0990.
  • Arisan S, Buyuktuncer ED, Palavan-Unsal N, Caşkurlu T, Cakir OO, Ergenekon E, et al. Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol Int. 2005;75(3):252–257. doi:10.1159/000087804.
  • Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast cancer. Int J Biol Sci. 2012;8(1):59–65. doi:10.7150/ijbs.8.59.
  • Cheng Y, Li Y, Huang X, Wei W, Qu Y. Expression of EZH2 in uveal melanomas patients and associations with prognosis. Oncotarget. 2017;8(44):76423–76431. doi:10.18632/oncotarget.19462.
  • Bodor C, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122(18):3165–3168.
  • Majer CR, Jin L, Scott MP, Knutson SK, Kuntz KW, Keilhack H, et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 2012;586(19):3448–3451. doi:10.1016/j.febslet.2012.07.066.
  • Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP, Moore R, et al. Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet. 2012;90(1):110–118. doi:10.1016/j.ajhg.2011.11.018.
  • Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW, Herrup K, et al. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat Neurosci. 2013;16(12):1745–1753. doi:10.1038/nn.3564.
  • Hino S, Kohrogi K, Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci. 2016;107(9):1187–1192. doi:10.1111/cas.13004.
  • Amente S, Lania L, Majello B. The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim Biophys Acta. 2013;1829(10):981–986. doi:10.1016/j.bbagrm.2013.05.002.
  • van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–523. doi:10.1038/ng.349.
  • Wang L, Shilatifard A. UTX mutations in human cancer. Cancer Cell. 2019;35(2):168–176. doi:10.1016/j.ccell.2019.01.001.
  • Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13(1):37–50. doi:10.1038/nrc3409.
  • Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget. 2018;9(94):36705–36718. doi:10.18632/oncotarget.26404.
  • Liu X, Zhang J, Liu L, Jiang Y, Ji J, Yan R, et al. Protein arginine methyltransferase 5-mediated epigenetic silencing of IRX1 contributes to tumorigenicity and metastasis of gastric cancer. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9 Pt B):2835–2844. doi:10.1016/j.bbadis.2018.05.015.
  • Ellinger J, Bachmann A, Göke F, Behbahani TE, Baumann C, Heukamp LC, et al. Alterations of global histone H3K9 and H3K27 methylation levels in bladder cancer. Urol Int. 2014;93(1):113–118. doi:10.1159/000355467.
  • Muller-Tidow C, et al. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood. 2010;116(18):3564–3571.
  • Xia R, Zhou R, Tian Z, Zhang C, Wang L, Hu Y, et al. High expression of H3K9me3 is a strong predictor of poor survival in patients with salivary adenoid cystic carcinoma. Arch Pathol Lab Med. 2013;137(12):1761–1769. doi:10.5858/arpa.2012-0704-OA.
  • Wasenius VM, et al. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res. 2003;9(1):68–75.
  • Norwood LE, Moss TJ, Margaryan NV, Cook SL, Wright L, Seftor EA, et al. A requirement for dimerization of HP1Hsalpha in suppression of breast cancer invasion. J Biol Chem. 2006;281(27):18668–18676. doi:10.1074/jbc.M512454200.
  • De Koning L, Savignoni A, Boumendil C, Rehman H, Asselain B, Sastre-Garau X, et al. Heterochromatin protein 1alpha: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol Med. 2009;1(3):178–191. doi:10.1002/emmm.200900022.
  • Kirschmann DA, Lininger RA, Gardner LM, Seftor EA, Odero VA, Ainsztein AM, et al. Down-regulation of HP1Hsalpha expression is associated with the metastatic phenotype in breast cancer. Cancer Res. 2000;60(13):3359–3363.
  • Ci X, Hao J, Dong X, Choi SY, Xue H, Wu R, et al. Heterochromatin protein 1α mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res. 2018;78(10):2691–2704. doi:10.1158/0008-5472.CAN-17-3677.
  • Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 2008;14(22):7237–7245. doi:10.1158/1078-0432.CCR-08-0869.
  • Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 2015;21(10):1199–1208. doi:10.1038/nm.3943.
  • Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol. 2012;2:26. doi:10.3389/fonc.2012.00026.
  • Herwig-Carl MC, Sharma A, Höller T, Holz FG, Schlitter AM, Loeffler KU, et al. Spatial intratumor heterogeneity in uveal melanoma: tumor cell subtypes with a presumed invasive potential exhibit a particular epigenetic staining reaction. Exp Eye Res. 2019;182:175–181. doi:10.1016/j.exer.2019.04.001.
  • Sharma A, Biswas A, Liu H, Sen S, Paruchuri A, Katsonis P, et al. Mutational landscape of the BAP1 locus reveals an intrinsic control to regulate the miRNA network and the binding of protein complexes in uveal melanoma. Cancers, 2019;11(10):1600. doi:10.3390/cancers11101600.
  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–1080. doi:10.1126/science.1063127.
  • Guo X-Q, Zhang Q-X, Huang W-R, Duan X-L, Cai Z-M. [Tumor suppressor role of chromatin-remodeling factor ARID1A]. Yi Chuan. 2013;35(3):255–261. doi:10.3724/sp.j.1005.2013.00255.
  • Li D-Q, Pakala SB, Nair SS, Eswaran J, Kumar R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res. 2012;72(2):387–394. doi:10.1158/0008-5472.CAN-11-2345.
  • Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res. 2014;121:183–233. doi:10.1016/B978-0-12-800249-0.00005-6.
  • Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 2013;3(1):35–43. doi:10.1158/2159-8290.CD-12-0361.
  • Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21(3):231–238. doi:10.1038/nm.3799.
  • Bell CM, Raffeiner P, Hart JR, Vogt PK. PIK3CA cooperates with KRAS to promote MYC activity and tumorigenesis via the bromodomain protein BRD9. Cancers, 2019;11(11):1634. doi:10.3390/cancers11111634.
  • Bevill SM, Olivares-Quintero JF, Sciaky N, Golitz BT, Singh D, Beltran AS, et al. GSK2801, a BAZ2/BRD9 bromodomain inhibitor, synergizes with BET inhibitors to induce apoptosis in triple-negative breast cancer. Mol Cancer Res. 2019;17(7):1503–1518. doi:10.1158/1541-7786.MCR-18-1121.
  • Schick S, Rendeiro AF, Runggatscher K, Ringler A, Boidol B, Hinkel M, et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat Genet. 2019;51(9):1399–1410. doi:10.1038/s41588-019-0477-9.
  • Fang D, Wang H, Zhang Z. Probing the function of oncohistones using mutant transgenes and knock-in mutations. Methods Mol Biol. 2018;1832:339–356. doi:10.1007/978-1-4939-8663-7_19.
  • Wan YCE, Liu J, Chan KM. Histone H3 mutations in cancer. Curr Pharmacol Rep. 2018;4(4):292–300. doi:10.1007/s40495-018-0141-6.
  • Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–231. doi:10.1038/nature10833.
  • Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–253. doi:10.1038/ng.1102.
  • Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene. 2009;28(38):3423–3428. doi:10.1038/onc.2009.26.
  • Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ, et al. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol. 2011;31(20):4244–4255. doi:10.1128/MCB.05244-11.
  • Khan DH, Jahan S, Davie JR. Pre-mRNA splicing: role of epigenetics and implications in disease. Adv Biol Regul. 2012;52(3):377–388. doi:10.1016/j.jbior.2012.04.003.
  • Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. 2010;1799(10–12):694–701. doi:10.1016/j.bbagrm.2010.05.005.
  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007;104(40):15805–15810. doi:10.1073/pnas.0707628104.
  • Bianco-Miotto T, Chiam K, Buchanan G, Jindal S, Day TK, Thomas M, et al. Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2611–2622. doi:10.1158/1055-9965.EPI-10-0555.
  • Barlesi F, et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25(28):4358–4364.
  • Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802–3809. doi:10.1158/0008-5472.CAN-08-3907.
  • Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 2009;174(5):1619–1628. doi:10.2353/ajpath.2009.080874.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi:10.1038/nrg2540.
  • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–2433. doi:10.1056/NEJMoa1005143.
  • Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–185. doi:10.1038/ng.518.
  • Faundes V, Malone G, Newman WG, Banka S. A comparative analysis of KMT2D missense variants in Kabuki syndrome, cancers and the general population. J Hum Genet. 2019;64(2):161–170. doi:10.1038/s10038-018-0536-6.
  • Giannopoulou AF, et al. Revisiting histone deacetylases in human tumorigenesis: the paradigm of urothelial bladder cancer. Int J Mol Sci. 2019;20(6):1291. 10.3390/ijms20061291
  • Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann NY Acad Sci. 2016;1363:91–98. doi:10.1111/nyas.12956.
  • Serefidou M, Venkatasubramani AV, Imhof A. The impact of one carbon metabolism on histone methylation. Front Genet. 2019;10:764. doi:10.3389/fgene.2019.00764.
  • Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13(14):1192–1200. doi:10.1016/S0960-9822(03)00432-9.
  • Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol. 2012;19(11):1155–1160. doi:10.1038/nsmb.2391.
  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19(2):187–191. doi:10.1038/561.
  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–389. doi:10.1038/30764.
  • Vire E, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–874.
  • Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45(6):592–601. doi:10.1038/ng.2628.
  • Fukumoto T, Magno E, Zhang R. SWI/SNF complexes in ovarian cancer: mechanistic insights and therapeutic implications. Mol Cancer Res. 2018;16(12):1819–1825. doi:10.1158/1541-7786.MCR-18-0368.
  • Cai Y, Geutjes E-J, de Lint K, Roepman P, Bruurs L, Yu L-R, et al. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene. 2014;33(17):2157–2168. doi:10.1038/onc.2013.178.
  • Esteve P-O, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006;20(22):3089–3103. doi:10.1101/gad.1463706.
  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol. 2009;16(3):304–311. doi:10.1038/nsmb.1568.
  • Esteve P-O, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA. 2009;106(13):5076–5081. doi:10.1073/pnas.0810362106.
  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009;41(1):125–129. doi:10.1038/ng.268.
  • Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, et al. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol. 2004;24(12):5475–5484. doi:10.1128/MCB.24.12.5475-5484.2004.
  • Chaligne R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588(15):2514–2522. doi:10.1016/j.febslet.2014.06.023.
  • Ji J, Zöller B, Sundquist J, Sundquist K. Risk of solid tumors and hematological malignancy in persons with Turner and Klinefelter syndromes: a national cohort study. Int J Cancer. 2016;139(4):754–758. doi:10.1002/ijc.30126.
  • Kristiansen M, Langerød A, Knudsen GP, Weber BL, Børresen-Dale AL, Orstavik KH, et al. High frequency of skewed X inactivation in young breast cancer patients. J Med Genet. 2002;39(1):30–33. doi:10.1136/jmg.39.1.30.
  • Li G, Su Q, Liu G-Q, Gong L, Zhang W, Zhu S-J, et al. Skewed X chromosome inactivation of blood cells is associated with early development of lung cancer in females. Oncol Rep. 2006;16(4):859–864. doi:10.3892/or.16.4.859.
  • Li G, Jin T, Liang H, Tu Y, Zhang W, Gong L, et al. Skewed X-chromosome inactivation in patients with esophageal carcinoma. Diagn Pathol. 2013;8(1):55. doi:10.1186/1746-1596-8-55.
  • Kang J, Lee HJ, Jun S-Y, Park ES, Maeng L-S. Cancer-testis antigen expression in serous endometrial cancer with loss of X chromosome inactivation. PLoS One. 2015;10(9):e0137476. doi:10.1371/journal.pone.0137476.
  • Credendino SC, Neumayer C, Cantone I. Genetics and epigenetics of sex bias: insights from human cancer and autoimmunity. Trends Genet. 2020;36(9):650–663. doi:10.1016/j.tig.2020.06.016.
  • Sharma A, Jamil MA, Nuesgen N, Schreiner F, Priebe L, Hoffmann P, et al. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin Epigenetics. 2015;7:76. doi:10.1186/s13148-015-0112-2.
  • Brocks D, Schmidt CR, Daskalakis M, Jang HS, Shah NM, Li D, et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet. 2017;49(7):1052–1060. doi:10.1038/ng.3889.
  • Liu H, Li H, Luo K, Sharma A, Sun X. Prognostic gene expression signature revealed the involvement of mutational pathways in cancer genome. J Cancer. 2020;11(15):4510–4520. doi:10.7150/jca.40237.
  • Herwig-Carl MC, Sharma A, Moulin A, Strack C, Loeffler KU. BAP1 immunostaining in uveal melanoma: potentials and pitfalls. Ocul Oncol Pathol. 2018;4(5):297. doi:10.1159/000486370.
  • Amit S, Heiko R, Jörg E. DNA methylation & bladder cancer: where genotype does not predict phenotype. Current Genomics. 2020;21:1–3. doi:10.2174/1389202921666200102163422.
  • Xie J, Cai Y, Li H, Wu J, Zhao X, Luo K, et al. DNMHMM: an approach to identify the differential nucleosome regions in multiple cell types based on a Hidden Markov Model. Biosystems. 2019;185:104033. doi:10.1016/j.biosystems.2019.104033.
  • Li H, et al. DeconPeaker, a deconvolution model to identify cell types based on chromatin accessibility in ATAC-Seq data of mixture samples. Front Genet. 2020;11:392. 10.3389/fgene.2020.00392
  • Sharma A, Osato N, Liu H, Asthana S, Dakal TC, Ambrosini G, et al. Common genetic variants associated with Parkinson’s disease display widespread signature of epigenetic plasticity. Sci Rep. 2019;9(1):18464. doi:10.1038/s41598-019-54865-w.
  • Alberg AJ, Fischer AH. Is a personal history of nonmelanoma skin cancer associated with increased or decreased risk of other cancers? Cancer Epidemiol Biomarkers Prev. 2014;23(3):433–436. doi:10.1158/1055-9965.EPI-13-1309.
  • Melzer C, Sharma A, Peters S, Aretz S, Biswas A, Holz FG, et al. Basal cell carcinomas developing independently from BAP1-tumor predisposition syndrome in a patient with bilateral uveal melanoma: diagnostic challenges to identify patients with BAP1-TPDS. Genes Chromosomes Cancer. 2019;58(6):357–364. doi:10.1002/gcc.22724.
  • Karagas MR, Greenberg ER, Mott LA, Baron JA, Ernster VL. Occurrence of other cancers among patients with prior basal cell and squamous cell skin cancer. Cancer Epidemiol Biomarkers Prev. 1998;7(2):157–161.
  • Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–262. doi:10.1038/nrg2045.
  • Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci. 2007;100(1):7–23. doi:10.1093/toxsci/kfm177.
  • Ibanez K, Boullosa C, Tabarés-Seisdedos R, Baudot A, Valencia A. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet. 2014;10(2):e1004173. doi:10.1371/journal.pgen.1004173.
  • Houck AL, Seddighi S, Driver JA. At the crossroads between neurodegeneration and cancer: a review of overlapping biology and its implications. Curr Aging Sci. 2018;11(2):77–89. doi:10.2174/1874609811666180223154436.
  • Sharma A, Liu H, Tobar-Tosse F, Dakal TC, Ludwig M, Holz MG, et al. Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): potential mediators for cancer and neurodegeneration. Int J Mol Sci. 2020;21(11):3910. 10.3390/ijms21113910
  • You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20. doi:10.1016/j.ccr.2012.06.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.