259
Views
8
CrossRef citations to date
0
Altmetric
Articles

Dynamical behavior of a hybrid switching SIS epidemic model with vaccination and Lévy jumps

, , & ORCID Icon
Pages 388-411 | Received 20 Sep 2017, Accepted 19 Jan 2019, Published online: 08 Mar 2019

References

  • Li, J., Ma, Z. (2002). Qualitative analysis of SIS epidemic model with vaccination and varying total population size. Math. Comput. Model. 35(11–12):1235–1243. DOI: 10.1016/S0895-7177(02)00082-1.
  • Li, J., Ma, Z. (2004). Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete. Cont. Dyn. Syst. Ser. B 4:635–642. DOI: 10.3934/dcdsb.2004.4.635.
  • Chen, F. (2006). A susceptible-infected epidemic model with voluntary vaccinations. J. Math. Biol. Biol. 53(2):253–272. DOI: 10.1007/s00285-006-0006-1.
  • Shim, E., Feng, Z., Martcheva, M., Chavez, C. C. (2006). An age-structured epidemic model of rotavirus with vaccination. J. Math. Biol. Biol. 53(4):719–746.
  • Moneim, I., Greenhalgh, D. (2005). Threshold and stability results for an SIRS epidemic model with a general periodic vaccination strategy. J. Biol. Syst. Syst. 13(2):131–150. DOI: 10.1142/S0218339005001446.
  • Liu, X., Yang, L. (2012). Stability analysis of an SEIQV epidemic model with saturated incidence rate. Nonlinear Anal. RWA 13(6):2671–2679. DOI: 10.1016/j.nonrwa.2012.03.010.
  • Xu, R. (2012). Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl. Math. Model 36(11):5293–5300. DOI: 10.1016/j.apm.2011.12.037.
  • Li, J., Ma, Z. (2004). Global analysis of SIS epidemic models with variable total population size, math. Comput. Model 39:1231–1242.
  • Liu, Q., Jiang, D. (2016). The threshold of a stochastic delayed SIR epidemic model with vaccination. Physica A 461:140–147. DOI: 10.1016/j.physa.2016.05.036.
  • Meng, X., Chen, L., Wu, B. (2010). A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Anal. RWA 11(1):88–98. DOI: 10.1016/j.nonrwa.2008.10.041.
  • Zhao, Y., Jiang, D. (2014). The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243:718–727. DOI: 10.1016/j.amc.2014.05.124.
  • Wang, L., Chen, L., Nieto, J. J. (2010). The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal. RWA 11(3):1374–1386. DOI: 10.1016/j.nonrwa.2009.02.027.
  • Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J. (2011). A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. Math. 71(3):876–902. DOI: 10.1137/10081856X.
  • Liu, Q., Jiang, D., Shi, N., Hayat, T., Alsaedi, A. (2016). Periodic solution for a stochastic nonautonomous SIR epidemic model with logistic growth. Physica A 462:816–826. DOI: 10.1016/j.physa.2016.06.052.
  • Lahrouz, A., Omari, L., Kiouach, D. (2011). Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control. 16:59–76.
  • Liu, Q., Chen, Q. (2015). Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A. 428:140–153. DOI: 10.1016/j.physa.2015.01.075.
  • Zhang, X., Wang, K. (2014). Stochastic SEIR model with jumps. Appl. Math. Comput. 239:133–143. DOI: 10.1016/j.amc.2014.04.061.
  • Ge, Q., Ji, G., Xu, J., Fan, X. (2016). Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps. Physica A. 462:1120–1127. DOI: 10.1016/j.physa.2016.06.116.
  • Zhang, X., Wang, K. (2013). Stochastic SIR model with jumps. Appl. Math. Lett. 26(8):867–874. DOI: 10.1016/j.aml.2013.03.013.
  • Zhou, Y., Yuan, S., Zhao, D. (2016). Threshold behavior of a stochastic SIS model with Lévy jumps. Appl. Math. Comput. 275:255–267.
  • Zhou, Y., Zhang, W. (2016). Threshold of a stochastic SIR epidemic model with Lévy jumps. Physica A. 446:204–216. DOI: 10.1016/j.physa.2015.11.023.
  • Situ, R. (2005). Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering. New York: Springer
  • Luo, Q., Mao, X. (2007). Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334(1):69–84. DOI: 10.1016/j.jmaa.2006.12.032.
  • Zhu, C., Yin, G. (2007). Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. Optim. 46(4):1155–1179. DOI: 10.1137/060649343.
  • Takeuchi, Y., Du, N., Hieu, N. T., Sato, K. (2006). Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment. J. Math. Anal. Appl. 323(2):938–957. DOI: 10.1016/j.jmaa.2005.11.009.
  • Du, N., Kon, R., Sato, K., Takeuchi, Y. (2004). Dynamical behavior of Lotka-Volterra competition systems: Nonautonomous bistable case and the effect of telegraph noise. J. Comput. Appl. Math. 170(2):399–422. DOI: 10.1016/j.cam.2004.02.001.
  • Slatkin, M. (1978). The dynamics of a population in a Markovian environment. Ecology 59(2):249–256. DOI: 10.2307/1936370.
  • Settati, A., Lahrouz, A. (2014). Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244:235–243. DOI: 10.1016/j.amc.2014.07.012.
  • Zou, X., Wang, K. (2014). Numerical simulations and modeling for stochastic biological systems with jumps. Commun. Nonlinear Sci. Numer. Simul. 19(5):1557–1568. DOI: 10.1016/j.cnsns.2013.09.010.
  • Zhang, X., Jiang, D., Alsaedi, A., Hayat, T. (2016). Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Appl. Math. Lett. 59:87–93. DOI: 10.1016/j.aml.2016.03.010.
  • Lipster, R. (1980). A strong law of large numbers for local martingales. Stochastics 3:217–228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.