68
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An Overview of Cancer Biology, Pathophysiological Development and It’s Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy

, &
Pages 559-604 | Received 17 Feb 2021, Accepted 25 May 2024, Published online: 14 Jun 2024

References

  • Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis. 2011;32(7):945–954. doi:10.1093/carcin/bgr056.
  • Yang B, Wolfenson H, Chung VY, Nakazawa N, Liu S, Hu J, et al. Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. 2020;19(2):239–250. doi:10.1038/s41563-019-0507-0.
  • WebMD. https://www.webmd.com/cancer/guide/understanding-cancer-basics.
  • Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. doi:10.1016/j.gendis.2018.05.001.
  • Petersen PE. Oral cancer prevention and control–the approach of the World Health Organization. Oral Oncol. 2009;45(4-5):454–460. doi:10.1016/j.oraloncology.2008.05.023.
  • Abad N, Sallam HH, Al-Ostoot FH, Khamees HA, Al-Horaibi SA, Khanum SA, et al. Synthesis, crystal structure, DFT calculations, Hirshfeld surface analysis, energy frameworks, molecular dynamics and docking studies of novel isoxazolequinoxaline derivative (IZQ) as anti-cancer drug. J Mol Struct. 2021;1232:130004. doi:10.1016/j.molstruc.2021.130004.
  • McCarville MB, Lederman HM, Santana VM, Daw NC, Shochat SJ, Li CS, Kaufman RA. Distinguishing benign from malignant pulmonary nodules with helical chest CT in children with malignant solid tumors. Radiology. 2006;239(2):514–520. doi:10.1148/radiol.2392050631.
  • Anderson NM, Simon MC. The tumor microenvironment. Current Biology. 2020;30(16):R921–R925. doi:10.1016/j.cub.2020.06.081.
  • Paul P, Malakar AK, Chakraborty S. The significance of gene mutations across eight major cancer types. Mutat Res Rev Mutat Res. 2019;781:88–99. doi:10.1016/j.mrrev.2019.04.004.
  • Keskinov AA, Shurin MR. Myeloid regulatory cells in tumor spreading and metastasis. Immunobiology. 2015;220(2):236–242. doi:10.1016/j.imbio.2014.07.017.
  • Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217–222. doi:10.2991/jegh.k.191008.001.
  • Zarocostas J. Global cancer cases and deaths are set to rise by 70% in next 20 years. BMJ. 2010;340(jun08 2):c3041–c3041. doi:10.1136/bmj.c3041.
  • Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pacif J Cancer Prev. 2016;17(sup3):43–46. doi:10.7314/APJCP.2016.17.S3.43.
  • Guo M, Chen K, Lv Z, Shao Y, Zhang W, Zhao X, Li C. Bcl-2 mediates coelomocytes apoptosis by suppressing cytochrome c release in Vibrio splendidus challenged Apostichopus japonicus. Dev Comp Immunol. 2020;103:103533. doi:10.1016/j.dci.2019.103533.
  • Bi YL, Min M, Shen W, Liu Y. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine. 2018;39:10–16. doi:10.1016/j.phymed.2017.12.001.
  • Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov. 2014;13(11):852–869. doi:10.1038/nrd4422.
  • Ma Z, Wang LZ, Cheng JT, Lam WS, Ma X, Xiang X, et al. Targeting Hypoxia-Inducible Factor-1-Mediated Metastasis for Cancer Therapy. Antioxid Redox Signal. 2021;34(18):1484–1497. doi:10.1089/ars.2019.7935.
  • Zhou W, Yang L, Nie L, Lin H. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis. Am J Cancer Res. 2021;11(2):301–317.
  • Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, et al. Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine. Int J Mol Sci. 2021;22(4):1631. doi:10.3390/ijms22041631.
  • Abou Khouzam R, Brodaczewska K, Filipiak A, Zeinelabdin N, Buart S, Szczylik C, et al. Tumor hypoxia regulates immune Escape/Invasion: Influence on angiogenesis and potential impact of hypoxic biomarkers on cancer therapies. Front Immunol. 2020;11:613114. doi:10.3389/fimmu.2020.613114.
  • Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious toggling of mTOR activity to combat insulin resistance and cancer: current evidence and perspectives. Front Pharmacol. 2016;7:395. doi:10.3389/fphar.2016.00395.
  • Knight T, Luedtke D, Edwards H, Taub JW, Ge Y. A delicate balance–The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol. 2019;162:250–261. doi:10.1016/j.bcp.2019.01.015.
  • Altaleb A. Metastases: a visual guide. In: Altaleb A, editor. Surgical pathology. Cham: Springer; 2021. p. 131–136.
  • Yin D, Lu X. Silencing of long non-coding RNA HCP5 inhibits proliferation, invasion, migration, and promotes apoptosis via regulation of miR-299-3p/SMAD5 axis in gastric cancer cells. Bioengineered. 2021;12(1):225–239. doi:10.1080/21655979.2020.1863619.
  • Bioninja. https://ib.bioninja.com.au/standard-level/topic-1-cell-biology/16-cell-division/cancer-cells.html.
  • Koo MM, Swann R, McPhail S, Abel GA, Elliss-Brookes L, Rubin GP, Lyratzopoulos G. Presenting symptoms of cancer and stage at diagnosis: evidence from a cross-sectional, population-based study. Lancet Oncol. 2020;21(1):73–79. doi:10.1016/S1470-2045(19)30595-9.
  • Murphy B, Epstein J. Chronic systemic symptoms in cancer patients. In: Sonis ST, Villa A, editors. Translational systems medicine and oral disease. United States: Academic Press; 2020. p. 353–369.
  • Zanini S, Renzi S, Limongi AR, Bellavite P, Giovinazzo F, Bermano G. A review of lifestyle and environment risk factors for pancreatic cancer. Eur J Cancer. 2021;145:53–70. doi:10.1016/j.ejca.2020.11.040.
  • Das S, Kundu M, Jena BC, Mandal M. Causes of cancer: physical, chemical, biological carcinogens, and viruses. In: Kundu SC, editor. Biomaterials for 3D Tumor Modeling. Portugal: Elsevier; 2020. p. 607–641.
  • NCI. https://www.cancer.gov/about-cancer/causes-prevention/risk/age.
  • Brown KF, Rumgay H, Dunlop C, Ryan M, Quartly F, Cox A, et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br J Cancer. 2018;118(8):1130–1141. doi:10.1038/s41416-018-0029-6.
  • WHO. https://www.who.int/news-room/fact-sheets/detail/alcohol.
  • Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–2116. doi:10.1007/s11095-008-9661-9.
  • Downs NJ, Axelsen T, Schouten P, Igoe DP, Parisi AV, Vanos J. Biologically effective solar ultraviolet exposures and the potential skin cancer risk for individual gold medalists of the 2020 Tokyo Summer Olympic Games. Temperature. 2020;7(1):89–108. doi:10.1080/23328940.2019.1581427.
  • Hassan EM, DeRosa MC. Recent advances in cancer early detection and diagnosis: role of nucleic acid based aptasensors. Trac, Trends Anal Chem. 2020;124:115806. doi:10.1016/j.trac.2020.115806.
  • Levine AB, Schlosser C, Grewal J, Coope R, Jones SJ, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer. 2019;5(3):157–169. doi:10.1016/j.trecan.2019.02.002.
  • Pesapane F, Downey K, Rotili A, Cassano E, Koh DM. Imaging diagnosis of metastatic breast cancer. Insights Imaging. 2020;11(1):79. doi:10.1186/s13244-020-00885-4.
  • Gupta R, Hariprasad R, Dhanasekaran K, Sodhani P, Mehrotra R, Kumar N, Gupta S. Reappraisal of cytology‐histology correlation in cervical cytology based on the recent American Society of Cytopathology guidelines (2017) at a cancer research centre. Cytopathology. 2020;31(1):53–58. doi:10.1111/cyt.12774.
  • Matz M, Coleman MP, Carreira H, Salmerón D, Chirlaque MD, Allemani C, et al. Worldwide comparison of ovarian cancer survival: Histological group and stage at diagnosis (CONCORD-2). Gynecol Oncol. 2017;144(2):396–404. doi:10.1016/j.ygyno.2016.11.019.
  • Mandato VD, Torricelli F, Mastrofilippo V, Palicelli A, Ciarlini G, Pirillo D, et al. Accuracy of preoperative endometrial biopsy and intraoperative frozen section in predicting the final pathological diagnosis of endometrial cancer. Surg Oncol. 2020;35:229–235. doi:10.1016/j.suronc.2020.09.003.
  • Hu Z, Tan S, Chen S, Qin S, Chen H, Qin S, et al. Diagnostic value of hematological parameters platelet to lymphocyte ratio and hemoglobin to platelet ratio in patients with colon cancer. Clin Chim Acta. 2020;501:48–52. doi:10.1016/j.cca.2019.11.036.
  • Bonacho T, Rodrigues F, Liberal J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotech Histochem. 2020;95(2):71–91. doi:10.1080/10520295.2019.1651901.
  • Zhang H, Shen Y, Li Z, Ruan Y, Li T, Xiao B, Sun W. The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers. J Clin Lab Anal. 2020;34(1):e23049. doi:10.1002/jcla.23049.
  • Wang W, Xu X, Tian B, Wang Y, Du L, Sun T, et al. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer. Clin Chim Acta. 2017;470:51–55. doi:10.1016/j.cca.2017.04.023.
  • WebMD. https://www.webmd.com/melanoma-skin-cancer/picture-of-basal-cell-carcinoma.
  • Mittal A, Colegio OR. Skin cancers in organ transplant recipients. Am J Transplant. 2017;17(10):2509–2530. doi:10.1111/ajt.14382.
  • Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493–1501. doi:10.1016/S1470-2045(17)30624-1.
  • GP. https://www.gponline.com/improving-diagnosis-prognosis-sarcoma-cancerpatients/ article/1666212.
  • CTCA. https://www.cancercenter.com/cancer-types/multiple-myeloma/about.
  • Rasch S, Lund T, Asmussen JT, Lerberg Nielsen A, Faebo Larsen R, Østerheden Andersen M, Abildgaard N. Multiple myeloma associated bone disease. Cancers (Basel). 2020;12(8):2113. doi:10.3390/cancers12082113.
  • OHSU. https://www.ohsu.edu/knight-cancer-institute/understanding-leukemia.
  • Bortolato SA, Canales MA, Riquelme BD, Raviola M, Leguto AJ, Rebechi JP, et al. New insights into the analysis of red blood cells from leukemia and anemia patients: Nonlinear quantifiers, fractal mathematics, and Wavelet Transform. Physica A. 2020;567:125645. doi:10.1016/j.physa.2020.125645.
  • Kim SJ, Kang D, Kim IR, Yoon SE, Kim WS, Butow PN, et al. Impact of fear of cancer recurrence on survival among lymphoma patients. Psycho‐oncology. 2020;29(2):364–372.
  • Fiester PJ, Soule E, Natter PE, Haymes D, Rao D. Necrotic Primary Central Nervous System Lymphoma in an Immunocompetent Patient: A Case Report and Literature Review. Cureus. 2019;11(6):e4910. doi:10.7759/cureus.4910.
  • Youlden DR, Foresto SA, Aitken JF. Primary malignant lung tumors in children: A report from the Australian Childhood Cancer Registry, 1983‐2015. Pediatr Pulmonol. 2020;55(3):719–722. doi:10.1002/ppul.24636.
  • NCI. https://www.cancer.gov/rare-brain-spine-tumor/tumors/medulloblastoma.
  • Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, Bowlby R, et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell. 2017;31(3):411–423. doi:10.1016/j.ccell.2017.02.010.
  • Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151(1):193–203. doi:10.1016/j.chest.2016.10.010.
  • Rami-Porta R, Crowley JJ, Goldstraw P. Review the revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg. 2009;15(1):4–9.
  • Tellapuri S, Sutphin PD, Beg MS, Singal AG, Kalva SP. Staging systems of hepatocellular carcinoma: A review. Indian J Gastroenterol. 2018;37(6):481–491. doi:10.1007/s12664-018-0915-0.
  • Greenway RM, Schlossberg L, Dooley WC. Fifteen-year series of skin-sparing mastectomy for stage 0 to 2 breast cancer. Am J Surg. 2005;190(6):918–922. doi:10.1016/j.amjsurg.2005.08.035.
  • Cohen R, Platell C. Primary local excision of stage 1 rectal cancer is not associated with worse oncological outcomes when compared with major resection. Int J Colorectal Dis. 2020;35(4):607–614. doi:10.1007/s00384-020-03512-2.
  • Nakao T, Kaneko R, Tanaka H, Kobayashi S, Omori R, Yano Y, et al. Contribution of chemotherapy to improved prognosis in stage 4 gastric cancer: trend analysis of a regional population-based cancer registry in Japan. Int J Clin Oncol. 2020;26(2):378–386. doi:10.1007/s10147-020-01820-9.
  • Mohan G, Subashini MM. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed Signal Process Control. 2018;39:139–161. doi:10.1016/j.bspc.2017.07.007.
  • Youn JW, Hur SY, Woo JW, Kim YM, Lim MC, Park SY, et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020;21(12):1653–1660. doi:10.1016/S1470-2045(20)30486-1.
  • Bonatti M, Pedrinolla B, Cybulski AJ, Lombardo F, Negri G, Messini S, et al. Prediction of histological grade of endometrial cancer by means of MRI. Eur J Radiol. 2018;103:44–50. doi:10.1016/j.ejrad.2018.04.008.
  • Ortiz-Ramón R, Larroza A, Ruiz-España S, Arana E, Moratal D. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur Radiol. 2018;28(11):4514–4523. doi:10.1007/s00330-018-5463-6.
  • Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–386. doi:10.1093/carcin/bgp014.
  • Aad.org. https://www.aad.org/public/diseases/skin-cancer/squamous-cellcarcinoma.
  • Mayoclinic. http://www.mayoclinic.org/diseases-conditions/soft-tissuesarcoma/ multimedia/soft-tissue-sarcom.
  • Ehrenstein JK, van Zon SK, Duijts SF, van Dijk BA, Dorland HF, Schagen SB, Bültmann U. Type of cancer treatment and cognitive symptoms in working cancer survivors: an 18-month follow-up study. J Cancer Surviv. 2020;14(2):158–167. doi:10.1007/s11764-019-00839-w.
  • Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Delivery Sci Technol. 2019;54:101350. doi:10.1016/j.jddst.2019.101350.
  • Ranieri G, Gasparini G. Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Current Drug Targets Immune Endocrine Metab Disord. 2001;1(3):241–253.
  • Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–385. doi:10.3322/caac.21565.
  • Riis M. Modern surgical treatment of breast cancer. Ann Med Surg. 2020;56:95–107. doi:10.1016/j.amsu.2020.06.016.
  • Alamy. https://www.alamy.com/stock-photo/malignant-tumor.html.
  • Wortman BG, Bosse T, Nout RA, Lutgens LC, van der Steen-Banasik EM, Westerveld H, et al. Molecular-integrated risk profile to determine adjuvant radiotherapy in endometrial cancer: evaluation of the pilot phase of the PORTEC-4a trial. Gynecol Oncol. 2018;151(1):69–75. doi:10.1016/j.ygyno.2018.07.020.
  • Carli F, Gillis C, Scheede-Bergdahl C. Promoting a culture of prehabilitation for the surgical cancer patient. Acta Oncol. 2017;56(2):128–133. doi:10.1080/0284186X.2016.1266081.
  • Agrawal A, Ayantunde AA, Cheung KL. Concepts of seroma formation and prevention in breast cancer surgery. ANZ J Surg. 2006;76(12):1088–1095. doi:10.1111/j.1445-2197.2006.03949.x.
  • Brunelli A, Charloux A, Bolliger CT, Rocco G, Sculier JP, Varela G, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Resp J. 2009;34(1):17–41. doi:10.1183/09031936.00184308.
  • Akhtar-Danesh N, Logie K, Akhtar-Danesh GG, Finley C. Uptake of minimally invasive surgery for early stage colorectal cancer and its effect on survival: A population-based study. Surg Oncol. 2020;35:540–546. doi:10.1016/j.suronc.2020.10.017.
  • Abi Jaoude J, Kouzy R, Nguyen ND, Lin D, Noticewala SS, Ludmir EB, Taniguchi CM. Radiation therapy for patients with locally advanced pancreatic cancer: Evolving techniques and treatment strategies. Curr Probl Cancer. 2020;44(6):100607. doi:10.1016/j.currproblcancer.2020.100607.
  • SCA. https://www.specialistaustralia.com.au/types-of-skin-cancer-treatment/.
  • Liu J, Bi K, Yang R, Li H, Nikitaki Z, Chang L. Role of DNA damage and repair in radiation cancer therapy: A current update and a look to the future. Int J Radiat Biol. 2020;96(11):1329–1338. doi:10.1080/09553002.2020.1807641.
  • Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le Gouvello S, Belkacemi Y. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol. 2018;129:13–26. doi:10.1016/j.critrevonc.2018.06.012.
  • Hendriksen BS, Stahl KA, Hollenbeak CS, Taylor MD, Vasekar MK, Drabick JJ, et al. Postoperative chemotherapy and radiation improve survival following cardiac sarcoma resection. J Thorac Cardiovasc Surg. 2019;161(1):110–119.e4. doi:10.1016/j.jtcvs.2019.10.016.
  • Finger PT. Radiation therapy for orbital tumors: concepts, current use, and ophthalmic radiation side effects. Surv Ophthalmol. 2009;54(5):545–568. doi:10.1016/j.survophthal.2009.06.004.
  • Wu D, Pusuluri A, Vogus D, Krishnan V, Shields IC, Kim J, et al. Design principles of drug combinations for chemotherapy. J Controlled Release. 2020;323:36–46. doi:10.1016/j.jconrel.2020.04.018.
  • Sharma G, Anthal S, Geetha DV, Al-Ostoot FH, Hussein Eissa Mohammed Y, Ara Khanum S, et al. Synthesis, structure and molecular docking analysis of an anticancer drug of N-(2-aminophenyl)-2-(2-isopropylphenoxy) acetamide. Mol Crystals Liquid Crystals. 2018;675(1):85–95. doi:10.1080/15421406.2019.1624051.
  • Chandana SN, Al-Ostoot FH, Mohammed YH, Al-Ramadneh TN, Akhileshwari P, Khanum SA, et al. Synthesis, structural characterization, and DFT studies of anti-cancer drug N-(2-Aminophenyl)-2-(4-bromophenoxy) acetamide. Heliyon. 2021;7(3):e06464. doi:10.1016/j.heliyon.2021.e06464.
  • CT. https://www.cancertodaymag.org/Pages/Fall2018/Targeted-Chemotherapy.aspx.
  • Torricelli P, Antonelli F, Ferorelli P, Borromeo I, Shevchenko A, Lenzi S, De Martino A. Oral nutritional supplement prevents weight loss and reduces side effects in patients in advanced lung cancer chemotherapy. Amino Acids. 2020;52(3):445–451. doi:10.1007/s00726-020-02822-7.
  • Andreyev HJ, Lalji A, Mohammed K, Muls AC, Watkins D, Rao S, et al. The FOCCUS study: a prospective evaluation of the frequency, severity and treatable causes of gastrointestinal symptoms during and after chemotherapy. Support Care Cancer. 2020;29(3):1443–1453. doi:10.1007/s00520-020-05610-x.
  • Yen MS, Twu NF, Lai CR, Horng HC, Chao KC, Juang CM. Importance of delivered cycles and nomogram for intraperitoneal chemotherapy in ovarian cancer. Gynecol Oncol. 2009;114(3):415–419. doi:10.1016/j.ygyno.2009.05.034.
  • Al-Ostoot FH, Salah S, Khanum SA. Zabiulla Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. J Iran Chem Soc. 2021;18(8):1839–1875. doi:10.1007/s13738-021-02172-5.
  • Almontaser E, Ritchie C, Madison J, Jabbour P. Perioperative care of children undergoing intra-arterial chemotherapy for retinoblastoma. J PeriAnesth Nurs. 2019;34(3):476–482. doi:10.1016/j.jopan.2018.09.013.
  • Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):22. doi:10.1038/s41392-020-0116-z.
  • Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother. 2020;125:110009. doi:10.1016/j.biopha.2020.110009.
  • Qin K, Hou H, Liang Y, Zhang X. Prognostic value of TP53 concurrent mutations for EGFR-TKIs and ALK-TKIs based targeted therapy in advanced non-small cell lung cancer: a meta-analysis. BMC Cancer. 2020;20(1):328. doi:10.1186/s12885-020-06805-5.
  • Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188–196. doi:10.1016/j.ejphar.2018.07.034.
  • Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52(1):17–35. doi:10.1016/j.immuni.2019.12.011.
  • NCI. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors.
  • Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234(6):8509–8521. doi:10.1002/jcp.27782.
  • Li S, Zhang Z, Lai WF, Cui L, Zhu X. How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother. 2020;130:110639. doi:10.1016/j.biopha.2020.110639.
  • Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 2020;60:166–180. doi:10.1016/j.semcancer.2019.07.022.
  • ARM. https://www.armpitt.com/stem-cell-treatment/.
  • Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, et al. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res. 2020;75:100779. doi:10.1016/j.preteyeres.2019.100779.
  • Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–8395. doi:10.1002/jcp.27740.
  • Liu C, Zhang L, Zhu W, Guo R, Sun H, Chen X, Deng N. Barriers and strategies of cationic liposomes for cancer gene therapy. Molecular Therapy-Methods & Clinical Development. 2020 Jul 31.
  • NIH. https://www.genome.gov/genetics-glossary/Gene-Therapy.
  • Shomali N, Gharibi T, Vahedi G, Mohammed RN, Mohammadi H, Salimifard S, Marofi F. Mesenchymal stem cells as carrier of the therapeutic agent in the gene therapy of blood disorders. J Cell Physiol. 2020;235(5):4120–4134. doi:10.1002/jcp.29324.
  • Frowen J, Hughes R, Skeat J. The prevalence of patient-reported dysphagia and oral complications in cancer patients. Support Care Cancer. 2020;28(3):1141–1150. doi:10.1007/s00520-019-04921-y.
  • Parisi GF, Cannata E, Manti S, Papale M, Meli M, Russo G, et al. Lung clearance index: A new measure of late lung complications of cancer therapy in children. Pediatr Pulmonol. 2020;55(12):3450–3456. doi:10.1002/ppul.25071.
  • Amano K, Baracos VE, Hopkinson JB. Integration of palliative, supportive, and nutritional care to alleviate eating-related distress among advanced cancer patients with cachexia and their family members. Crit Rev Oncol Hematol. 2019;143:117–123. doi:10.1016/j.critrevonc.2019.08.006.
  • Adami HO, Day NE, Trichopoulos D, Willett WC. Primary and secondary prevention in the reduction of cancer morbidity and mortality. Eur J Cancer. 2001;37:118–127. doi:10.1016/S0959-8049(01)00262-3.
  • Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M, McTiernan A, et al. American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2006;56(5):254–281. doi:10.3322/canjclin.56.5.254.
  • Puisieux A, Pommier RM, Morel AP, Lavial F. Cellular pliancy and the multistep process of tumorigenesis. Cancer Cell. 2018;33(2):164–172. doi:10.1016/j.ccell.2018.01.007.
  • Hu W, Liu C, Bi ZY, Zhou Q, Zhang H, Li LL, et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol Cancer. 2020;19(1):102. doi:10.1186/s12943-020-01199-1.
  • Liu Y, Yin T, Feng Y, Cona MM, Huang G, Liu J, et al. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg. 2015;5(5):708.
  • Sajnani K, Islam F, Smith RA, Gopalan V, Lam AK. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie. 2017;135:164–172. doi:10.1016/j.biochi.2017.02.008.
  • Heitzer E, Auinger L, Speicher MR. Cell-free DNA and apoptosis: how dead cells inform about the living. Trends Mol Med. 2020;26(5):519–528. doi:10.1016/j.molmed.2020.01.012.
  • Vicente-Dueñas C, Hauer J, Cobaleda C, Borkhardt A, Sánchez-García I. Epigenetic priming in cancer initiation. Trends Cancer. 2018;4(6):408–417. doi:10.1016/j.trecan.2018.04.007.
  • Ewald PW, Ewald HA. Infection, mutation, and cancer evolution. J Mol Med. 2012;90(5):535–541. doi:10.1007/s00109-012-0891-2.
  • Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nanoformulation for cancer prevention and therapy. Ann NY Acad Sci. 2015;1348(1):20–31.
  • Srinivas N, Malla RR, Kumar KS, Sailesh AR. Environmental carcinogens and their impact on female-specific cancers. In: Malla RR, editor. A theranostic and precision medicine approach for female-specific cancers. Andhra Pradesh (India): Academic Press; 2020. p. 249–262.
  • Chen H, Wang P, Du Z, Wang G, Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris (1, 3-dichloro-2-propyl) phosphate. Aquat Toxicol. 2018;194:37–45. doi:10.1016/j.aquatox.2017.11.001.
  • Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co‐regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer. 2017;56(11):769–787. doi:10.1002/gcc.22481.
  • Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, et al. CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol. 2020;235(12):9121–9132. doi:10.1002/jcp.29782.
  • Fujiki H, Sueoka E, Watanabe T, Suganuma M. The concept of the okadaic acid class of tumor promoters is revived in endogenous protein inhibitors of protein phosphatase 2A, SET and CIP2A, in human cancers. J Cancer Res Clin Oncol. 2018;144(12):2339–2349. doi:10.1007/s00432-018-2765-7.
  • Hancock ML, Meyer RC, Mistry M, Khetani RS, Wagschal A, Shin T, et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell. 2019;177(3):722–736.e22. doi:10.1016/j.cell.2019.02.030.
  • Jiang Z, Jones R, Liu JC, Deng T, Robinson T, Chung PE, et al. RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle. 2011;10(10):1563–1570. doi:10.4161/cc.10.10.15703.
  • Baba AI, Câtoi C. Comparative oncology. Bucharest: Publishing House of the Romanian Academy; 2007.
  • LaFave LM, Kartha VK, Ma S, Meli K, Del Priore I, Lareau C, et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell. 2020;38(2):212–228.e13. doi:10.1016/j.ccell.2020.06.006.
  • Pisani P, Airoldi M, Allais A, Valletti PA, Battista M, Benazzo M, et al. Metastatic disease in head & neck oncology. Acta Otorhinolaryngol Ital. 2020;40(Suppl 1):S1–S86. doi:10.14639/0392-100X-suppl.1-40-2020.
  • Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2009;24(2):97–106. doi:10.1152/physiol.00045.2008.
  • Shen Y, Schmidt BS, Kubitschke H, Morawetz EW, Wolf B, Käs JA, Losert W. Detecting heterogeneity in and between breast cancer cell lines. Cancer Converg. 2020;4(1):1. doi:10.1186/s41236-020-0010-1.
  • Kazmi SJ, Byer SJ, Eckert JM, Turk AN, Huijbregts RP, Brossier NM, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182(3):646–667. doi:10.1016/j.ajpath.2012.11.017.
  • Skinner BM, Johnson EE. Nuclear morphologies: their diversity and functional relevance. Chromosoma. 2017;126(2):195–212. doi:10.1007/s00412-016-0614-5.
  • Diez-Silva M, Dao M, Han J, Lim CT, Suresh S. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 2010;35(5):382–388. doi:10.1557/mrs2010.571.
  • Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89(2):216–224. doi:10.1038/icb.2010.78.
  • UCSF. https://surgery.ucsf.edu/conditions–procedures/liver-metastases.aspx.
  • Birkbak NJ, McGranahan N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell. 2020;37(1):8–19. doi:10.1016/j.ccell.2019.12.004.
  • Pardo JR, Ríos A, Rodríguez JM, Paredes M, Soriano V, Oviedo MI, et al. Risk factors of metastatic lymph nodes in papillary thyroid microcarcinoma. Cirugía Española (English Edition). 2020;98(4):219–225. doi:10.1016/j.cireng.2020.03.012.
  • He B, Johansson-Percival A, Backhouse J, Li J, Lee GY, Hamzah J, Ganss R. Remodeling of metastatic vasculature reduces lung colonization and sensitizes overt metastases to immunotherapy. Cell Rep. 2020;30(3):714–724.e5. doi:10.1016/j.celrep.2019.12.013.
  • Reiter JG, Hung WT, Lee IH, Nagpal S, Giunta P, Degner S, et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat Genet. 2020;52(7):692–700. doi:10.1038/s41588-020-0633-2.
  • Kang Y, Bae J, Choi S, Jang KT, Yu J, Hong JY, et al. Regional lymph node metastasis of scalp angiosarcoma: a detailed clinical observation study of 40 cases. Ann Surg Oncol. 2020;27(8):3018–3027. doi:10.1245/s10434-020-08408-7.
  • Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncogenesis. 2013;18:1–2.
  • Tse JC, Kalluri R. Mechanisms of metastasis: epithelial‐to‐mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101(4):816–829. doi:10.1002/jcb.21215.
  • Radiopaedia. https://radiopaedia.org/cases/brain-metastases-from-lung-cancer.
  • Maki Y, Kimizuka Y, Murakami K, Sato K, Sasaki H, Yamamoto T, et al. Zosteriform skin metastasis caused by retrograde lymphatic migration of metastatic squamous cell lung carcinoma. BMC Pulm Med. 2021;21(1):41. doi:10.1186/s12890-021-01414-9.
  • Anderson RL, Balasas T, Callaghan J, Coombes RC, Evans J, Hall JA, et al. A framework for the development of effective anti-metastatic agents. Nat Rev Clin Oncol. 2019;16(3):185–204. doi:10.1038/s41571-018-0134-8.
  • Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745–1770. doi:10.1007/s00018-019-03351-7.
  • Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: regulators and clinical implications. Med Res Rev. 2017;37(6):1231–1274. doi:10.1002/med.21452.
  • Manuel GE, Johnson T, Liu D. Therapeutic angiogenesis of exosomes for ischemic stroke. Int J Physiol Pathophysiol Pharmacol. 2017;9(6):188–191.
  • Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol. 2018;32(4):318–323. doi:10.1016/j.sjopt.2018.05.002.
  • Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18(1):11–18. doi:10.1016/j.gde.2007.12.007.
  • Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21(3):162–180. doi:10.1038/s41568-020-00320-2.
  • Schwager SC, Taufalele PV, Reinhart-King CA. Cell–cell mechanical communication in cancer. Cell Mol Bioeng. 2019;12(1):1–14. doi:10.1007/s12195-018-00564-x.
  • Polacheck WJ, Kutys ML, Tefft JB, Chen CS. Microfabricated blood vessels for modeling the vascular transport barrier. Nat Protoc. 2019;14(5):1425–1454. doi:10.1038/s41596-019-0144-8.
  • Rieger J, Kaessmeyer S, Al Masri S, Hünigen H, Plendl J. Endothelial cells and angiogenesis in the horse in health and disease—A review. Anat Histol Embryol. 2020;49(5):656–678. doi:10.1111/ahe.12588.
  • Oliver M, Waxman ES. The role of anti-angiogenic agents (VEGF). In: Davies M, Eaby-Sandy, B editors. Targeted therapies in lung cancer: management strategies for nurses and practitioners. Cham: Springer; 2019. p. 85–104.
  • Bai Y, Bai L, Zhou J, Chen H, Zhang L. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol. 2018;323:19–32. doi:10.1016/j.cellimm.2017.10.008.
  • Xu Z, Zhu C, Chen C, Zong Y, Feng H, Liu D, et al. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1α/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018;9(10):974. doi:10.1038/s41419-018-1010-2.
  • Rezzola S, Di Somma M, Corsini M, Leali D, Ravelli C, Polli VA, et al. VEGFR2 activation mediates the pro-angiogenic activity of BMP4. Angiogenesis. 2019;22(4):521–533. doi:10.1007/s10456-019-09676-y.
  • Min AK, Mimura K, Nakajima S, Okayama H, Saito K, Sakamoto W, et al. Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother. 2020;70(2):289–298. doi:10.1007/s00262-020-02676-8.
  • Almalki SG, Agrawal DK. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther. 2017;8(1):113. doi:10.1186/s13287-017-0568-4.
  • Singh N, Badrun D, Ghatage P. State of the art and up-and-coming angiogenesis inhibitors for ovarian cancer. Expert Opin Pharmacother. 2020;21(13):1579–1590. doi:10.1080/14656566.2020.1775813.
  • Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, Kharaziha P. Tumor‐derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019;234(10):16885–16903. doi:10.1002/jcp.28374.
  • Latacz E, Caspani E, Barnhill R, Lugassy C, Verhoef C, Grünhagen D, et al. Pathological features of vessel co-option versus sprouting angiogenesis. Angiogenesis. 2020;23(1):43–54. doi:10.1007/s10456-019-09690-0.
  • Gianni-Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, et al. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis. 2018;21(4):883–900. doi:10.1007/s10456-018-9634-5.
  • Sajib S, Zahra FT, Lionakis MS, German NA, Mikelis CM. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis. 2018;21(1):1–14. doi:10.1007/s10456-017-9583-4.
  • Song N, Zhao Z, Ma X, Sun X, Ma J, Li F, et al. Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats. Chem Biol Interact. 2017;261:11–17. doi:10.1016/j.cbi.2016.10.020.
  • Pan T, Jin Z, Yu Z, Wu X, Chang X, Fan Z, et al. Cathepsin L promotes angiogenesis by regulating the CDP/Cux/VEGF-D pathway in human gastric cancer. Gastric Cancer. 2020;23(6):974–987. doi:10.1007/s10120-020-01080-6.
  • Xiong Q, Liu B, Ding M, Zhou J, Yang C, Chen Y. Hypoxia and cancer related pathology. Cancer Lett. 2020;486:1–7. doi:10.1016/j.canlet.2020.05.002.
  • Nolfi AL, Behun MN, Yates CC, Brown BN, Kulkarni M. Beyond growth factors: Macrophage-centric strategies for angiogenesis. Curr Pathobiol Rep. 2020;8(4):111–120. doi:10.1007/s40139-020-00215-9.
  • Ludwig N, Yerneni SS, Azambuja JH, Gillespie DG, Menshikova EV, Jackson EK, Whiteside TL. Tumor-derived exosomes promote angiogenesis via adenosine A 2B receptor signaling. Angiogenesis. 2020;23(4):599–610. doi:10.1007/s10456-020-09728-8.
  • Umapathy A, Chamley LW, James JL. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis. 2020;23(2):105–117. doi:10.1007/s10456-019-09694-w.
  • Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol. 2020;49(5):643–655. doi:10.1111/ahe.12549.
  • Frezzetti D, Gallo M, Maiello MR, D'Alessio A, Esposito C, Chicchinelli N, et al. VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 2017;21(10):959–966. doi:10.1080/14728222.2017.1371137.
  • Haggstrom M. Glycogen structure. WikiJ Med. 2014;1(2):8.
  • Nowicki M, Wierzbowska A, Małachowski R, Robak T, Grzybowska-Izydorczyk O, Pluta A, Szmigielska-Kapłon A. VEGF, ANGPT1, ANGPT2, and MMP-9 expression in the autologous hematopoietic stem cell transplantation and its impact on the time to engraftment. Ann Hematol. 2017;96(12):2103–2112. doi:10.1007/s00277-017-3133-4.
  • Andrés-Guerrero V, Perucho-González L, García-Feijoo J, Morales-Fernández L, Saenz-Francés F, Herrero-Vanrell R, et al. Current perspectives on the use of anti-VEGF drugs as adjuvant therapy in glaucoma. Adv Ther. 2017;34(2):378–395. doi:10.1007/s12325-016-0461-z.
  • Moncion A, Lin M, O'Neill EG, Franceschi RT, Kripfgans OD, Putnam AJ, Fabiilli ML. Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds. Biomaterials. 2017;140:26–36. doi:10.1016/j.biomaterials.2017.06.012.
  • Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–178. doi:10.1016/j.cytogfr.2005.01.004.
  • Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300. doi:10.1002/med.21288.
  • Tassi E, Al-Attar A, Aigner A, Swift MR, McDonnell K, Karavanov A, Wellstein A. Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem. 2001;276(43):40247–40253. doi:10.1074/jbc.M104933200.
  • Kolodziejski PA, Sassek M, Bien J, Leciejewska N, Szczepankiewicz D, Szczepaniak B, et al. FGF-1 modulates pancreatic β-cell functions/metabolism: An in vitro study. Gen Comp Endocrinol. 2020;294:113498. doi:10.1016/j.ygcen.2020.113498.
  • Jin S, Yang C, Huang J, Liu L, Zhang Y, Li S, et al. Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Res Ther. 2020;11(1):68. doi:10.1186/s13287-020-1584-3.
  • Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med. 2019;156:33–46. doi:10.1016/j.rmed.2019.08.003.
  • Moss A. The angiopoietin: Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev. 2013;24(6):579–592. doi:10.1016/j.cytogfr.2013.05.009.
  • Wang Q, Lash GE. Angiopoietin 2 in placentation and tumor biology: The yin and yang of vascular biology. Placenta. 2017;56:73–78. doi:10.1016/j.placenta.2017.03.021.
  • Kim KH, Nakaoka Y, Augustin HG, Koh GY. Myocardial angiopoietin-1 controls atrial chamber morphogenesis by spatiotemporal degradation of cardiac jelly. Cell Rep. 2018;23(8):2455–2466. doi:10.1016/j.celrep.2018.04.080.
  • Bilimoria J, Singh H. The Angiopoietin ligands and Tie receptors: potential diagnostic biomarkers of vascular disease. J Recept Signal Transduction. 2019;39(3):187–193. doi:10.1080/10799893.2019.1652650.
  • Hussain RM, Neiweem AE, Kansara V, Harris A, Ciulla TA. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs. 2019;28(10):861–869. doi:10.1080/13543784.2019.1667333.
  • Yang X, Wang J, Chen C. Serum VEGF and Ang-2 Levels in Infants Before and After Laser Treatment for Retinopathy of Prematurity. Fetal Pediatr Pathol. 2020;40(5):407–413. doi:10.1080/15513815.2020.1721625.
  • He Y, Li Z, Chen Z, Yu X, Ji Z, Wang J, et al. Effects of VEGF‐ANG‐1‐PLA nano‐sustained release microspheres on proliferation and differentiation of ADSCs. Cell Biol Int. 2018;42(8):1060–1068. doi:10.1002/cbin.10986.
  • Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013;24(4):373–384. doi:10.1016/j.cytogfr.2013.05.003.
  • Juhl P, Bondesen S, Hawkins CL, Karsdal MA, Bay-Jensen AC, Davies MJ, Siebuhr AS. Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis. Sci Rep. 2020;10(1):17300. doi:10.1038/s41598-020-74179-6.
  • Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–4499. doi:10.2147/DDDT.S86621.
  • Batlle R, Andrés E, Gonzalez L, Llonch E, Igea A, Gutierrez-Prat N, et al. Regulation of tumor angiogenesis and mesenchymal–endothelial transition by p38α through TGF-β and JNK signaling. Nat Commun. 2019;10(1):3071. doi:10.1038/s41467-019-10946-y.
  • Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370. doi:10.3389/fonc.2019.01370.
  • Scheau C, Badarau IA, Costache R, Caruntu C, Mihai GL, Didilescu AC, et al. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol. 2019;2019:1–10. doi:10.1155/2019/9423907.
  • Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13(12):904–927. doi:10.1038/nrd4390.
  • Nemati S, Rezabakhsh A, Khoshfetrat AB, Nourazarian A, Biray Avci Ç, Goker Bagca B, et al. Alginate‐gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol Bioeng. 2017;114(12):2920–2930. doi:10.1002/bit.26395.
  • Alrehaili AA, Gharib AF, Karam RA, Alhakami RA, El Sawy WH, Abd Elrahman TM. Clinical significance of plasma MMP‐2 and MMP‐9 levels as biomarkers for tumor expression in breast cancer patients in Egypt. Mol Biol Rep. 2020;47(2):1153–1160. doi:10.1007/s11033-019-05216-5.
  • Djuric T, Zivkovic M. Overview of MMP biology and gene associations in human diseases. Role Matrix Met Hum Body Pathol. 2017;1:3–3.
  • Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 2020; 353:104119. doi:10.1016/j.cellimm.2020.104119.
  • Langers AM, Verspaget HW, Hawinkels LJ, Kubben FJ, Van Duijn W, Van Der Reijden JJ, et al. MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients. Br J Cancer. 2012;106(9):1495–1498. doi:10.1038/bjc.2012.80.
  • Al-Ostoot FH, Sherapura A, Vigneshwaran V, Basappa G, Vivek HK, Prabhakar BT, Khanum SA. Targeting HIF-1α by newly synthesized Indolephenoxyacetamide (IPA) analogs to induce anti-angiogenesis-mediated solid tumor suppression. Pharmacol Rep. 2021;73(5):1328–1343. doi:10.1007/s43440-021-00266-8.
  • Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. 2018;27(2):281–298. doi:10.1016/j.cmet.2017.10.005.
  • Tolonen JP, Heikkilä M, Malinen M, Lee HM, Palvimo JJ, Wei GH, Myllyharju J. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci. 2020;77(18):3627–3642. doi:10.1007/s00018-019-03387-9.
  • Karagiota A, Kourti M, Simos G, Mylonis I. HIF-1α-derived cell-penetrating peptides inhibit ERK-dependent activation of HIF-1 and trigger apoptosis of cancer cells under hypoxia. Cell Mol Life Sci. 2019;76(4):809–825. doi:10.1007/s00018-018-2985-7.
  • Cimmino F, Avitabile M, Lasorsa VA, Montella A, Pezone L, Cantalupo S, et al. HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Med Genet. 2019;20(1):37. doi:10.1186/s12881-019-0767-1.
  • Lazzara F, Trotta MC, Platania CBM, D'Amico M, Petrillo F, Galdiero M, et al. Stabilization of HIF-1α in human retinal endothelial cells modulates expression of miRNAs and proangiogenic growth factors. Front Pharmacol. 2020;11:1063. doi:10.3389/fphar.2020.01063.
  • Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HP. 2015;3:83. doi:10.2147/HP.S93413.
  • Huang R, Zhou PK. HIF-1 signaling: A key orchestrator of cancer radioresistance. Radiat Med Protect. 2020;1(1):7–14. doi:10.1016/j.radmp.2020.01.006.
  • Befani C, Liakos P. The role of hypoxia‐inducible factor‐2 alpha in angiogenesis. J Cell Physiol. 2018;233(12):9087–9098. doi:10.1002/jcp.26805.
  • Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol. 2017;56(4):503–515. doi:10.1080/0284186X.2017.1301680.
  • Yang WH, Xu J, Mu JB, Xie J. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis Transl Med. 2017;3(1):33–40. doi:10.1016/j.cdtm.2017.01.002.
  • Khan H, Schieke SM. How to starve cancer cells when nutrients are abundant. Mol Cell Oncol. 2020;7(2):1718475. doi:10.1080/23723556.2020.1718475.
  • Ye F, Li X, Sun K, Xu W, Shi H, Bian J, et al. Inhibition of endogenous hydrogen sulfide biosynthesis enhances the anti-cancer effect of 3, 3′-diindolylmethane in human gastric cancer cells. Life Sci. 2020;261:118348. doi:10.1016/j.lfs.2020.118348.
  • Song Y, Fu Y, Xie Q, Zhu B, Wang J, Zhang B. Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front Immunol. 2020;11:1956. doi:10.3389/fimmu.2020.01956.
  • Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res. 2020; 82:100906. doi:10.1016/j.preteyeres.2020.100906.
  • Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T, Gotthardt D, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun. 2017;8(1):1597. doi:10.1038/s41467-017-01599-w.
  • Popat S, Grohé C, Corral J, Reck M, Novello S, Gottfried M, et al. Anti-angiogenic agents in the age of resistance to immune checkpoint inhibitors: Do they have a role in non-oncogene-addicted non-small cell lung cancer? Lung Cancer. 2020;144:76–84. doi:10.1016/j.lungcan.2020.04.009.
  • Abdel-Qadir H, Ethier JL, Lee DS, Thavendiranathan P, Amir E. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev. 2017;53:120–127. doi:10.1016/j.ctrv.2016.12.002.
  • Lee MS, Ryoo BY, Hsu CH, Numata K, Stein S, Verret W, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21(6):808–820. doi:10.1016/S1470-2045(20)30156-X.
  • Ayhan E, Aslan Ö, Araç E. Effect of isotretinoin (13-cis-retinoic acid) on levels of soluble VEGF receptors (sVEGFR1, sVEGFR2, sVEGFR3) in patients with acne vulgaris. J Dermatol Treatment. 2020;32(8):936–940. doi:10.1080/09546634.2020.1729331.
  • Zhang Q, Liu F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis. 2020;11(6):485. doi:10.1038/s41419-020-2696-5.
  • Dirix LY, Vermeulen PB, Pawinski A, Prové A, Benoy I, De Pooter C, et al. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br J Cancer. 1997;76(2):238–243. doi:10.1038/bjc.1997.368.
  • Imano H, Kato R, Ijiri Y, Hayashi T. Activation of inflammasomes by tyrosine kinase inhibitors of vascular endothelial growth factor receptor: Implications for VEGFR TKIs-induced immune related adverse events. Toxicol in Vitro. 2021;71:105063. doi:10.1016/j.tiv.2020.105063.
  • Wang XJ, Chen JY, Fu LQ, Yan MJ. Recent advances in natural therapeutic approaches for the treatment of cancer. J Chemother. 2020;32(2):53–65. doi:10.1080/1120009X.2019.1707417.
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727.
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–668. doi:10.1038/s41577-020-0306-5.
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. immunity. Immunity. 2013;39(1):1–10. doi:10.1016/j.immuni.2013.07.012.
  • Ventola CL. Cancer immunotherapy, part 3: challenges and future trends. Pharma Ther. 2017;42(8):514.
  • Yang T, Kong Z, Ma W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential. Hum Vaccin Immunother. 2021;17(2):546–553. doi:10.1080/21645515.2020.1782692.
  • Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2(5):e192535. doi:10.1001/jamanetworkopen.2019.2535.
  • Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–38. doi:10.1016/j.tig.2008.10.012.
  • Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, Matsui A, et al. Dual PD-1 and VEGFR-2 blockade promotes vascular normalization and enhances anti-tumor immune responses in HCC. Hepatology. 2020;71(4):1247–1261. doi:10.1002/hep.30889.
  • Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52(9):1475–1485. doi:10.1038/s12276-020-00500-y.
  • Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity. 2016;44(6):1255–1269. doi:10.1016/j.immuni.2016.06.001.
  • Chang WH, Lai AG. The hypoxic tumour microenvironment: a safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett. 2020;487:34–44. doi:10.1016/j.canlet.2020.05.011.
  • Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res. 2001;23(2-3):263–272. doi:10.1385/IR:23:2-3:263.
  • Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP. Vascular endothelial growth factor C gene expression is closely related to invasion phenotype in gynaecological tumor cells. Blood. 2003;101(12):4878–4886. doi:10.1182/blood-2002-07-1956.
  • Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 2008;57(8):1115–1124. doi:10.1007/s00262-007-0441-x.
  • Huang X, Raskovalova T, Lokshin A, Krasinskas A, Devlin J, Watkins S, et al. Combined antiangiogenic and immune therapy of prostate cancer. Angiogenesis. 2005;8(1):13–23. doi:10.1007/s10456-005-2893-y.
  • Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Tu GH, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF–secreting cancer immunotherapy. Clin Cancer Res. 2006;12(22):6808–6816. doi:10.1158/1078-0432.CCR-06-1558.
  • Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 2019;18(1):60. doi:10.1186/s12943-019-0974-6.
  • Jeruss JS, Mittendorf EA, Tucker SL, Gonzalez-Angulo AM, Buchholz TA, Sahin AA, et al. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. JCO. 2008;26(2):246–252. doi:10.1200/JCO.2007.11.5352.
  • Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2(7):632–642. doi:10.1158/2326-6066.CIR-14-0053.
  • Ornstein MC, Wood LS, Elson P, Allman KD, Beach J, Martin A, et al. A phase II study of intermittent sunitinib in previously untreated patients with metastatic renal cell carcinoma. J Clin Oncol. 2017;35(16):1764–1769. doi:10.1200/JCO.2016.71.1184.
  • Laguna MP. Re: A phase II study of intermittent sunitinib in previously untreated patients with metastatic renal cell carcinoma. J Urol. 2018;199(1):23–25. doi:10.1016/j.juro.2017.09.134.
  • Jonasch E, Slack RS, Geynisman DM, Hasanov E, Milowsky MI, Rathmell WK, et al. Phase II study of two weeks on, one week off sunitinib scheduling in patients with metastatic renal cell carcinoma. JCO. 2018;36(16):1588–1593. doi:10.1200/JCO.2017.77.1485.
  • Pishvaian MJ, Lee MS, Ryoo BY, Stein S, Lee KH, Verret W, et al. Updated safety and clinical activity results from a phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC). Ann Oncol. 2018;29:viii718–viii719. doi:10.1093/annonc/mdy424.028.
  • Chau I, Bendell JC, Calvo E, Santana-Davila R, Ahnert JR, Penel N, et al. Interim safety and clinical activity in patients (pts) with advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma from a multicohort phase 1 study of ramucirumab (R) plus pembrolizumab (P). JCO. 2017; 35(4_suppl):102–102. doi:10.1200/JCO.2017.35.4_suppl.102.
  • Herbst RS, Martin-Liberal J, Calvo E, Isambert N, Bendell J, Cassier P, et al. Previously treated advanced NSCLC cohort from a multi-disease phase 1 study of ramucirumab (R) plus pembrolizumab (P): efficacy and safety data. Ann Oncol. 2017;28:ii32–ii33. doi:10.1093/annonc/mdx091.010.
  • Taylor MH, Lee CH, Makker V, Rasco D, Dutcus CE, Wu J, et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. JCO. 2020;38(11):1154–1163. doi:10.1200/JCO.19.01598.
  • Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin Cancer Res. 2019;25(2):515–523. doi:10.1158/1078-0432.CCR-18-2484.
  • Ribatti D. Chapter 5—targeting angiogenesis in neuroblastoma. In: Ray SK, editor. Neuroblastoma. Cambridge, MA, USA: Academic Press; 2019. p. 79–93.
  • Li W, Quan Y-Y, Li Y, Lu L, Cui M. Monitoring of tumor vascular normalization: The key points from basic research to clinical application. Cancer Manag. Res. 2018;10:4163–4172.
  • Wang Q, Zorn JA, Kuriyan J. Chapter two—A structural atlas of kinases inhibited by clinically approved drugs. In: Shokat KM, editor. Methods in enzymology. Vol. 548. Cambridge, MA, USA: Academic Press; 2014. p. 23–67.
  • Perazella MA, Shirali A. Chapter 37—Kidney disease caused by therapeutic agents. In: Gilbert, S.J., Weiner, D.E., editors. National kidney foundation primer on kidney diseases. 6th ed. W.B. Saunders; Philadelphia, PA, USA: 2014. pp. 326–336.
  • Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6(8):465–477. doi:10.1038/nrclinonc.2009.94.
  • Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7(6):475–485. doi:10.1038/nrc2152.
  • Riccione KA, Gedeon P, Sanchez-Perez L, Sampson JH. Chapter 11—checkpoint blockade immunotherapy for glioblastoma: Progress and challenges. In: Sampson JH, editor. Translational immunotherapy of brain tumors. San Diego, CA, USA: Academic Press; 2017. p. 261–300.
  • Mahfouz N, Tahtouh R, Alaaeddine N, El Hajj J, Sarkis R, Hachem R, et al. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One. 2017;12(6):e0179202. doi:10.1371/journal.pone.0179202.
  • Sekhon N, Kumbla RA, Mita M. Chapter 1—Current trends in cancer therapy. In: Gottlieb RA, Mehta PK, editors. Cardio-Oncology. Boston, MA, USA: Academic Press; 2017. p. 1–24.
  • Reddy V.P. Chapter 9—Organofluorine compounds as anticancer agents. In: Reddy VP, editor. Organofluorine compounds in biology and medicine. Amsterdam, The Netherlands: Elsevier; 2015. p. 265–300.
  • Bronte E, Galvano A, Novo G, Russo A. Chapter 5—Cardiotoxic effects of anti-vegfr tyrosine kinase inhibitors. In: Gottlieb RA, Mehta PK, editors. Cardio-oncology. Boston, MA, USA: Academic Press; 2017. p. 69–89.
  • Li Y, Huang P, Peng H, Yue H, Wu M, Liu S, et al. Antitumor effects of endostar(rh-endostatin) combined with gemcitabine in different administration sequences to treat lewis lung carcinoma. Cancer Manag Res. 2019;11:3469–3479.
  • Ribatti D, Annese T, Ruggieri S, Tamma R, Crivellato E. Limitations of anti-angiogenic treatment of tumors. Transl Oncol. 2019;12(7):981–986. doi:10.1016/j.tranon.2019.04.022.
  • Sharma A, Campbell M, Yee C, Goswami S, Sharma P. Immunotherapy of cancer. In: Clinical Immunology; 2019. p. 1033–1048. Content Repository Only!.
  • Loges S, Schmidt T, Carmeliet P. Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer. 2010;1(1):12–25. doi:10.1177/1947601909356574.
  • Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95. doi:10.1016/j.ccr.2006.11.021.
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi:10.1038/nrc2442.
  • Kerbel RS. Molecular and physiologic mechanisms of drug resistance in cancer: an overview. Cancer Metastasis Rev. 2001;20(1-2):1–2. doi:10.1023/a:1013129128673.
  • Allen E, Walters IB, Hanahan D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res. 2011;17(16):5299–5310. doi:10.1158/1078-0432.CCR-10-2847.
  • Protientech. https://www.ptglab.com/news/blog/what-is-the-difference-between-necrosis-and-apoptosis/.
  • Karsch-Bluman A, Feiglin A, Arbib E, Stern T, Shoval H, Schwob O, et al. Tissue necrosis and its role in cancer progression. Oncogene. 2019;38(11):1920–1935. doi:10.1038/s41388-018-0555-y.
  • D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi:10.1002/cbin.11137.
  • Strasser A, Vaux DL. Cell death in the origin and treatment of cancer. Mol Cell. 2020;78(6):1045–1054. doi:10.1016/j.molcel.2020.05.014.
  • Hsu FT, Chiang IT, Wang WS. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF‐κB signalling participate in anti‐glioblastoma of imipramine. J Cell Mol Med. 2020;24(7):3982–4000. doi:10.1111/jcmm.15022.
  • Derakhshan A, Chen Z, Van Waes C. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res. 2017;23(6):1379–1387. doi:10.1158/1078-0432.CCR-16-2172.
  • Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. Biochim Biophys Acta (BBA)-Mol Cell Res. 2020;1867(6):118688.
  • Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol. 2017;27(5):322–339. doi:10.1016/j.tcb.2017.01.003.
  • Tashiro E, Kitagawa M, Imoto M. Apoptosis and autophagy. In: Osada H, editor. Bioprobes. Tokyo: Springer; 2017. p. 75–113.
  • Ishido M, Usu R. Distinct regulation of nuclear localization of caspase-activated DNase during cadmium-induced apoptosis of the target cells. Fundam Toxicol Sci. 2017;4(3):159–165. doi:10.2131/fts.4.159.
  • Mahendran D, Selvam K, Kumari S, Venkateswara Swamy K, Geetha N, Venkatachalam P. Thiocolchicoside and colchicine induced apoptosis in breast cancer (MCF-7) cells via up-regulated expression of p53 tumor suppressor protein gene: an in vitro and in silico docking approaches. J Biol Active Prod Nature. 2020;10(4):264–274. doi:10.1080/22311866.2020.1815575.
  • Bao H, Li HP, Shi Q, Huang K, Chen XH, Chen YX, et al. Lamin A/C negatively regulated by miR‐124‐3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats. Acta Physiol. 2020;228(3):e13374. doi:10.1111/apha.13374.
  • Horrevorts SK, Stolk DA, van de Ven R, Hulst M, van Het Hof B, Duinkerken S, et al. Glycan-modified apoptotic melanoma-derived extracellular vesicles as antigen source for anti-tumor vaccination. Cancers (Basel). 2019;11(9):1266. doi:10.3390/cancers11091266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.