78
Views
2
CrossRef citations to date
0
Altmetric
Articles

Correlation Between Vascular Endothelial Growth Factor and Long-Term Occurrence of HCV-Related Hepatocellular Carcinoma After Treatment with Direct-Acting Antivirals

ORCID Icon, ORCID Icon, , , ORCID Icon, & show all
Pages 653-660 | Received 01 Oct 2020, Accepted 01 Jul 2021, Published online: 15 Jul 2021

References

  • Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–538. doi:10.1016/j.jhep.2006.05.013.
  • Zahran AM, Hetta HF, Rayan A, Eldin AS, Hassan EA, Fakhry H, et al. Differential expression of Tim-3, PD-1, and CCR5 on peripheral T and B lymphocytes in hepatitis C virus-related hepatocellular carcinoma and their impact on treatment outcomes. Cancer Immunol Immunother. 2020;69(7):1211–1253. doi:10.1007/s00262-019-02465-y.
  • Abd El-Baky RM, Hetta HF, Koneru G, Ammar M, Shafik EA, Mohareb DA, et al. Impact of interleukin IL-6 rs-1474347 and IL-10 rs-1800896 genetic polymorphisms on the susceptibility of HCV-infected Egyptian patients to hepatocellular carcinoma. Immunol Res. 2020;68(3):118–125. doi:10.1007/s12026-020-09126-8.
  • El-Serag HB. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2001;5(1):87–107. doi:10.1016/S1089-3261(05)70155-0.
  • Abouelezz K, Khanapara D, Batiha GE-S, Ahmed EA, Hetta HF. Cytotoxic chemotherapy as an alternative for systemic treatment of advanced hepatocellular carcinoma in developing countries. Cancer Manag Res. 2020;12:12239–12248. doi:10.2147/CMAR.S280631.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.
  • Abubakar I, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–171.
  • Calvaruso V, Cabibbo G, Cacciola I, Petta S, Madonia S, Bellia A, et al. Incidence of hepatocellular carcinoma in patients with HCV-associated cirrhosis treated with direct-acting antiviral agents. Gastroenterology. 2018;155(2): 411–421.e4. doi:10.1053/j.gastro.2018.04.008.
  • Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond). 2019;14(11):1471–1491. doi:10.2217/nnm-2018-0348.
  • Hetta HF, Zahran AM, Mansor SG, Abdel‐Malek MO, Mekky MA, Abbas WA. Frequency and implications of myeloid-derived suppressor cells and lymphocyte subsets in Egyptian patients with hepatitis C virus-related hepatocellular carcinoma. J Med Virol. 2019;91(7):1319–1328. doi:10.1002/jmv.25428.
  • Mekky MA, Sayed HI, Abdelmalek MO, Saleh MA, Osman OA, Osman HA, et al. Prevalence and predictors of occult hepatitis C virus infection among Egyptian patients who achieved sustained virologic response to sofosbuvir/daclatasvir therapy: a multi-center study. Infect Drug Resist. 2019;12:273–279. doi:10.2147/IDR.S181638.
  • Abdel-Hameed EA, Rouster SD, Ji H, Ulm A, Hetta HF, Anwar N, et al. Evaluating the role of cellular immune responses in the emergence of HCV NS3 resistance mutations during protease inhibitor therapy. Viral Immunol. 2016;29(4):252–258. doi:10.1089/vim.2015.0093.
  • Conti F, Buonfiglioli F, Scuteri A, Crespi C, Bolondi L, Caraceni P, et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J Hepatol. 2016;65(4):727–733. doi:10.1016/j.jhep.2016.06.015.
  • Zavaglia C, Okolicsanyi S, Cesarini L, Mazzarelli C, Pontecorvi V, Ciaccio A, et al. Is the risk of neoplastic recurrence increased after prescribing direct-acting antivirals for HCV patients whose HCC was previously cured? J Hepatol. 2017;66(1):236–237. doi:10.1016/j.jhep.2016.08.016.
  • Minami T, Tateishi R, Nakagomi R, Fujiwara N, Sato M, Enooku K, et al. The impact of direct-acting antivirals on early tumor recurrence after radiofrequency ablation in hepatitis C-related hepatocellular carcinoma. J Hepatol. 2016;65(6):1272–1273. doi:10.1016/j.jhep.2016.07.043.
  • Reig M, Mariño Z, Perelló C, Iñarrairaegui M, Ribeiro A, Lens S, et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol. 2016;65(4):719–726. doi:10.1016/j.jhep.2016.04.008.
  • Nault J-C, Colombo M. Hepatocellular carcinoma and direct acting antiviral treatments: controversy after the revolution. J Hepatol. 2016;65(4):663–665. doi:10.1016/j.jhep.2016.07.004.
  • Sayed HAR, Hetta HF, Shafik EA, Zahran AM. Flow cytometric analysis of circulating endothelial cells and endothelial progenitor cells in pediatric solid tumors: prognostic impact on treatment response and survival. Cancer Immunol Immunother. 2021;70(3):755–761. doi:10.1007/s00262-020-02719-0.
  • Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al.; EASL Panel of Experts on HCC. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. J Hepatol. 2001;35(3):421–430. doi:10.1016/S0168-8278(01)00130-1.
  • Bhattacharya R, Sinha S, Yang S-P, Patra C, Dutta S, Wang E, et al. The neurotransmitter dopamine modulates vascular permeability in the endothelium. J Mol Signal. 2008;3:14. doi:10.1186/1750-2187-3-14.
  • Kaumaya PT, Foy KC. Peptide vaccines and targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future Oncol. 2012;8(8):961–987. doi:10.2217/fon.12.95.
  • Lichtenberger BM, Tan PK, Niederleithner H, Ferrara N, Petzelbauer P, Sibilia M. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell. 2010;140(2):268–279. doi:10.1016/j.cell.2009.12.046.
  • Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. 2005;65(9):3691–3699. doi:10.1158/0008-5472.CAN-04-3462.
  • Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut. 2005;54(12):1768–1775. doi:10.1136/gut.2005.067900.
  • Villani R, Facciorusso A, Bellanti F, Tamborra R, Piscazzi A, Landriscina M, et al. DAAs rapidly reduce inflammation but increase serum VEGF level: a rationale for tumor risk during anti-HCV treatment. PLoS One. 2016;11(12):e0167934. doi:10.1371/journal.pone.0167934.
  • Faillaci F, Marzi L, Critelli R, Milosa F, Schepis F, Turola E, et al. Liver angiopoietin-2 is a key predictor of de novo or recurrent hepatocellular cancer after hepatitis C virus direct-acting antivirals. Hepatology. 2018;68(3):1010–1024. doi:10.1002/hep.29911.
  • Hetta HF, Mekky MA, Khalil NK, Mohamed WA, El-Feky MA, Ahmed SH, et al. Association of colonic regulatory T cells with hepatitis C virus pathogenesis and liver pathology. J Gastroenterol Hepatol. 2015;30(10):1543–1551. doi:10.1111/jgh.12936.
  • Hetta HF, Mehta MJ, Shata MTM. Gut immune response in the presence of hepatitis C virus infection. WJI. 2014;4(2):52–62. doi:10.5411/wji.v4.i2.52.
  • Shata MTM, Abdel-Hameed EA, Hetta HF, Sherman KE. Immune activation in HIV/HCV-infected patients is associated with low-level expression of liver expressed antimicrobial peptide-2 (LEAP-2). J Clin Pathol. 2013;66(11):967–975. doi:10.1136/jclinpath-2013-201581.
  • Mehta M, Hetta HF, Abdel-Hameed EA, Rouster SD, Hossain M, Mekky MA, et al. Association between IL28b rs12979860 single nucleotide polymorphism and the frequency of colonic Treg in chronically HCV-infected patients. Arch Virol. 2016;161(11):3161–3169. doi:10.1007/s00705-016-3015-4.
  • Abdelwahab FA, Hassanein KM, Hetta HF, Abdelmalek MO, Zahran AM, El-Badawy O. Impact of deranged B cell subsets distribution in the development of HCV-related cirrhosis and HCC in type two diabetes mellitus. Sci Rep. 2020;10(1):11. doi:10.1038/s41598-020-77416-0.
  • Zahran AM, Nafady-Hego H, Mansor SG, Abbas WA, Abdel-Malek MO, Mekky MA, et al. Increased frequency and FOXP3 expression of human CD8+ CD25High + T lymphocytes and its relation to CD4 regulatory T cells in patients with hepatocellular carcinoma. Hum Immunol. 2019;80(7):510–516. doi:10.1016/j.humimm.2019.03.014.
  • Zahran AM, Zahran ZAM, El-Badawy O, Abdel-Rahim MH, Ali WAM, Rayan A, et al. Prognostic impact of toll-like receptors 2 and 4 expression on monocytes in Egyptian patients with hepatocellular carcinoma. Immunol Res. 2019;67(2–3):157–165. doi:10.1007/s12026-019-09075-x.
  • Hetta HF, Mekky MA, Khalil NK, Mohamed WA, El-Feky MA, Ahmed SH, et al. Extra-hepatic infection of hepatitis C virus in the colon tissue and its relationship with hepatitis C virus pathogenesis. J Med Microbiol. 2016;65(8):703–712. doi:10.1099/jmm.0.000272.
  • Hassan M, Selimovic D, El-Khattouti A, Soell M, Ghozlan H, Haikel Y, et al. Hepatitis C virus-mediated angiogenesis: molecular mechanisms and therapeutic strategies. World J Gastroenterol. 2014;20(42):15467–15475. doi:10.3748/wjg.v20.i42.15467.
  • Hassan EA, Ahmed EH, Nafee AM, El-Gafary N, Hetta HF, El-Mokhtar MA. Regulatory T cells, IL10 and IL6 in HCV related hepatocellular carcinoma after transarterial chemoembolization (TACE). Egypt J Immunol. 2019;26:69–78.
  • Zahran AM, Ashmawy AM, Rayan A, Elkady A, Elsherbiny NM, Hetta HF. Frequency and implications of natural killer and natural killer T cells in hepatocellular carcinoma. Egypt J Immunol. 2018;25:45–52.
  • Hetta H, Elkady A, Morsy K, Mohamed I, Ibrahim M. Serum level of IL17a among cirrhotic hepatitis C virus infected patients with incidence of diabetes mellitus. Egypt J Immunol. 2017;24:79.
  • Hetta HF, Khairy H, Ismail S. Circulating IL17A and IFN-gamma serum levels in cirrhotic hepatitis C virus infected patients with autoimmune thyroiditis. Int J Curr Microbiol Appl Sci. 2017;6:1972–1983.
  • Hetta H, Elkady A, Tohamy T, Badary M. Regulatory B cells: key players in hepatocellular carcinoma progression. Gastroenterol Hepatol Open Access. 2016;5:00136.
  • Tandle A, Blazer DG, Libutti SK. Antiangiogenic gene therapy of cancer: recent developments. J Transl Med. 2004;2(1):22. doi:10.1186/1479-5876-2-22.
  • Hassan M, Selimovic D, Ghozlan H, Abdel‐Kader O. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology. 2009;49(5):1469–1482. doi:10.1002/hep.22849.
  • Salcedo X, Medina J, Sanz-Cameno P, García-Buey L, Martín-Vilchez S, Borque MJ, et al. The potential of angiogenesis soluble markers in chronic hepatitis C. Hepatology. 2005;42(3):696–701. doi:10.1002/hep.20828.
  • Chaturvedi VK, Singh A, Dubey SK, Hetta HF, John J, Singh M. Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma. Microb Pathog. 2019;128:184–194. doi:10.1016/j.micpath.2019.01.004.
  • Bupathi M, Kaseb A, Janku F. Angiopoietin 2 as a therapeutic target in hepatocellular carcinoma treatment: current perspectives. Onco Targets Ther. 2014;7:1927–1932. doi:10.2147/OTT.S46457.
  • Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, et al. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol. 2004;40(5):799–807. doi:10.1016/j.jhep.2004.01.027.
  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J. 1999;13(1):9–22.
  • Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T, et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology. 1996;23(3):455–464. doi:10.1002/hep.510230309.
  • Schmitt M, Horbach A, Kubitz R, Frilling A, Häussinger D. Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. J Hepatol. 2004;41(2):274–283. doi:10.1016/j.jhep.2004.04.035.
  • Park YN, Kim Y-B, Yang KM, Park C. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med. 2000;124(7):1061–1065. doi:10.5858/2000-124-1061-IEOVEG.
  • Wang C-C, Tseng K-C, Tzeng I-S, Kao J-H. The impact of cytokine change after hepatitis C virus clearance by direct antiviral agents on the risk of hepatocellular carcinoma. J Formos Med Assoc. 2021;120(3):965–973. doi:10.1016/j.jfma.2020.10.015.
  • Debes JD, van Tilborg M, Groothuismink ZMA, Hansen BE, Schulze Zur Wiesch J, von Felden J, et al. Levels of cytokines in serum associate with development of hepatocellular carcinoma in patients with HCV infection treated with direct-acting antivirals. Gastroenterology. 2018;154(3):515–517. e3. doi:10.1053/j.gastro.2017.10.035.
  • Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8(5):292–301. doi:10.1038/nrclinonc.2011.30.
  • Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–676. doi:10.1038/nm0603-669.
  • Kanwal F, Kramer JR, Asch SM, Cao Y, Li L, El‐Serag HB. Long‐term risk of hepatocellular carcinoma in HCV patients treated with direct acting antiviral agents. Hepatology. 2020;71(1):44–55. doi:10.1002/hep.30823.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.