278
Views
0
CrossRef citations to date
0
Altmetric
Review

The Roles of MicroRNA in Pancreatic Cancer Progression

ORCID Icon, , , , & ORCID Icon
Pages 700-709 | Received 05 Jul 2021, Accepted 21 Mar 2022, Published online: 12 May 2022

References

  • Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335–349.e15. doi:10.1053/j.gastro.2020.02.068.
  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136 (5):E359–E386. doi:10.1002/ijc.29210.
  • Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378 (9791):607–620. doi:10.1016/S0140-6736(10)62307-0.
  • Orth M, Metzger P, Gerum S, Mayerle J, Schneider G, Belka C, et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol. 2019;14(1):141. doi:10.1186/s13014-019-1345-6.
  • Grossberg AJ, Chu LC, Deig CR, Fishman EK, Hwang WL, Maitra A, et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin. 2020;70(5):375–403. doi:10.3322/caac.21626.
  • Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7(3):163–172. doi:10.1038/nrclinonc.2009.236.
  • Kalayarasan R, Narayanan S, Sahoo J, Mohan P. Impact of surgery for chronic pancreatitis on the risk of pancreatic cancer: untying the Gordian knot. World J Gastroenterol. 2021;27(27):4371–4382. doi:10.3748/wjg.v27.i27.4371
  • Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł, et al. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep. 2019;46(6):6629–6645. doi:10.1007/s11033-019-05058-1.
  • Kozak G, Blanco FF, Brody JR. Novel targets in pancreatic cancer research. Semin Oncol. 2015;42(1):177–187. doi:10.1053/j.seminoncol.2014.12.015.
  • Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic neuroendocrine tumors: molecular mechanisms and therapeutic targets. Cancers (Basel). 2021;13(20):5117. doi:10.3390/cancers13205117.
  • Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics Bioinforma. 2009;7(4):147–154. doi:10.1016/S1672-0229(08)60044-3.
  • Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res. 2013;19(19):5320–5328. 13-0259. doi:10.1158/1078-0432.CCR-.
  • Dunne RF, Hezel AF. Genetics and biology of pancreatic ductal adenocarcinoma. Hematol Oncol Clin North Am. 2015;29(4):595–608. doi:10.1016/j.hoc.2015.04.003.
  • Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, et al. LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology. 2010;139(2):586–97.e6. doi:10.1053/j.gastro.2010.04.055.
  • Tonini V, Zanni M. Pancreatic cancer in 2021: what you need to know to win. World J Gastroenterol. 2021;27(35):5851–5889. doi:10.3748/wjg.v27.i35.5851.
  • Ferrone CR, Levine DA, Tang LH, Allen PJ, Jarnagin W, Brennan MF, et al. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol. 2009; 27(3):433–438. doi:10.1200/JCO.2008.18.5546.
  • Hulmi JJ, Nissinen TA, Penna F, Bonetto A. Targeting the activin receptor signaling to counteract the multi-systemic complications of cancer and its treatments. Cells. 2021;10(3):516. doi:10.3390/cells10030516
  • Qiu W, Kuo CY, Tian Y, Su GH. Dual roles of the activin signaling pathway in pancreatic cancer. Biomedicines. 2021;9(7):821. doi:10.3390/biomedicines9070821.
  • Changlong S, Li S, Yongsheng S. FEZF1-AS1: a novel vital oncogenic lncRNA in multiple human malignancies. Biosci Rep. 2019;39(6):BSR20191202. doi:10.1042/BSR20191202.
  • Li L, Li B, Chen D, Liu L, Huang C, Lu Z, et al. miR-139 and miR-200c regulate pancreatic cancer endothelial cell migration and angiogenesis. Oncol Rep. 2015;34(1):51–58. doi:10.3892/or.2015.3945.
  • Nagao Y, Hisaoka M, Matsuyama A, Kanemitsu S, Hamada T, Fukuyama T, et al. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol. 2012;25(1):112–121. doi:10.1038/modpathol.2011.142.
  • Huang R, Song X, Wang CM. MIR-223 regulates CDDP resistance in pancreatic cancer via targeting Fox03a. Eur Rev Med Pharmacol Sci. 2019;23(18):7892–8. doi:10.26355/eurrev_201909_19000.
  • Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14(13):1295–1306. doi:10.1016/S1470-2045(13)70491-1.
  • Jonckheere N, Vasseur R, Van Seuningen I. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: from cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol. 2017;111:7–19. doi:10.1016/j.critrevonc.2017.01.002.
  • Xie J, Wen JT, Xue XJ, Zhang KP, Wang XZ, Cheng HH. MiR-221 inhibits proliferation of pancreatic cancer cells via down regulation of SOCS3. Eur Rev Med Pharmacol Sci. 2018;22(7):1914–1921. doi:10.26355/EURREV_201804_14714.
  • Yang F, Zhao WJ, Jia CL, Li XK, Wang Q, Chen ZL, Jiang Q. MicroRNA-876-3p functions as a tumor suppressor gene and correlates with cell metastasis in pancreatic adenocarcinoma via targeting JAG2. Am J Cancer Res. 2018;8(4):636–649. PMID: 29736309.
  • Zhu Y, Gu J, Li Y, Peng C, Shi M, Wang X, et al. MiR-17-5p enhances pancreatic cancer proliferation by altering cell cycle profiles via disruption of RBL2/E2F4-repressing complexes. Cancer Lett. 2018;412:59–68. doi:10.1016/j.canlet.2017.09.044.
  • Yan J, Jia Y, Chen H, Chen W, Zhou X. Long non-coding RNA PXN- AS1 suppresses pancreatic cancer progression by acting as a competing endogenous RNA of miR-3064 to upregulate PIP4K2B expression. J Exp Clin Cancer Res. 2019;38(1):390. doi:10.1186/s13046-019-1379-5.
  • Gironella M, Seux M, Xie M-J, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A. 2007;104(41):16170–16175. doi:10.1073/pnas.0703942104.
  • Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep. 2013;30(3):1223–1230. doi:10.3892/or.2013.2576.
  • Zhao Y, Wang Y, Yang Y, Liu J, Song Y, Cao Y, et al. MicroRNA-222 controls human pancreatic cancer cell line capan-2 proliferation by P57 targeting. J Cancer. 2015;6(12):1230–1235. doi:10.7150/jca.12546.
  • Wald P, Liu XS, Pettit C, Dillhoff M, Manilchuk A, Schmidt C, et al. Prognostic value of microRNA expression levels in pancreatic adenocarcinoma: a review of the literature. Oncotarget. 2017; 8(42):73345–73361. doi:10.18632/oncotarget.20277.
  • Yu Q, Xu C, Yuan W, Wang C, Zhao P, Chen L, et al. Evaluation of plasma microRNAs as diagnostic and prognostic biomarkers in pancreatic adenocarcinoma: miR-196a and miR-210 could be negative and positive prognostic markers, respectively. Biomed Res Int. 2018;2018:3782512. doi:10.1155/2017/6495867.
  • Marin-Muller C, Li D, Bharadwaj U, Li M, Chen C, Hodges SE, et al. A tumorigenic factor interactome connected through tumor suppressor MicroRNA-198 in human pancreatic cancer. Clin Cance Res. 2013;19(21):5901–5913. doi:10.1158/1078-0432.CCR-12-3776.
  • Bai Z, Sun J, Wang X, Wang H, Pei H, Zhang Z. MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol Rep. 2015;34(2):595–602. doi:10.3892/or.2015.4051.
  • Rajabpour A, Afgar A, Mahmoodzadeh H, Radfar J-E-D, Rajaei F, Teimoori-Toolabi L et al. MiR-608 regulating the expression of ribonucleotide reductase M1 and cytidine deaminase is repressed through induced gemcitabine chemoresistance in pancreatic cancer cells. Cancer Chemother Pharmacol. 2017;80(4):765–775. doi:10.1007/s00280-017-3418-2.
  • Yabushita S, Fukamachi K, Tanaka H, Sumida K, Deguchi Y, Sukata T, et al. Circulating microRNAs in serum of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Pancreas. 2012;41(7):1013–1018. doi:10.1097/MPA.0b013e31824ac3a5.
  • Abue M, Yokoyama M, Shibuya R, Tamai K, Yamaguchi K, Sato I, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol. 2015;46(2):539–547. doi:10.3892/ijo.2014.2743.
  • Xia D, Li X, Niu Q, Liu X, Xu W, Ma C, et al. MicroRNA-185 suppresses pancreatic cell proliferation by targeting transcriptional coactivator with PDZ-binding motif in pancreatic cancer. Exp Ther Med. 2017;15(1):657–666. doi:10.3892/etm.2017.5447.
  • Li J, Kong F, Wu K, Song K, He J, Sun W. MiR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol Med Rep. 2014;10(5):2613–2620. doi:10.3892/mmr.2014.2558.
  • Tang Y, Tang Y, Cheng YS. MiR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci Rep. 2017;7 (1):38232. doi:10.1038/srep38232.
  • Keklikoglou I, Hosaka K, Bender C, Bott A, Koerner C, Mitra D, et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene. 2015;34(37):4867–4878. doi:10.1038/onc.2014.408.
  • Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther. 2016; 9:99–109. doi:10.2147/OTT.S92758.
  • Zou Y, Li J, Chen Z, Li X, Zheng S, Yi D, et al. miR-29c suppresses pancreatic cancer liver metastasis in an orthotopic implantation model in nude mice and affects survival in pancreatic cancer patients. Carcinogenesis. 2015;36 (6):676–684. doi:10.1093/carcin/bgv027.
  • Deng S, Zhu S, Wang B, Li X, Liu Y, Qin Q, et al. Chronic pancreatitis and pancreatic cancer demonstrate active epithelial-mesenchymal transition profile, regulated by miR-217-SIRT1 pathway. Cancer Lett. 2014; 355(2):184–191. doi:10.1016/j.canlet.2014.08.007.
  • Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–889. doi:10.1038/ncb1897.
  • Zhao W-G, Yu S-N, Lu Z-H, Ma Y-H, Gu Y-M, Chen J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis. 2010; 31(10):1726–1733. doi:10.1093/carcin/bgq160.
  • Dong Q, Li C, Che X, Qu J, Fan Y, Li X, et al. MicroRNA-891b is an independent prognostic factor of pancreatic cancer by targeting Cbl-b to suppress the growth of pancreatic cancer cells. Oncotarget. 2016;7(50):82338–82353. doi:10.18632/oncotarget.11001.
  • Zhang X, Shi H, Lin S, Ba M, Cui S. MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting Beclin-1-mediated autophagy. Oncol Rep. 2015;34(3):1557–1564. doi:10.3892/or.2015.4078.
  • Liu PF, Jiang WH, Han YT, He LF, Zhang HL, Ren H. Integrated microRNA-mRNA analysis of pancreatic ductal adenocarcinoma. Genet Mol Res. 2015;14(3):10288–10297. doi:10.4238/2015.August.28.14.
  • Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338(6104):221. doi:10.1126/science.1226344.
  • Amato E, Molin MD, Mafficini A, Yu J, Malleo G, Rusev B, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol. 2014;233(3):217–227. doi:10.1002/path.4344.
  • Müller S, Raulefs S, Bruns P, Afonso-Grunz F, Plötner A, Thermann R, et al. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer. 2015;14:94. doi:10.1186/s12943-015-0358-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.